MAT 342 Fall 2016, Midterm 2, 10:00-10:53am, Wed., November 16, 2016

Name	ID	
	5	10

THIS EXAM IS WORTH 50 POINTS. EACH QUESTION IS WORTH ONE POINT, EXCEPT FOR PROBLEMS 21-30, THAT ARE WORTH TWO POINTS EACH. NO BOOKS, NOTES OR CALCULATORS ARE ALLOWED.

1-5: Write C (for converges) or D (for diverges) for each sequence or series.

- $(1) \qquad \qquad i^n, \ n = 1, 2, \dots$
- $(2) \qquad \sum_{n=1}^{\infty} \frac{1}{n}$
- (4) C $|i^n|, n = 1, 2,$
- $(5) \qquad \qquad \sum_{n=1}^{\infty} \frac{i^n}{n}$

6-10: For each function and point, identity the type of singularity: R = removable, P = pole, E= essential singularity.

11-20: Write T (for true) or F (for false) in each box.

- (11) If $\sum_{n=0}^{\infty} a_n z^n$ converges at z=1, then if converges for all |z|<1.
- (12) If $\sum_{n=0}^{\infty} a_n z^n = \sum_{n=0}^{\infty} b_n z^n$ for all |z| < 1, then $a_n = b_n$ for all $n = 0, 1, 2, \dots$
- (13) \mathbb{F} If $\sum_{n=0}^{\infty} a_n z^n$ converges at z=1, then if converges uniformly on |z|<1.
- (14) \mathbb{F} The power series for $\frac{1}{z^2+1}$ at z=1 has radius of convergence equal to 1.
- (15) \mathbb{F} If $\sum_{n=0}^{\infty} a_n z^n$ converges at z=1, then if converges for z=-1.
- (16) The same disk. If f has a power series expansion on |z-1| < 2, then f' has a power series expansion on the same disk.
- (17) F The function $f(z) = 1/\sin(x)$ has a convergent Laurent series expansion on $|z| > \pi/2$.
- (18) \digamma The function $f(z) = \exp(\frac{1}{z})$ takes every complex value in every neighborhood of 0.
- (19) $F \quad \text{If } f(z) = \sum_{n=0}^{\infty} a_n z^n \text{ and } g(z) = \sum_{n=0}^{\infty} b_n z^n \text{ are both analytic on } |z| < 1, \text{ then } f(z)g(z) = \sum_{n=0}^{\infty} a_n b_n z^n \text{ for all } |z| < 1.$
- (20) If f(z) is analytic on |z| < 1 and every derivative is zero at z = 0, i.e., $f^{(n)}(0) = 0$, then f must be constant.

21-25: Compute the residue of each function at the given point. Each problem is worth TWO points.

(21)
$$\frac{-1/2}{z^3}$$
 at $z = 0$. $\frac{\cos z}{z^3} = \frac{1 - \frac{1}{2} z^2 + \frac{1}{24} z^4 - \cdots}{z^3}$
= $\frac{1}{z^3} - \frac{1}{2} \frac{1}{z} + \frac{1}{24} z^2 - \cdots$

is analytic at 0

(23)
$$\frac{1}{2i} = \frac{1}{2i} = \frac{1}{1+z^2} \text{ at } z = i.$$

$$\frac{1}{1+z^2} = \frac{1}{(z-i)(z+i)} \quad \text{Res} = \frac{1}{i+i} = \frac{1}{2i}$$

(24)
$$-\pi^{3}/16$$
 $\frac{(\log z)^{3}}{z^{2}+1}$ at $z=i$.
Simple pole at $z=i$, Res = $\frac{(\log z)^{3}}{(\pm i)^{3}} = \frac{i^{3}\pi^{3}/2^{3}}{2i} = -\frac{\pi^{3}}{16}$

(25)
$$\frac{z^{3}(1-3z)}{(1+z)(1+2z^{4})}$$
 at $z = \infty$.
Res = $\operatorname{Res} - \frac{1}{z^{2}} f(\frac{1}{z}) = \operatorname{Res} - \frac{1}{z^{2}} \frac{z^{-3}(1-3z^{-4})}{(1+z^{-4})(1+2z^{-4})}$
= $\operatorname{Res} - \frac{1}{z} \frac{(z-3)}{(z+3)(z^{4}+z)} = -\frac{3}{1\cdot z} = \frac{3}{z}$

26-30: Match each function with its Maclaurin series. Each answer is worth TWO points.

(26)
$$G$$
 $\cos(z)$

A.
$$1 + z + z^2 + z^3 + \dots$$

F.
$$z^3 - \frac{1}{6}z^5 + \frac{1}{120}z^7 - \dots$$

B.
$$1 + z^4 + z^6 + z^8 + \dots$$

G.
$$1 - \frac{1}{2}z^2 + \frac{1}{24}z^4 - \dots$$

(28)
$$\triangleright$$
 $\exp(z^2)$

C.
$$1 + z + \frac{1}{2}z^2 + \frac{1}{6}z^3 + \dots$$

H.
$$z^3 - \frac{1}{2}z^5 + \frac{1}{24}z^7 - \dots$$

D.
$$1 + z^2 + \frac{1}{2}z^4 + \frac{1}{6}z^6 + \dots$$

I.
$$1+2z+3z^2+4z^3+5z^4+\dots$$

$$(30) \boxed{ } \boxed{ } \boxed{ } \boxed{ \frac{1}{(1-z)^2}}$$

E.
$$z + \frac{1}{6}z^3 + \frac{1}{120}z^5 + \dots$$

31-35 Evaluate $\int_{-\infty}^{\infty} f(x)dx$ where $f(x) = \frac{x^2}{(x^2+1)(x^2+4)}$, following the steps below.

(31) State the Cauchy residue theorem

Let C be a simple closed contour in the positive direction and suppose f is analytic inside and on C except for finitely many poles at 21,...,2n. Then $\int_{C} f(z)dz = 2\pi i \sum_{K=1}^{n} \frac{2}{2-3} e^{-ikx}$

(32) Draw a closed contour C_R that contains the interval [-R, R] and so that the integral over the rest of the contour tends to zero as $R \nearrow \infty$. Label the points -R and R.

(33) λ , λ List all the singularities of f inside the contour.

(34) $\frac{1}{3i}$, $-\frac{1}{6i}$ Compute the residues of f at the singularities inside the contour.

Res =
$$\frac{2^{2}}{(2+i)(2^{2}+1)}\Big|_{z=i} = \frac{-1}{2i(-1+4)} = \frac{-1}{6i}$$

Res =
$$\frac{z^2}{(z+zi)(z^2+1)}\Big|_{z=zi} = \frac{-4}{4i(-3)} = \frac{1}{3i}$$

(35) Compute the integral $\int_{-\infty}^{\infty} f(x) dx$.

$$\int = 2\pi i \left(\frac{1}{3i} - \frac{1}{6i} \right) = \frac{2\pi}{6} = \pi/3$$

36-40 Evaluate $\int_0^\infty f(x)dx$ where $f(x) = \frac{\cos ax}{x^2+1}$, following the steps below.

- (36) $e^{iz}/z^2 + 1$ Give the analytic function g(z) to which you will apply the Cauchy residue theorem.
- (37) Draw a closed contour C_R that contains the interval [-R, R] and so that the integral over the rest of the contour tends to zero as $R \nearrow \infty$. Label the points -R and R.

(38) List all the singularities of g(z) inside the contour.

(39) $e^{-1}/2i$ Compute the residues of g at all the singularities inside the contour.

$$\frac{e^{i \neq \alpha}}{z + c} \Big|_{z = i} = \frac{e^{-\alpha}}{ac}$$

(40) $\pi / 2e^{\alpha}$ Compute the integral $\int_0^{\infty} f(x)dx$.

$$\int_{0}^{\infty} f(x)dx = \frac{1}{2} \int_{-\infty}^{\infty} f(x)dx$$

$$= \frac{1}{2} \cdot 2\pi i \cdot \sum_{i} \operatorname{Res}_{i} f(x)dx$$

$$= \frac{1}{2} \cdot 2\pi i \cdot \sum_{i} \operatorname{Res}_{i} f(x)dx$$

$$= \frac{1}{2} \cdot 2\pi i \cdot \sum_{i} \operatorname{Res}_{i} f(x)dx$$

$$= \frac{1}{2} \cdot 2\pi i \cdot \sum_{i} \operatorname{Res}_{i} f(x)dx$$

$$= \frac{1}{2} \cdot 2\pi i \cdot \sum_{i} \operatorname{Res}_{i} f(x)dx$$

$$= \frac{1}{2} \cdot 2\pi i \cdot \sum_{i} \operatorname{Res}_{i} f(x)dx$$