
Multiscale SVD and Geometric Multi-Resolution Analysis
for noisy point clouds in high dimensions

Mauro Maggioni Duke University
Durham, NC, USA

mauro.maggioni@duke.edu

ABSTRACT
Data sets are often modeled as samples from a probability
distribution in R

D, for D large. It is often assumed that
the data has some interesting low-dimensional structure,
for example that of a d-dimensional manifold M, with d

much smaller than D. When M is simply a linear subspace,
one may exploit this assumption for encoding efficiently the
data by projecting onto a dictionary of d vectors in R

D (for
example found by SVD), at a cost (n + D)d for n data
points. When M is nonlinear, there are no “explicit” and
algorithmically efficient constructions of dictionaries that
achieve a similar efficiency: typically one uses either random
dictionaries, or dictionaries obtained by black-box global
optimization. The recent construction in [1] yields data-
dependent multi-scale dictionaries that aim at efficiently en-
coding and manipulating the data. Their construction is
fast, and so are the algorithms that map data points to
dictionary coefficients and vice versa, in contrast with L

1-
type sparsity-seeking algorithms, but alike adaptive nonlin-
ear approximation in classical multiscale analysis. In ad-
dition, data points are guaranteed to have a compressible
representation in terms of the dictionary, depending on the
assumptions on the geometry of the underlying probability
distribution.

We start by considering the problem of estimating the in-
trinsic dimension of data sets modeled as samples from a
probability distribution supported on d-dimensional set M

(in particular, a manifold) embedded in R
D, in the regime

d ≪ D, and corrupted by high-dimensional noise. This set-
ting has been recognized as important in various applica-
tions, ranging from the analysis of sounds, images (RGB or
hyperspectral), to gene arrays, EEG signals, and other types
of manifold-valued data, and has been at the center of much
investigation in the applied mathematics and machine learn-
ing communities during the past several years. This has lead
to a flurry of research on several problems, old and new, such
as estimating the intrinsic dimensionality of point clouds [3],
parametrizing sampled manifolds [2], constructing dictionar-
ies tuned to the data or for functions on the data, and their
applications to machine learning and function approxima-
tion. To this aim, we consider the singular values of the
covariance matrix of the data restricted to Euclidean balls
of radius r, as a function of r, and show that not only they
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contain useful information about local geometric properties
of the data, including local intrinsic dimension and a certain
stable notion of curvature, but they have very low sample
complexity and are extremely robust to high-dimensional
noise. We discuss applications to machine learning, hyper
spectral imaging, and molecular dynamics [4].

Then we discuss the construction of Geometric Multi-

Resolution Analyses for analyzing data sets as above [1].
We focus on obtaining multi-scale representations in order to
organize the data in a natural fashion, and obtain efficient
data structures for data storage, transmission, manipula-
tion, at different levels of precision that may be requested
or needed for particular tasks. This work ties with a sig-
nificant amount of recent work in different directions: (a)
Harmonic analysis and efficient representations of signals;
(b) Data-adaptive signal representations in high dimensional
spaces and dictionary learning; (c) Hierarchical structures
for organization of data sets; (d) Geometric analysis of low-
dimensional sets in high-dimensional spaces. This leads to
multi scale transforms mapping data into compressible sets
of coefficients, with associated fast transforms and sparse
representations. An extension of compressive sensing to this
framework will also be discussed.
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