PROBLEM SET 3

1. If f is measurable, show that the set of local maxima of f is a measureable set $(x$ is a local maximum of f if there is an interval I centered at x so that $f(x)=\max _{y \in I} f(y)$).
2. Suppose f is continuous on the reals and let $f^{(2)}=f \circ f$ and $f^{(n)}=f \circ f^{(n-1)}=$ $f \circ f \circ \ldots \circ f n$ times. Let $F(x)=0$ if $\left\{x_{n}\right\}=\left\{f^{n}(x)\right\}_{n=1}^{\infty}$ is bounded and $F(x)=1$ if the sequence is unbounded. Show F is measurable.
3. A function is called simple if it only takes on finite number of different values. If g is bounded and measurable, and $\epsilon>0$ is given, show there is a measurable simple function f so that $\sup _{x}|g(x)-f(x)| \leq \epsilon$. Is this true if g is not bounded?
