MAT 342 Fall 2016, SAMPLE MIDTERM 1,
Actual midterm is 10:00-10:53am, Friday, October 14, 2016 in P-131 Math
Name

ID

THIS EXAM IS WORTH 50 POINTS. EACH QUESTION IS WORTH ONE POINT. NO BOOKS, NOTES OR CALCULATORS ARE ALLOWED.

1-10 TRUE/FALSE: Write T (for true) or F (for false) in each box.
(1) \square $(2-3 i)-(4+2 i)=-2-5 i$
(6)

(2) \square $(2+i)(3+i)=5+5 i$
\square $\log (-1)=\pi$
(3) \square $(1-i)^{3}=-1-i$.
(8)
(5)

(
\square
(4) \square $1 / i=i$
(9)

$\square e^{i}=\cos (1)+i \sin (1)$

11-15 Place the letter of the corresponding point in the box. The same letter might be used more than once.
\square $|z|=\sqrt{5}$
\square $\operatorname{Re}(z)=-1$.
(13) \square $z^{2}=-2 i$
\square $z=\bar{F}$
\square $\operatorname{Arg}(z)=-\pi / 4$.

16-20 Match each function with its definition. Assume $z=x+i y$.
(16) \square $\sinh (z)$
A. $\frac{1}{2 i}\left(e^{i z}-e^{-i z}\right)$
H. $e^{x} \cos (y)$
(17)

B. $\frac{1}{2}\left(e^{i z}+e^{-i z}\right)$
I. $e^{x} \cos (y)+i e^{x} \sin (y)$
C. $(-i) \frac{e^{i z}-e^{-i z}}{e^{i z}+e^{-i z}}$
J. $e^{z \log i}$
(18) \square D. $\frac{e^{i z}+e^{-i z}}{e^{i z}-e^{-i z}}$
K. $\frac{1}{2}\left(e^{z}-e^{-z}\right)$
E. $\frac{1}{2}\left(e^{z}+e^{-z}\right)$
L. $\frac{1}{2} \log \frac{1+z}{1-z}$
(19)

F. $e^{y}(\cos x+i \sin x)$
M. $e^{i \log z}$
(20)

G. $e^{x}(\cos x-i \sin x)$
N. none of the above

21-25 Draw the following points or regions as accurately as you can.
(21) Draw the point $z=2-2 i$.

(23) Draw the region $|z+1-2 i| \leq 1$.

(22) Draw the point $\overline{i z}$, where $z=1+i$.

(25) Draw all solutions of $z^{4}=i$

(24) Draw the region $|\operatorname{Im}(z)| \leq 1$.

21-30 TRUE/FALSE: Write T (for true) or F (for false) in each box.
(26) \square The function e^{z} is entire.
\square If $f=u+i v$ is analytic and real valued, then f must be constant.
\square $\left|1-z^{2}\right|$ attains a maximum value somewhere on the plane.
(29) \square If f has an anti-derivative on domain D, then integral of f around any closed contour in D is zero.
\square If f is analytic on a disk D, then f must have an anti-derivative on D.
\square The function $\tan (z)$ is analytic on $\{z:|z|<1\}$.
\square A polynomial of degree n must have n distinct zeros.
\square $f(x+i y)=2 x y+i\left(x^{2}-y^{2}\right)$ is analytic on the plane.
\square Suppose $f=u+i v$. If the partials of u and v exist at a point z_{0} and satisfy the Cauchy-Riemann equations at z_{0}, then f is differentiable at z_{0}.
\square A function u is harmonic if $u_{x x}=u_{y y}$.

36-40: Give a precise statement of each definition or result.
(36) Define " f is analytic in an open set".
(37) State the coincidence principle.
(38) State Cauchy's formula.
(39) State the Cauchy-Riemann equations for $f=u+i v$.
(40) Define simply connected domain.

40-45 Evaluate each integral for the given contour; put your answer in the box.
(41) $\int_{C} \bar{z} d z$

(42) $\int_{C} \sin \left(e^{z}\right) d z$

(43) $\int_{C} e^{z} d z$

(44) $\int_{C} \frac{z^{2}}{z^{2}+1} d z$

(45) $\int_{C} \frac{d z}{z^{2}-1}$

(46) Write the function $f(z)=z^{3}$ in the form $u(x, y)+i v(x, y)$, with u, v real-valued.
(47) Give an example of a function that is analytic on the whole plane except for the points $z=i$ and $z=-i$.
(48) Give an example of an entire function that never equals 1.
(49) Is the function $u(x, y)=x^{2}+y^{2}$ harmonic? Explain why or why not.
(50) Evaluate $\int_{C} \exp (2 z) z^{-4} d z$ where C is the postively oriented unit circle.

