MAT 118, Chapter 5 Sample Questions

Exam on Monday, Oct 28
(1) \square This famous mathematician lived from 1707 to 1783 and invented graph theory (among many other accomplishments).
(a) Johann Bernoulli
(b) Leonard Euler
(c) Fredrich Gauss
(d) Issac Newton
(e) Rene Descarte
(f) none of these
(2) \square The algorithm given in the text for finding Euler circuits and paths is called
(a) Euler's algorithm
(b) Fleury's algorithm
(c) Gauss's algorithm
(d) Hierholzer's algorithm
(e) Bernoulli's algorithm
(f) none of these

(3) \square Which graphs above have an Euler circuit?
(a) Only A
(b) A and D
(c) B and C
(d) Only C
(e) Only D
(f) none of these
(4) \square On the island of Pentecost in the Pacific a traditional art form is to draw elaborate figures in the sand in a continuous line, never lifting ones finger from the sand from start to end. To draw the following figure without retracing any edges, where can the artist start and finish?
(a) start at A, finish at B
(b) start at A finish at C
(c) start at A finish at D
(d) start at B finish at C
(e) start at B finish at D
(f) you can start anywhere

The following figure is used for problem 5. This graph represents the streets in a town. A police car must travel over each street at least once and must start and end at the same vertex.

(5) \square What is the minimum number of streets that must be visited twice in an Euler circuit of the town?
(a) 0
(b) 2
(c) 4
(d) 5
(e) 6
(f) none of these
(6) \square Suppose Sam knows Joe, Ted and Max. In addition, Max knows Ted, Zak and Pat. Which graph on the right represents these relationships (vertices=people, edges=knows).
(a) A
(b) B
(c) C

(d) D
(e) E
(f) F

The following figure is used for problems 7 to 9 . This graph is "bipartite". This means the vertices are drawn in two rows and vertices are only connected to vertices in the other row.

(7) \square How many edges does this graph have?
(a) 8
(b) 9
(c) 10
(d) 11
(e) 12
(f) none of these
(8)
\square How many different paths are there from A to B ?
(a) 1
(b) 2
(c) 4
(d) 5
(e) 6
(f) none of these
(9) \square What is the fewest number of edges needed to travel from A to B?
(a) 1
(b) 2
(c) 3
(d) 4
(e) 5
(f) none of these

