MAT 118, Chapter 6 Sample Questions, Exam on Monday, November 4

- (1) This Irish mathematician lived from 1805 to 1865, became Astronomer Royal of Ireland at age 21 and his name is used to denote a path in a graph that visits every vertex exactly once.
 - (a) Rene Descarte
 - (b) Johann Bernoulli
 - (c) William Hamilton
 - (d) Leonard Euler
 - (e) Fredrich Gauss
 - (f) none of these
- (2) This Stony Brook professor was awarded the 2010 Godel prize for inventing a fast, approximate algorithm for the traveling salesman problem.
 - (a) Dennis Sullivan
 - (b) Joe Mitchell
 - (c) Jack Milnor
 - (d) James Glimm
 - (e) Jim Simons
- (3) In a complete graph with four vertices labeled A, B, C and D, how many Hamiltonian paths start at A and end at B?
 - **(a)** 0
 - **(b)** 1
 - (c) 2
 - (d) 6
 - **(e)** 24
 - (f) none of these
- (4) Suppose there are n vertices. Start by taking the two edges of least weight. For edges $3, \ldots, n-1$ take the edge of least weight that does not create three edges at one vertex and does not form a closed circuit. The last edge is taken so as to form a closed circuit. This algorithm for the traveling salesman problem is called the
 - (a) lowest weight algorithm
 - (b) nearest neighbor algorithm
 - (c) farthest insertion algorithm
 - (d) cheapest link algorithm
 - (e) exhaustive search algorithm
 - (f) none of these

(5)Use the nearest neighbor algorithm starting at vertex D. What circuit do you find? (a) D, E, B, A, F, C, D (b) D, B, F, E, C, A, D

(c) D, F, C, A, B, E, D (d) D, E, A, F, B, C, D (e) D, B, E, A, F, C, D (f) none of these

(6)What is the cost of the circuit found by the cheapest link algorithm using data in this table?

- (a) 2600
- **(b)** 2000
- (c) 2800
- (d) 3100
- (e) 2400
- (f) none of these

	А	В	С	D	Е	F
А	*	350	700	1000	1100	550
В	350	*	600	450	900	700
С	700	600	*	300	500	200
D	1000	450	300	*	100	500
Е	1100	900	500	100	*	400
F	550	700	200	500	400	*

(7)Apply the brute force algorithm to the graph below. A table is provided giving all the circuits starting at A. What is the length of the optimal path? circuit cost

Circuit	COSU									
ABCDA							A	В	С	D
ABDCA						А	-	6	4	15
ACDBA						В	6	-	3	4
ACBDA						С	4	3	-	7
ADBCA						D	15	4	7	-
ADCBA										
(a) 18	(b) 19	9	(c) 20	(d) 2	1	(e) 22		(f) 31		

(8)

Which statement is true about the graph on the right?

- (a) There is a Hamilton circuit.
- (b) There is a Hamilton path starting anywhere.
- (c) There is no Hamilton path.

(d) There is a Hamilton path starting and ending at black dots.

(e) There is a Hamilton path starting and ending at white dots.

