MAT 342 Fall 2016, Midterm 2, 10:00-10:53am, Wed., November 16, 2016

Name 1D

THIS EXAM IS WORTH 50 POINTS. EACH QUESTION IS WORTH ONE POINT,
EXCEPT FOR PROBLEMS 21-30, THAT ARE WORTH TWO POINTS EACH. NO
BOOKS, NOTES OR CALCULATORS ARE ALLOWED.

1-5: Write C (for converges) or D (for diverges) for each sequence or series.
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6-10: For each function and point, identity the type of singularity:
R = removable, P = pole, E= essential singularity.
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(1) | & | f(z) =exp(l), z=0.
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11-20: Write T (for true) or F (for false) in each box.
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If > 0 anz" converges at z = 1, then if converges for all |z| < 1.

If Y ganz™ =3 oo s by2™ for all 2| < 1, then a, = b, for all n = 0,1,2,....

If 372 an2"™ converges at z = 1, then if converges uniformly on |z| < 1.

The power series for ++1 at z =1 has radius of convergence equal to 1.

If 37 o a,2" converges at z = 1, then if converges for z = —1.

If f has a power series expansion on |z — 1| < 2, then f’ has a power series expansion

on the same disk.
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The function f(z) = 1/sin(z) has a convergent Laurent series expansion on |z| > & /2,
The function f(z) = exp(1) takes every complex value in every neighborhood of 0.

If f(z) = Y50tz and g(z) = 5% by2" are both analytic on |2| < 1, then
=02y anbyz™ for all |z] < 1.

If f(z) is analytic on |2| < 1 and every derivative is zero at z = 0, i.e., f((0) =0

b

then f must be constant.




3

21-25: Compute the residue of each function at the given point. Each problem
is worth TWO points.
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26-30: Match each function with its Maclaurin series. Each answer is worth
TWO points.
(26) Gr cos(z)
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31-35 Evaluate ffooo f(z)dx where f(z) = W&zﬂ), following the steps below.

(31) State the Cauchy residue theorem
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(32) Draw a closed contour C that contains the interval [-R, R] and so that the integral over
the rest of the contour tends to zero as R 7 co. Label the points —R and R.

R B
(33) t TN ¢ List all the singularities of f inside the contour.
s X
B349)| ¢ , " 6¢ Compute the residues of f at the singularities inside the contour.
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(35) Wie Compute the integral [* f(z)dz.
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36-40 Evaluate [° f(z)dz where f(z) = 3%, following the steps below.
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residue theorem.

I2+1 b

Give the analytic function g(z) to which you will apply the Cauchy

(37) Draw a closed contour Cf that contains the interval [—R, R] and so that the integral over
the rest of the contour tends to zero as R 7 co. Label the points —R and R.
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List all the singularities of g(z) inside the contour.

Compute the residues of g at all the singularities inside the contour.
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Compute the integral [ f(z)dz.

G sde = x L ke

= .\——-'Z_“'L‘- Z(RC\.SQ
Z. .
; e 5 X
# Bk gt g7
N




