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Abstract

We describe a natural isomorphism between the set of equivalence classes of pseudocycles and
the integral homology groups of a smooth manifold. Our arguments generalize to settings well-
suited for applications in enumerative algebraic geometry and for construction of the virtual
fundamental class in the Gromov-Witten theory.
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1 Introduction

In his seminal paper [G], Gromov initiated the study of pseudoholomorphic curves in symplectic
manifolds and demonstrated their usefulness by proving a number of important results in sym-
plectic topology. In [McSa] and [RT], pseudoholomorphic curves are used to define invariants of
semipositive manifolds. In particular, it is shown in [McSa] and [RT] that for every compact semi-
positive symplectic manifold (X,ω), homology class A∈H2(X; Z), integers k≥ 3 and N ≥ 0, and
generic compatible almost complex structure J on X, there exists a smooth oriented manifold
Mk,N (A, J) and a smooth map

evA,J
k,N : Mk,N (A, J) −→ Xk+N

such that the “boundary” of evA,J
k,N is small; see below. Such a smooth map is called a pseudo-

cycle and determines a homomorphism H∗(X
k+N ; Z) −→ Z, which turns out to be an invariant



of (X,ω;A, k,N).

In general, if X is a smooth manifold, subset Z of X is said to have dimension at most k if
there exists a k-dimensional manifold Y and a smooth map h : Y −→X such that the image of h
contains Z. If f : M −→X is a continuous map between topological spaces, the boundary of f is
the set

Bd f =
⋂

K⊂M cmpt

f(M−K).

A smooth map f : M −→ X is a k-pseudocycle if M is an oriented k-manifold, f(M) is a pre-
compact1 subset ofX, and the dimension of Bdf is at most k−2. Two k-pseudocycles f0 : M0−→X
and f1 : M1−→X are equivalent if there exists a smooth oriented manifold M̃ and a smooth map
f̃ : M̃−→X such that the image of f̃ is a pre-compact subset of X,

dim Bd f̃ ≤ k−1, ∂M̃ = M1 −M0, f̃ |M0 = f0, and f̃ |M1 = f1.

We denote the set of equivalence classes of pseudocycles into X by H∗(X). This set is naturally a
Z-graded module over Z. In this paper, we prove

Theorem 1.1 If X is a smooth manifold, there exist natural 2 homomorphisms of graded Z-
modules

Ψ∗ : H∗(X; Z) −→ H∗(X) and Φ∗ : H∗(X) −→ H∗(X; Z),

such that Φ∗ ◦ Ψ∗=Id and Ψ∗ ◦ Φ∗=Id.

Remark 1: In [McSa] and [RT], a pseudocycle is not explicitly required to have a pre-compact
image. As [McSa] and [RT] work with compact manifolds, this condition is automatically satisfied.
However, this requirement is essential in the non-compact case. As observed in [K], there is no
surjective homomorphism from H∗(X; Z) to H∗(X) if X is not compact and pseudocycles are not
required to have pre-compact images.

Remark 2: It is sufficient to require that a pseudocycle map be continuous, as long as the same
condition is imposed on pseudocycle equivalences. All arguments in this paper go through for con-
tinuous pseudocycles. In fact, Lemma 2.1 is no longer necessary. However, smooth pseudocycles
are useful in symplectic topology for defining invariants as intersection numbers.

In order to define symplectic invariants, [McSa] and [RT] observe that every element of H∗(X)
defines a homomorphism H∗(X; Z)−→Z, or equivalently an element of H∗(X; Z)

/

Tor
(

H∗(X; Z)
)

.
Thus, Theorem 1.1 leads to the symplectic invariants that may be strictly strongly than the GW-
invariants defined in [McSa] and in [RT]. In fact, these invariants are as good as the maps evA,J

k,N

can give:

Corollary 1.2 If (X,ω1) and (X,ω2) are semipositive symplectic manifolds that have the same
GW -invariants, viewed as a collection of integral homology classes, then the corresponding collec-
tions of evaluation maps from products of moduli spaces of pseudoholomorphic maps and Rieman-
nian surfaces are equivalent as pseudocycles.

1i.e. its closure is compact
2In other words, Ψ∗ and Φ∗ are natural transformations of functors H∗(·; Z) and H∗(·) from the category of

smooth compact manifolds and maps.
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This corollary is immediate from Theorem 1.1.

The natural homomorphisms

Ψ∗ : H∗(X; Z) −→ H∗(X) and Φ∗ : H∗(X) −→ H∗(X; Z)

of Theorem 1.1 are constructed in Subsections 3.1 and 3.2, respectively. In Subsection 3.3, it is
shown that these maps are mutual inverses. The homomorphism

Φ∗ : H∗(X) −→ H∗(X; Z)

of Subsection 3.2 induces the linear map

H∗(X) −→ H∗(X; Z)
/

Tor
(

H∗(X; Z)
)

described in [McSa] and [RT]. However, our construction of Φ∗ differs from that of the induced
map in [McSa] and [RT]. Indeed, the latter is constructed via the homomorphism Ψ∗ and a natural
intersection pairing on H∗(X). The construction of Φ∗ in Subsection 3.2 is more direct. We use
Proposition 2.2, which describes a topological property of “small” subsets of smooth manifolds,
and Proposition 2.9, which allows us to replace the singular chain complex S∗(X) by a quotient
complex S̄∗(X). The advantage of the latter complex is that cycles can be constructed more easily.

This paper was begun while the author was a graduate student at MIT and then put on the back
burner. The aim of this paper was to clarify relations between H∗(X; Z) and H∗(X) that were
hinted at in [McSa] and stated without a proof in [RT]. Since then, this issue has been explored
in [K] and in [Sc]. The views taken in [K] and in [Sc] differ significantly from the present paper. In
particular, while non-compact manifolds are considered in [K], pseudocycles in [K] are not required
to have pre-compact images. Theorem 1.1 fails for such pseudocycles. The arguments in the present
paper are rather direct and use no advanced techniques, beyond standard algebraic topology. In
a sense they implement an outline proposed in Section 7.1 of [McSa]. However, a fully rigorous
implementation of this outline requires non-trivial technical facts obtained in Subsections 2.2-2.4
of this paper.

As a graduate student, the author was partially supported by an NSF Graduate Research Fellow-
ship and NSF grant DMS-9803166. The author would like to thank D. McDuff for enlightening
conversations and encouraging him to finish up the original notes.

2 Preliminaries

2.1 Notation

If A is a finite subset of R
k, we denote by CH(A) and CH0(A) the (closed) convex hull of A and

the open convex hull of A, respectively, i.e.

CH(A) =
{

∑

v∈A

tvv : tv∈ [0, 1];
∑

v∈A

tv =1
}

and

CH0(A) =
{

∑

v∈A

tvv : tv∈(0, 1);
∑

v∈A

tv =1
}

.
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For each p=1, . . . , k, let ep be the pth coordinate vector in R
k. Put e0 =0∈R

k. Denote by

∆k = CH
(

e0, e1, . . . , ek
)

and Int ∆k = CH0
(

e0, e1, . . . , ek
)

the standard k-simplex and its interior. Let

bk =
1

k+1

( q=k
∑

q=0

eq

)

=
( 1

k+1
, . . . ,

1

k+1

)

∈ R
k.

be the barycenter of ∆k.

For each p=0, 1, . . . , k, let

∆k
p = CH

({

eq : q∈{0, 1, . . . , k}−p
})

and Int ∆k
p = CH0

({

eq : q∈{0, 1, . . . , k}−p
})

denote the pth face of ∆k and its interior. Define a linear map3

ιk,p : ∆k−1 −→ ∆k
p ⊂ ∆k by ιk,p(eq) =

{

eq, if q<p;

eq+1, if q≥p.

We also define a projection map

π̃k
p : ∆k−{ep} −→ ∆k

p by π̃k
p

(

q=k
∑

q=0

tqeq

)

=
1

1−tp

(

∑

q 6=p

tqeq

)

.

Put

bk,p = ιk,p(bk−1), b′k,p =
1

k+1

(

bk +
∑

q 6=p

eq

)

.

The points bk,p and b′k,p are the barycenters of the (k−1)-simplex ∆k
p and of the k-simplex spanned

by bk and the vertices of ∆k
p. Define a neighborhood of Int ∆k

p in ∆k by

Uk
p =

{

tpb
′
k,p+

∑

0≤q≤k;q 6=p

tqeq : tp≥0, tq>0 ∀q 6=p;

q=k
∑

q=0

tq =1
}

.

These neighborhoods will be used to construct pseudocycles out of homology cycles.

If p, q=0, 1, . . . , k and p 6=q, let

∆k
p,q ≡ ∆k

p∩∆k
q and

ιk,(p,q) ≡ ιk,p◦ιk−1,ι−1
k,p

(q) = ιk,q◦ιk−1,ι−1
k,q

(p) : ∆k−2 −→ ∆k
p,q (2.1)

3A map f : ∆m
−→∆k is called linear if

f(t0e0+. . .+ tmem) = t0f(e0)+. . .+tmf(em) ∀ (t0, . . . , tm) ∈ [0, 1]m+1 s.t. t0+. . .+tm =1.
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Figure 1: The Standard 2-Simplex and Some of its Distinguished Subsets

be the corresponding codimension-two simplex and the inclusion map. Define neighborhoods of
Int∆k

p,q in ∆k by

Ũk
p,q =

{

tpbk,p+tqbk,q+
∑

r 6=p,q

trer : tp, tq≥0, tr>0 ∀ r 6=p, q;
r=k
∑

r=0

tr =1
}

,

Uk
p,q =

{

tpιk,p(b
′
k−1,ι

k,ι
−1
k,p

(q)
)+tqιk,q(b

′
k−1,ι

k,ι
−1
k,q

(p)
)+

∑

r 6=p,q

trer : tp, tq≥0, tr>0∀r 6=p, q;
r=k
∑

r=0

tr =1
}

.

These sets will be used to construct pseudocycle equivalences out of singular cycles. Note that

Ũk
p1,q1

∩ Ũk
p2,q2

= ∅ if {p1, q1} 6= {p2, q2}. (2.2)

Define a projection map

π̃k
p,q : ∆k − CH(ep, eq) −→ ∆k

p,q by π̃k
p,q

(

r=k
∑

r=0

trer

)

=
1

1−tp−tq

(

∑

r 6=p,q

trer

)

.

Finally, let Sk denote the group of permutations of the set {0, . . . , k}. The set Sk can be viewed
as a subset of Sk+1; if τ ∈Sk, put τ(k+1)=k+1. If p−, p+=0, 1, . . . , k+1, define

τk,(p−,p+) ∈ Sk by τk,(p−,p+)(q) =

{

ι−1
k+1,p−

(ιk+1,p+(q)), if q 6= ι−1
k+1,p+(p−);

ι−1
k+1,p−

(p+), if q= ι−1
k+1,p+(p−).

(2.3)

e0 e1

e2

Ũ2
2,1

e0 e1

e2

U2
2,1

Figure 2: The Standard 2-Simplex and Some of its Distinguished Subsets
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We note that

ιk+1,p−◦τk,(p−,p+) = ιk+1,p+ : ∆k
ι−1

k+1,p+ (p−)
−→ ∆k+1

p−,p+ =⇒ (2.4)

τk,(p−,p+)◦ιk,ι−1

k+1,p+ (p−) = ιk,ι−1

k+1,p−
(p+) : ∆k−1 −→ ∆k

ι−1

k+1,p−
(p+)

; (2.5)

the second equality follows from the first using (2.1). Furthermore,

sign τk,(p−,p+) = −(−1)p−+p+
. (2.6)

For any τ ∈Sk, define

τ : ∆k −→ ∆k by τ(eq) = eτ(q) ∀ q = 0, 1, . . . , k.

Lemma 2.1 If k≥1, Y is the (k−2)-skeleton of ∆k, and Ỹ is the (k−2)-skeleton of ∆k+1, there
exist continuous functions

ϕk : ∆k −→ ∆k and ϕ̃k+1 : ∆k+1 −→ ∆k+1

such that
(i) ϕk is smooth outside of Y and ϕ̃k+1 is smooth outside of Ỹ ;

(ii) for all p=0, . . . , k and τ ∈Sk,

ϕk|Uk
p

= π̃k
p

∣

∣

Uk
p

and ϕk ◦ τ = τ ◦ ϕk; (2.7)

(iii) for all p, q=0, . . . , k+1 with p 6=q and τ̃ ∈Sk+1,

ϕ̃k+1|Uk+1
p,q

= π̃k+1
p,q

∣

∣

Uk+1
p,q

, ϕ̃k+1 ◦ τ̃ = τ̃ ◦ ϕ̃k+1, and ϕ̃k+1 ◦ ιk+1,p = ιk+1,p ◦ ϕk. (2.8)

Proof: (1) Choose a smooth function

η̃0,1 : ∆k+1 − ∆k+1
0,1 ∩Ỹ −→ [0, 1]

such that η̃0,1 = 1 on Uk+1
0,1 , η̃0,1 = 0 outside of Ũk+1

0,1 , and η̃0,1 is invariant under any permutation
τ̃ ∈Sk+1 that preserves the set {0, 1}. If τ̃ ∈Sk+1 is any permutation, let

η̃τ̃(0),τ̃(1) = η̃0,1◦τ̃
−1 : ∆k+1 − ∆k+1

τ̃(0),τ̃(1)∩Ỹ −→ [0, 1].

By the assumptions on η̃0,1, η̃p,q is a well-defined smooth function such that η̃p,q = 1 on Uk+1
p,q ,

η̃p,q =0 outside of Ũk+1
p,q , and

η̃τ̃(p),τ̃(q) = η̃ ◦ τ̃−1 (2.9)

for all τ̃ ∈Sk+1 and distinct p, q=0, . . . , k+1.

(2) Define

ϕ̃k+1 : ∆k+1 −→ ∆k+1 by ϕ̃k+1(x) = x+
∑

0≤p<q≤k+1

η̃p,q(x) ·
(

π̃k+1
p,q (x)−x

)

.
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Since η̃p,q vanishes on a neighborhood of CH(ep, eq) and π̃k+1
p,q restricts to the identity on ∆k+1

p,q , the

function η̃ is well-defined, continuous everywhere, and smooth on ∆k+1−Ỹ . By (2.2), ϕ̃k+1 = π̃k+1
p,q

on Uk+1
p,q . By (2.9), for every τ̃ ∈Sk+1

ϕ̃k+1 ◦ τ̃ = τ̃ +
∑

0≤p<q≤k+1

η̃p,q◦τ̃ ·
(

π̃k+1
p,q ◦τ̃−τ̃

)

= τ̃ +
∑

0≤p<q≤k+1

η̃τ̃−1(p),τ̃−1(q) ·
(

τ̃ ◦π̃k+1
τ̃−1(p),τ̃−1(q)

−τ̃
)

= τ̃ +
∑

0≤p<q≤k+1

η̃p,q ·
(

τ̃ ◦π̃k+1
p,q −τ̃

)

= τ̃ ◦ ϕ̃k+1.

Thus, ϕ̃k+1 satisfies the first two conditions in (2.8), as well as (i) above.

(3) We define ϕk by the third condition in (2.8). The function ϕk is independent of the choice of p
and satisfies the second condition in (2.7). To see this, suppose p, q=0, . . . , k+1 and τ ∈Sk. Let
τ̃ ∈Sk+1 be defined by

τ̃ ◦ ιk+1,p = ιk+1,q ◦ τ.

If ϕk,p and ϕk,q are the functions corresponding to p and q via the third equation in (2.8), then by
the second equation in (2.8)

ιk+1,q ◦ τ ◦ ϕk,p = τ̃ ◦ ιk+1,p ◦ ϕk,p = τ̃ ◦ ϕ̃k+1 ◦ ιk+1,p = ϕ̃k+1 ◦ τ̃ ◦ ιk+1,p

= ϕ̃k+1 ◦ ιk+1,q ◦ τ = ιk+1,q ◦ ϕk,q ◦ τ.

We conclude that
τ ◦ ϕk,p = ϕk,q ◦ τ ∀ p, q=0, . . . , k+1, τ ∈Sk.

The function ϕk satisfies the first condition in (2.7) because

ιk+1,p

(

Uk
p

)

= Uk+1
p,p+1 ∩ ∆k+1

p,p+1 and

ιk+1,p ◦ ϕk = ϕ̃k+1 ◦ ιk+1,p = π̃k+1
p,p+1 ◦ ιk+1,p = ιk+1,p ◦ π̃

k
p on Uk

p .

Finally, ϕk satisfies (i) because ϕ̃k+1 does.

2.2 Homology of Neighborhoods of Smooth Maps

In this subsection, we prove

Proposition 2.2 If h : Y −→X is a smooth map and W is an open neighborhood of a subset A of
Im h in X, there exists a neighborhood U of A in W such that

Hl(U) = 0 if l>dimY.
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Note that it may not be true that

Hl(A) = 0 if l>dimY.

For example, let A be the subset of X=R
N consisting of countably many k-spheres of radii tending

to 0 and having a single point in common. If k≥2, the set A has infinitely many nonzero homology
groups, as shown in [BM].

If h : Y −→X is a smooth map and k is a nonnegative integer, put

Nk(h) =
{

y∈Y : rk dh|y≤k
}

.

Proposition 2.2 follows from Lemma 2.4 applied with X replaced by W , Y by h−1(W ), and k
by dimY .

One of the ingredients in the proof of Lemma 2.4 is Lemma 2.3. For the purposes of this paper,
a triangulation of a smooth manifold X is a pair T =(K, η) consisting of a simplicial complex and
a homeomorphism η : |K| −→X, where |K| is a geometric realization of K in R

N in the sense of
Section 3 in [Mu], such that η|Int σ is smooth for every simplex σ∈K.

Lemma 2.3 If X,Y are smooth manifolds and h : Y −→ X is a smooth map, there exists a
triangulation T =(K, η) of X such that h is transverse to η|Int σ for every simplex σ∈K.

This lemma is clear. In fact, we can start with any triangulation of X and obtain a desired one by
an arbitrary small generic perturbation.

Lemma 2.4 If h : Y −→ X is a smooth map, for every nonnegative integer k there exists a
neighborhood U of h

(

Nk(h)
)

in X such that

Hl(U) = 0 if l>k.

Proof: By Lemma 2.3, there exists a triangulation T =(K, η) of X such that the smooth map h is
transversal to η|Int σ for all σ∈K. In particular,

h
(

Nk(h)
)

⊂
⋃

σ∈K,dim σ≥n−k

η(Intσ) =
⋃

σ∈K,dim σ≥n−k

η
(

St(bσ, sdK)
)

,

where n = dimX, sdK is the barycentric subdivision of K, and St(bσ, sdK) is the star of bσ
in sdK.4 Note that

St(bσ, sdK) ∩ St(bσ′ , sdK) = ∅

unless σ⊂σ′ or σ′⊂σ. Furthermore, if σ1⊂ . . .⊂σm,

St(bσ1 , sdK) ∩ . . . ∩ St(bσm , sdK) = St(bσ1 . . . bσm , sdK);

the last set is contractable. Put

U ′
m =

⋃

σ∈K,dim σ=m

St(bσ, sdK).

4If K is a simplicial complex and σ is a simplex in K, the star of σ in K is the union of the subsets Int σ′ taken
over the simplices σ′

∈K such that σ⊂σ′; see Section 62 in [Mu].
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Then U ′
lm
∩. . .∩U ′

mj
is a disjoint union of contractable open sets in |K|. Let

Um = η(U ′
m), m = n−k, . . . , n; U =

n
⋃

m=n−k

Um.

Since η : |K| −→X is a homeomorphism, Um1∩ . . .∩Umj
is a disjoint union of contractable open

subsets of X. It follows from Lemma 2.5 below that Hl(U)=0 if l>k. Furthermore, by the above
h
(

Nk(h)
)

⊂U .

Lemma 2.5 Let
{

Um

}m=k

m=0
be a collection of open sets in X and U=

m=k
⋃

m=0
Um. If

Hl

(

Um1∩. . .∩Umj
; Z

)

= 0 ∀ l>0, m1, . . . ,mj =0, . . . , k,

then Hl(U)=0 for all l>k.

This lemma follows by induction from Mayer-Vietoris Theorem; see [Mu, p186].

2.3 Oriented Homology Groups

If X is a simplicial complex, the standard singular chain complex S∗(X) most naturally corresponds
to the ordered simplicial chain complex of X; see Section 13 in [Mu]. In this subsection, we define
a singular chain complex S̄∗(X) which corresponds to the standard, or oriented, simplicial chain
complex. In particular, its homology is the same as the homology of the ordinary singular chain
complex; see Proposition 2.9. On the other hand, it is much easier to construct cycles in S̄∗(X)
than in S∗(X).

If X is a topological space, let
(

S∗(X), ∂X

)

denote its singular chain complex, i.e. the free abelian
group on the set

∞
⋃

k=0

Hom(∆k, X)

of all continuous maps from standard simplices to X, along with a map ∂X of degree −1. Let
S′

k(X) denote the free subgroup of S∗(X) spanned by the set

{

f−(sign τ)f ◦τ : f ∈Hom(∆k, X); τ ∈Sk; k=0, 1, . . .
}

.

If τ ∈Sk−{id}, put
τ̃ = Id∆k − (sign τ)τ ∈ S′

k(∆
k).

Then, S′
∗(X) is the subgroup of S∗(X) spanned by

{

f#τ̃ : f ∈Hom(∆k, X); τ ∈Sk; k=0, 1, . . .
}

.

Note that if h : X−→Y is a continuous map, the linear map

h# : S∗(X) −→ S∗(Y )

maps S′
∗(X) into S′

∗(Y ).
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Lemma 2.6 The free abelian group S′
∗(X) is a subcomplex of

(

S∗(X), ∂X

)

, i.e. ∂XS
′
∗(X)⊂S′

∗(X).

Proof: (1) Suppose τ ∈Sk. For any p=0, . . . , k, let τp∈Sk−1 be such that

τ ◦ ιk,p = ιk,τ(p) ◦ τp : ∆k−1 −→ ∆k
p ⊂∆k.

Let τk,p∈Sk be defined by

τk,p(q) =

{

ιk,p(q), if q<k;

p, if q=k,

Then, τ ◦τk,p = τk,τ(p)◦τp ∈ Sk for all τ ∈Sk. Thus,

sign τp = (−1)(k−p)+(k−τ(p))sign τ = (−1)p+τ(p)sign τ. (2.10)

(2) By the above, we have

∂∆kτ =
k

∑

p=0

(−1)pτ ◦ιk,p =
k

∑

p=0

(−1)pιk,τ(p)◦τp

= (sign τ)
k

∑

p=0

(−1)τ(p)(sign τp)ιk,τ(p)◦τp = (sign τ)
k

∑

p=0

(−1)p(sign ττ−1(p))ιk,p◦ττ−1(p).

Thus,

∂∆k τ̃ =

k
∑

p=0

(−1)p
(

ιk,p − (sign ττ−1(p))ιk,p◦ττ−1(p)

)

∈ S′
k−1(∆

k).

It follows that for any f ∈Sk(X),

∂X(f#τ̃) = f#(∂∆k τ̃) ∈ S′
k−1(X).

Lemma 2.7 There exists a natural transformation of functors DX : S∗−→S∗+1 such that
(i) if f : ∆m−→∆k is a linear map, DXf is a linear combination of linear maps ∆m+1−→∆k for
all k,m=0, 1, . . .;
(ii) DXS

′
∗(X) ⊂ S′

∗(X) for all topological spaces X;
(iii) ∂XDX = (−1)k+1Id +DX∂X on S′

k(X).

Proof: (1) Suppose k∈ Z
+. If f : ∆m−→∆k is a linear map, define a new linear map

Pkf : ∆m+1 −→ ∆k by Pkf (eq) =

{

f(eq), if q=0, . . . ,m;

bk, if q=m+1.
(2.11)

The transformation Pk induces a linear map on the subchain complex of S∗(∆
k) spanned by the

linear maps. If τ ∈Sm⊂Sm+1 and f ∈Sm(∆k), then

Pk(f ◦τ) = Pkf ◦ τ. (2.12)

Thus, Pk maps the subgroup of S′
∗(∆

k) spanned by the linear maps into itself. Similarly, if τ ∈Sk,

τ#(Pkf) ≡ τ ◦ Pkf = Pk(τ ◦f) ≡ Pkτ#f. (2.13)
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Furthermore,
∂∆kPkf = (−1)k+1f + Pk

(

∂∆kf
)

. (2.14)

(2) Let DX |Sk(X) = 0 if k < 1; then DX satisfies (i)-(iii). Suppose k ≥ 1 and we have defined
DX |Sk−1(X) so that the three requirements are satisfied wherever DX is defined. Put

D∆k(Id∆k) = Pk

(

Id∆k + (−1)k+1D∆k∂∆kId∆k

)

∈ Sk+1(∆
k). (2.15)

By the inductive assumption (i) and (2.11), D∆k(Id∆k) is a well-defined linear combination of linear
maps. For any f ∈Hom(∆k, X), let

DXf = f#D∆kId∆k . (2.16)

This construction defines a natural transformation Sk −→Sk+1. Since D∆k(Id∆k) is a linear com-
bination of linear maps, it is clear that the requirement (i) above is satisfied; it remains to check
(ii) and (iii).

(3) Given f ∈ Hom(∆k, X) and τ ∈ Sk, let s = f#τ̃ ∈ S′
k(X). By (2.16), (2.15), (2.13), and

naturality of DX |Sk−1
,

DX(f ◦τ) = f#τ#D∆kId∆k = f#τ#Pk

(

Id∆k + (−1)k+1D∆k∂∆kId∆k

)

= f#Pk

(

τ + (−1)k+1τ#D∆k∂∆kId∆k

)

= f#Pk

(

τ + (−1)k+1D∆k∂∆kτ
)

.

(2.17)

Thus,
DXs = f#Pk

(

τ̃ + (−1)k+1D∆k∂∆k τ̃
)

. (2.18)

By Lemma 2.6, the induction assumption (ii), and (2.12), S′
k(∆

k) is mapped into S′
∗(∆

k) byD∆k∂∆k

and by Pk. Thus, by (2.18), DX maps S′
k(X) into S′

k+1(X). Finally, by (2.18), (2.14), and the
inductive assumption (iii),

∂XDXs = ∂Xf#Pk

(

τ̃+(−1)k+1D∆k∂∆k τ̃
)

= f#∂∆kPkτ̃ + (−1)k+1f#∂∆kPkD∆k∂∆k τ̃

= f#

(

(−1)k+1τ̃ + Pk∂∆k τ̃
)

+ (−1)k+1f#

(

(−1)k+1D∆k∂∆k τ̃ + Pk∂∆kD∆k∂∆k τ̃
)

=
(

(−1)k+1s+DX∂Xs
)

+ f#Pk∂∆k τ̃ + (−1)k+1f#Pk

(

(−1)k∂∆k τ̃+D∆k∂2
∆k τ̃

)

= (−1)k+1s+DX∂Xs.

Corollary 2.8 All homology groups of the complex
(

S′
∗(X), ∂X |S′

∗(X)

)

are zero.

Let S̄∗(X)=S∗(X)/S′
∗(X) and denote by

π : S∗(X) −→ S̄∗(X)

the projection map. Let ∂̄X be boundary map on S̄∗(X) induced by ∂X . We denote by H̄∗(X; Z)
the homology groups of

(

S̄∗(X), ∂̄X

)

.
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Proposition 2.9 If X is a topological space, the projection map π : S∗(X) −→ S̄∗(X) induces
a natural isomorphism H∗(X; Z) −→ H̄∗(X; Z). This isomorphism can be extended to relative
homologies to give an isomorphism of homology theories.

The first statement follows from the long exact sequence in homology for the short exact sequence
of chain complexes

0 −→ S′
∗(X) −→ S∗(X)

π
−→ S̄∗(X) −→ 0

and Corollary 2.8. The second statement follows from the first and the Five Lemma.

For a simplicial complex K, there is a natural chain map from the ordered simplicial complex C ′
∗(K)

to the singular chain complex S∗(|K|), which induces isomorphism in homology. If the vertices of
K are ordered, there is also a chain map from C ′

∗(K) to the oriented chain complex C∗(K), which
induces a natural isomorphism in homology. However, the chain map itself depends on the order-
ing of the vertices; see Section 34 in [Mu]. The advantage of the complex S̄∗(K) is that there is a
natural chain map from C∗(K) to S̄∗(K), which induces isomorphism in homology; this chain map
is induced by the natural chain map from C ′

∗(K) to S∗(|K|) described in Section 34 of [Mu].

If (X,Bd X) is a compact oriented n-manifold, (K,K ′, η) a triangulation of (X,Bd X), and for
each n-dimensional simplex σ∈K,

lσ : ∆n −→ σ

is a linear map such that η ◦ lσ is orientation-preserving, then the fundamental homology class
[X]∈Hn(X,BdX) is represented in S̄k(X,BdX) by

∑

σ∈K,dim σ=n

{η◦lσ} ≡
∑

σ∈K,dim σ=n

π(η◦lσ),

where π is as before. Note that
∑

σ∈K,dim σ=n

η◦lσ

may not even be a cycle in Sk(X,BdX). It is definitely not a cycle if BdX= ∅ and n is an even
positive integer, as the boundary of each term η◦ lσ contains one more term with coefficient +1
than −1. Similarly, if

h : (X,BdX) −→ (M,U)

is a continuous map, h∗([X])∈Hk(M,U) is represented in S̄k(M,U) by

∑

σ∈K,dim σ=n

{h◦η◦lσ}.

Once again, the obvious preimage under π of the above chain in Sk(M,U) may not be even a cycle.

2.4 Combinatorics of Oriented Singular Homology

In this subsection we characterize cycles and boundaries in S̄∗(X) in a manner suitable for con-
verting them to pseudocycles and pseudocycle equivalences in Subsection 3.1. We will use the two
lemmas proved here to glue maps from standard simplices together to construct smooth maps from
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smooth manifolds.

The homology groups of a smooth manifolds X can be defined with the space Hom(∆k, X) of con-
tinuous maps from ∆k to X replaced by the space C∞(∆k, X) of smooth maps; this is a standard
fact in differential topology. Note that the operator DX of Lemma 2.7 maps smooth maps into
linear combinations of smooth maps. Thus, all of the constructions of Subsection 2.3 go through
for the chain complexes based on elements in C∞(∆k, X) instead of Hom(∆k, X). Below S̄∗(X)
will refer to the quotient complex based on such maps.

If s=
j=N
∑

j=1
fj , where fj : ∆k−→X is a continuous map for each j, let

Cs =
{

(j, p) : j=1, . . . , N ; p=0, . . . , k
}

.

Lemma 2.10 If k≥1 and s ≡
j=N
∑

j=1
fj determines a cycle in S̄k(X), there exist a subset Ds⊂Cs×Cs

disjoint from the diagonal and a map

τ : Ds −→ Sk−1,
(

(j1, p1), (j2, p2)
)

−→ τ(j1,p1),(j2,p2),

such that
(i) if

(

(j1, p1), (j2, p2)
)

∈Ds, then
(

(j2, p2), (j1, p1)
)

∈Ds;
(ii) the projection Ds−→Cs on either coordinate is a bijection;
(iii) for all

(

(j1, p1), (j2, p2)
)

∈Ds,

τ(j2,p2),(j1,p1) = τ −1
(j1,p1),(j2,p2), fj2 ◦ ιk,p2 = fj1 ◦ ιk,p1 ◦ τ(j1,p1),(j2,p2), (2.19)

and sign τ(j1,p1),(j2,p2) = −(−1)p1+p2 . (2.20)

This lemma follows from the assumption that ∂̄{s}=0 and from the definition of S̄∗(X) in Subsec-
tion 2.3. The terms appearing in the boundary of s are indexed by the set Cs, and the coefficient
of the (j, p)th term is (−1)p. Since s determines a cycle in S̄∗(X), these terms cancel in pairs,
possibly after composition with an element τ ∈Sk−1 and multiplying by signτ . This operation does
not change the equivalence class of a (k−1)-simplex in S̄k−1(X).

Lemma 2.11 Suppose k≥1 and

s0 ≡

j=N0
∑

j=1

{f0,j} and s1 ≡

j=N1
∑

j=1

{f1,j}

determine cycles in S̄k(X). Let Ds0 ⊂Cs0×Cs0, Ds1 ⊂Cs1×Cs1,

τ0 : Ds0 −→ Sk−1, and τ1 : Ds1 −→ Sk−1

be the subsets and maps provided by Lemma 2.10. If

[

{s0}
]

=
[

{s1}
]

∈ H̄k(X; Z),
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there exist

(a) s̃ ≡
j=Ñ
∑

j=1
f̃j ∈ Sk+1(X);

(b) Ds̃⊂Cs̃×Cs̃ disjoint from the diagonal, C
(0)
s̃ , C

(1)
s̃ ⊂Cs̃, and maps

τ̃ : Ds̃ −→ Sk,
(

(j1, p1), (j2, p2)
)

−→ τ̃(j1,p1),(j2,p2),

(j̃i, p̃i) :
{

1, . . . , Ni

}

−→ C
(i)
s̃ , and τ̃i :

{

1, . . . , Ni

}

−→ Sk, j −→ τ̃(i,j), i = 0, 1,

such that
(i) if

(

(j1, p1), (j2, p2)
)

∈Ds̃, then
(

(j2, p2), (j1, p1)
)

∈Ds̃;

(ii) the projection Ds̃−→Cs̃ on either coordinate is a bijection onto the complement of C
(0)
s̃ ∪C

(1)
s̃ ;

(iii) for all
(

(j1, p1), (j2, p2)
)

∈Ds̃,

τ̃(j2,p2),(j1,p1) = τ̃ −1
(j1,p1),(j2,p2), f̃j2 ◦ ιk+1,p2 = f̃j1 ◦ ιk+1,p1 ◦ τ̃(j1,p1),(j2,p2), (2.21)

and sign τ̃(j1,p1),(j2,p2) = −(−1)p1+p2 ; (2.22)

(iv) for all i=0, 1 and j=1, . . . , Ni,

f̃j̃i(j)
◦ ιk+1,p̃i(j) ◦ τ̃(i,j) = fi,j and sign τ̃(i,j) = −(−1)i+p̃i(j); (2.23)

(v) (j̃i, p̃i) is a bijection onto C
(i)
s̃ for i=0, 1 and j̃0⊔j̃1 is injective into {1, . . . , Ñ};

(vi) for all i=0, 1 and ((j1, p1), (j2, p2))∈Dsi
, there exist

(j̃0, p̃
−
0 ), (j̃0, p̃

+
0 ), . . . , (j̃r, p̃

−
r ), (j̃r, p̃

+
r ) ∈ Cs̃ s.t.

(j̃0, p̃
−
0 , p̃

+
0 ) =

(

j̃i(j1), p̃i(j1), ιk+1,p̃−0
τ̃(i,j1)(p1)

)

, (2.24)

(j̃r, p̃
−
r , p̃

+
r ) =

(

j̃i(j2), ιk+1,p̃+
r
τ̃(i,j2)(p2), p̃i(j2)

)

, (2.25)
(

(j̃r′−1, p̃
+
r′−1), (j̃r′ , p̃

−
r′)

)

∈ Ds̃ ∀ r′ = 1, . . . , r, (2.26)

ι−1

k+1,p̃+
r′−1

(p̃−r′−1) = τ̃(j̃r′−1,p̃+
r′−1

),(j̃r′ ,p̃
−

r′
)ι
−1

k+1,p̃−
r′

(p̃+
r′) ∀ r′ = 1, . . . , r, (2.27)

τ̃(i,j1)ιk,p1τi,((j1,p1),(j2,p2))

=
(

τk,(p̃−0 ,p̃+
0 )τ̃(j̃0,p̃+

0 ),(j̃1,p̃−1 )

)

. . .
(

τk,(p̃−r−1,p̃+
r−1)τ̃(j̃r−1,p̃+

r−1),(j̃r,p̃−r )

)(

τk,(p̃−r ,p̃+
r )τ̃(i,j2)

)

ιk,p2 .
(2.28)

Remark 1: By (2.24), the left-hand side of (2.28) is a linear map

∆k−1 −→ ∆k
τ̃i,j1

(p1)
= ∆k

ι−1

k+1,p̃
−

0

(p̃+
0 )
.

By (2.26), (2.27), and (2.3), for r′=1, . . . , r

τk,(p̃−
r′−1

,p̃+
r′−1

)τ̃(j̃r′−1,p̃+
r′−1

),(j̃r′ ,p̃
−

r′
) : ∆k

ι−1

k+1,p̃
−

r′

(p̃+
r′

)
−→ ∆k

ι−1

k+1,p̃
−

r′−1

(p̃+
r′−1

)

is a linear map. By (2.25) and (2.3), the ending of the right-hand side of (2.28) is the linear map

(

τk,(p̃−r ,p̃+
r )τ̃(i,j2)

)

ιk,p2 : ∆k−1 −→ ∆k
ι−1

k+1,p̃
−
r

(p̃+
r )
.
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p1 p2

j1 j2
p̃+

0

p̃−0

j̃0

p̃+

1 p̃−1

j̃1 j̃2

p̃+

2

p̃−2

Figure 3: Illustration for Lemma 2.11 and Remark 2

Thus, just like LHS of (2.28), RHS of (2.28) is a linear map

∆k−1 −→ ∆k
ι−1

k+1,p̃
−

0

(p̃+
0 )
.

In particular, if (2.24)-(2.27) hold, the two sides of (2.28) differ by an element of Sk−1.

Remark 2: In Subsection 3.1, the rather elaborate condition (vi) of Lemma 2.11 will be used
to construct a manifold M̃ from s̃ such that its boundary consists of the manifolds M0 and M1

corresponding to the cycles s0 and s1. In the process of constructing M̃ two (k+1)-simplices
labeled j1 and j2 will be identified along the k-simplices ∆k+1

p1
and ∆k+1

p2
after the twist determined

by τ̃(j1,p1),(j2,p2)∈Sk, whenever ((j1, p1), (j2, p2))∈Ds̃. Similarly, in the process of constructing Mi,

two k-simplices labeled j1 and j2 will be identified along the (k−1)-simplices ∆k
p1

and ∆k
p2

after the

twist determined by τi,((j1,p1),(j2,p2)) ∈Sk−1 whenever ((j1, p1), (j2, p2))∈Dsi
. The elements of C

(0)
s̃

and C
(1)
s̃ will index the k-simplices in the boundary of s̃ that correspond to simplices in s0 and s1.

They will form the boundary of M̃ which will be identified with M1−M0. In order to do this, we

need to make sure that whenever ((j1, p1), (j2, p2))∈Dsi
the corresponding k simplices in C

(i)
s̃ are

identified along (k−1)-simplices in the same way. For example, in the case of Figure 3, the two
one-simplices on LHS will be identified by joining the unlabeled vertices (0-simplices ∆1

p1
and ∆1

p2
).

These two one-simplices also correspond to the bottom boundary 1-simplices on RHS. Then, the
vertices of these two bottom simplices corresponding to the unlabeled vertices on LHS must be
identified as well, i.e. there should be a sequence of triangles between the two outer triangles whose
faces are identified. These identifications must identify the unlabeled vertices in the outer triangles.
The requirement (2.28) is automatically satisfied in this case if (2.24)-(2.27) are satisfied, since both
sides are maps into

∆1
τ̃(i,j1)(p1) ≈ ∆0.

Proof: (1) Since [{s0}]=[{s1}], there exists

{s̃} =

j=Ñ
∑

j=1

{f̃j} ∈ S̄k+1(X) s.t. ∂{s̃} = {s1} − {s0}.

The terms making up ∂s̃ are indexed by the set Cs̃. By definition of S̄∗(X), there exist disjoint

subsets C
(0)
s̃ and C

(1)
s̃ of Cs̃ such that for each (j, p)∈C

(1)
s̃ the (j, p)th term of ∂s̃ equals one of the
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terms of si, after a composition with some τ̃ ∈Sk and multiplying by −(−1)isign τ̃ . The remaining
terms of Cs̃ must cancel in pairs, as in the case of Lemma 2.10. Thus, s̃ satisfies (i)-(iv) and the
first condition in (v). The second condition in (v) is satisfied after subdividing each ∆k+1 into k+2
simplices with one of the vertices at bk+1.

(2) A priori s̃ may not satisfy (vi). Given ((j1, p1), (j2, p2))∈Dsi
, we can construct a sequence

(j̃0, p̃
−
0 ), (j̃0, p̃

+
0 ), . . . , (j̃r, p̃

−
r ), (j̃r, p̃

+
r ) ∈ Cs̃ (2.29)

inductively, starting with (2.24) and using (2.26) and (2.27). The requirements (2.26) and (2.27)
determine (j̃0, p̃

−
0 ) uniquely from any element of this sequence. Thus, this sequence contains no

loops and must terminate at some

(j̃r, p̃
+
r ) =

(

j̃i′(j
′
2), p̃i′(j

′
2)

)

∈ C
(i′)
s̃ . (2.30)

Define p′2∈{0, 1, . . . , k} by
p̃−r = ιk+1,p̃+

r
τ̃(i′,j′2)(p

′
2). (2.31)

We will call (2.29) the sequence of (vi) in Lemma 2.11 beginning with (j1, p1)∈Csi
or ending with

(j′2, p
′
2)∈Csi′

. Either condition determines (2.29) via (2.26) and (2.27).

We assume that (vi) fails for ((j1, p1), (j2, p2))∈Dsi
. We will modify s̃ by adding two (k+1)-simplices

so that (j1, p1) and (j2, p2) are added to the collection of elements of Cs0∪Cs1 that satisfy (vi) of
Lemma 2.11 and no element is removed from this collection.

Let
τRHS :

(

∆k, ι−1

k+1,p̃+
r
(p̃−r )

)

−→
(

∆k, ι−1

k+1,p̃−0
(p̃+

0 )
)

denote the right-hand side (2.21) without τ̃i,j2 and ιk,p2 . By (2.6) and (2.22),

sign τRHS = −(−1)p̃−0 +p̃+
r . (2.32)

Define ϑ∈Sk−1 by

τ̃(i,j1)◦ιk,p1◦τi,((j1,p1),(j2,p2)) = τRHS◦τ̃(i′,j′2)◦ιk,p′2
◦ ϑ : ∆k−1 −→ ∆k

ι−1

k+1,p̃
−

0

(p̃+
0 )
. (2.33)

By (2.10), (2.23), (2.20), (2.32), (2.24), and (2.30),

signϑ = (−1)p1+p′2 · sign τ̃(i,j1) · sign τ̃(i′,j′2) · sign τi,((j1,p1),(j2,p2)) · sign τRHS

= (−1)i+i′+p2+p′2 .
(2.34)

Furthermore, by (2.23) used twice, (2.30), (2.4), (2.24)-(2.27), (2.21), (2.33), and (2.19),

fi′,j′2
◦ ιk,p′2

= f̃j̃r
◦ιk+1,p̃+

r
◦τ(i′,j′2)◦ιk,p′2

= f̃j̃0
◦ιk+1,p̃−0

◦τRHS◦τ̃(i′,j′2)◦ιk,p′2

= f̃j̃0
◦ιk+1,p̃−0

◦τ̃(i,j1)◦ιk,p1◦τi,((j1,p1),(j2,p2))◦ϑ
−1

= fi,j1◦ιk,p1◦τi,((j1,p1),(j2,p2))◦ϑ
−1 = fi,j2 ◦ ιk,p2 ◦ ϑ

−1.

(2.35)
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(3) Choose p̃−
Ñ+1

∈{0, . . . , k+1} such that

∣

∣p̃−
Ñ+1

− p̃+
r

∣

∣ = 1. (2.36)

Let

p̃+
Ñ+1

= ιk+1,p̃−
Ñ+1

(

ι−1

k+1,p̃+
r
(p̃−r )

)

=

{

p̃−r , if p̃−
Ñ+1

6= p̃−r ;

p̃+
r , if p̃−

Ñ+1
= p̃−r .

(2.37)

Define τ(i′,j′2)∈Sk−1 and τ̃ ′(i,j2)∈Sk by

ιk,p′2
◦ τ−1

(i′,j′2)
= τ̃−1

(i′,j′2)
◦ ιk,τ̃(i′,j′2)(p

′
2) : ∆k−1 −→ ∆k

p′2
, (2.38)

τ̃ ′ −1
(i,j2) ◦ ιk,ι−1

k+1,p̃
+

Ñ+1

(p̃−
Ñ+1

) = ιk,p2◦ ϑ
−1 ◦ τ−1

(i′,j′2)
: ∆k−1 −→ ∆k

p2
. (2.39)

By (2.10), (2.23), (2.31), (2.30), (2.37), (2.34), and (2.36),

sign τ(i′,j′2) = (−1)
p′2+τ̃(i′,j′2)(p

′
2)
· sign τ̃(i′,j′2) = −(−1)

i′+p′2+p̃+
r +ι

k+1,p̃
+
r

(p̃−r )
;

sign τ̃ ′(i,j2) = (−1)
ι−1

k+1,p̃
+

Ñ+1

(p̃−
Ñ+1

)+p2

· sign τ(i′,j′2) · signϑ

= −(−1)
ι−1

k+1,p̃
+

Ñ+1

(p̃−
Ñ+1

)+p2

(−1)
i′+p′2+p̃+

r +ι−1

k+1,p̃
−

Ñ+1

(p̃+

Ñ+1
)

(−1)i+i′+p2+p′2 (2.40)

= −(−1)
i+p̃+

r +p̃+

Ñ+1
+p̃−

Ñ+1
−1

= −(−1)
i+p̃+

Ñ+1 .

Choose a smooth function

f̃Ñ+1 : ∆k+1 −→ X s.t.
f̃Ñ+1 ◦ ιk+1,p̃−

Ñ+1

= fi′,j′2
◦ τ̃ −1

(i′,j′2)
,

f̃Ñ+1 ◦ ιk+1,p̃+

Ñ+1

= fi,j2 ◦ τ̃
′ −1
(i,j2).

(2.41)

Such a function exists because the two requirements agree on the overlap, i.e. ∆k+1

p̃−
Ñ+1

,p̃+

Ñ+1

:

fi,j2 ◦ τ̃
′ −1
(i,j2) ◦ ιk,ι−1

k+1,p̃
+

Ñ+1

(p̃−
Ñ+1

) = fi,j2 ◦ ιk,p2 ◦ ϑ
−1 ◦ τ −1

(i′,j′2)
= fi′,j′2

◦ ιk,p′2
◦ τ −1

(i′,j′2)

= fi′,j′2
◦ τ̃−1

(i′,j′2)
◦ ιk,τ̃(i′,j′2)(p

′
2)

= fi′,j′2
◦ τ̃ −1

(i′,j′2)
◦ ιk,ι−1

k+1,p̃
+
r

(p̃−r )

= fi′,j′2
◦ τ̃ −1

(i′,j′2)
◦ ιk,ι−1

k+1,p̃
−

Ñ+1

(p̃+

Ñ+1
)

by (2.39), (2.35), (2.38), (2.31), and (2.37).

Let σ∈Sk+1 be the transposition interchanging p̃+
r and p̃−

Ñ+1
. For each p=0, 1, . . . , k, define σp∈Sk

by
σ ◦ ιk+1,p = ιk+1,σ(p) ◦ σp. (2.42)

Note that σp is the identity if p= p̃+
r , p̃

−
Ñ+1

; otherwise, it interchanges ι−1
k+1,p(p̃

+
r ) and ι−1

k+1,p(p̃
−
Ñ+1

).

Thus,
signσp = −(−1)p+σ(p). (2.43)
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Furthermore,

τk,(p,p̃+
r ) ◦ τk,(p̃−

Ñ+1
,σ(p)) = σp ∀ p 6= p̃+

r , (2.44)

σp̃−r
◦ τk,(p̃−r ,p) ◦ σp ◦ τk,(σ(p),p̃+

Ñ+1
) = id ∀ p 6= p̃−r . (2.45)

as can be seen from (2.3) and (2.36). Put

f̃Ñ+2 = f̃Ñ+1 ◦ σ, p̃+
Ñ+2

= σ
(

p̃−
Ñ+1

) = p̃+
r , p̃−

Ñ+2
= σ

(

p̃+
Ñ+1

) = p̃−r . (2.46)

The last equality follows from (2.37). We note that by (2.46), (2.30), and (2.39),

ιk+1,p̃+

Ñ+2

(

τ̃(i′,j′2)(p
′
2)

)

= ιk+1,p̃+
r

(

τ̃(i′,j′2)(p
′
2)

)

= p̃−r = p̃−
Ñ+2

, (2.47)

ιk+1,p̃+

Ñ+1

(

τ̃ ′(i,j2)(p2)
)

= p̃−
Ñ+1

. (2.48)

We will take the replacement for s̃ to be

s̃′ = s̃+ f̃Ñ+1 + f̃Ñ+2.

At this point, we need to consider two separate cases.

(4) Case 1: Suppose (i′, j′2)=(i, j2), but either p′2 6=p2 or (2.28) does not hold. Let C
(0)
s̃′ and C

(1)
s̃′ be

obtained from C
(0)
s̃ and C

(1)
s̃ by replacing (j̃i(j2), p̃i(j2)) with (Ñ+1, p̃+

Ñ+1
). We modify the maps

(j̃0, p̃0), (j̃1, p̃1), τ̃0, and τ̃1 of Lemma 2.11 by replacing τ̃(i,j2) with τ̃ ′(i,j2) defined in (2.39) and
taking

(

j̃′i(j2), p̃
′
i(j2)

)

=
(

Ñ+1, p̃+
Ñ+1

)

.

It is immediate that (v) of Lemma 2.11 is still satisfied. By (2.41),

f̃Ñ+1◦ιk+1,p̃+

Ñ+1

◦τ̃ ′(i,j2) = fi,j2 ,

i.e. (i, j2) still satisfies the first equation in (2.23). By (2.40), it still satisfies the second equation
in (2.23).

In this case, we set

Ds̃′ = Ds̃ ∪
{

((j̃r, p̃
+
r ), (Ñ+1, p̃−

Ñ+1
)), ((Ñ+1, p̃−

Ñ+1
), (j̃r, p̃

+
r ))

}

∪
{

((Ñ+2, p̃−
Ñ+2

), (Ñ+2, p̃+
Ñ+2

)), ((Ñ+2, p̃+
Ñ+2

), (Ñ+2, p̃−
Ñ+2

))
}

∪
⋃

p≤k+1,p 6=p̃±
Ñ+1

{

((Ñ+1, p), (Ñ+2, σ(p))), ((Ñ+2, σ(p)), (Ñ+1, p))
}

;

τ̃(j̃r,p̃+
r ),(Ñ+1,p̃−

Ñ+1
) = τ̃(Ñ+1,p̃−

Ñ+1
),(j̃r,p̃+

r ) = id,

τ̃(Ñ+2,p̃−
Ñ+2

),(Ñ+2,p̃+

Ñ+2
) = τ̃−1

(Ñ+2,p̃+

Ñ+2
),(Ñ+2,p̃−

Ñ+2
)
= σp̃−r

◦ τ̃ ′(i,j2) ◦ τ̃
−1
(i,j2),

τ̃(Ñ+1,p),(Ñ+2,σ(p)) = τ̃(Ñ+2,σ(p)),(Ñ+1,p) = σp ∀ σ ∈
{

0, 1, . . . , k+1
}

−
{

p̃−
Ñ+1

, p̃+
Ñ+1

}

.
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Since Ds̃ and C
(i)
s̃ satisfy (i) and (ii) of Lemma 2.11, so do Ds̃′ and C

(i)
s̃′ . By construction, all

elements of Ds̃′ −Ds̃ satisfy the first condition in (2.21). By (2.41), (2.30), the first equation
in (2.23), and (2.36),

(

(j̃r, p̃
+
r ), (Ñ+1, p̃−

Ñ+1
)
)

,
(

(Ñ+1, p̃−
Ñ+1

), (j̃r, p̃
+
r )

)

∈ Ds̃′

satisfy (iii) of Lemma 2.11. By (2.43), (2.46), (2.40), the second equation in (2.23), and (2.30),

sign τ̃(Ñ+2,p̃−
Ñ+2

),(Ñ+2,p̃+

Ñ+2
) = −(−1)

p̃−r +p̃+

Ñ+1 · (−1)
i+p̃+

Ñ+1 · (−1)i+p̃+
r

= −(−1)
p̃−

Ñ+2
+p̃+

Ñ+2 .

On the other hand, by (2.46), (2.42), (2.41),

f̃Ñ+2◦ιk+1,p̃+

Ñ+2

= f̃Ñ+1◦σ◦ιk+1,p̃+

Ñ+2

= f̃Ñ+1◦ιk+1,p̃−
Ñ+1

◦σp̃−
Ñ+1

= fi,j2◦τ̃
−1
(i,j2)◦σp̃−

Ñ+1

= fi,j2◦τ̃
′ −1
(i,j2)◦σp̃−r

◦τ̃(Ñ+2,p̃−
Ñ+2

),(Ñ+2,p̃+

Ñ+2
)

= f̃Ñ+1◦ιk+1,p̃+

Ñ+1

◦σp̃−
Ñ+2

◦τ̃(Ñ+2,p̃−
Ñ+2

),(Ñ+2,p̃+

Ñ+2
)

= f̃Ñ+1◦σ◦ιk+1,p̃−
Ñ+2

◦τ̃(Ñ+2,p̃−
Ñ+2

),(Ñ+2,p̃+

Ñ+2
)

= f̃Ñ+2◦ιk+1,p̃−
Ñ+2

◦τ̃(Ñ+2,p̃−
Ñ+2

),(Ñ+2,p̃+

Ñ+2
).

We conclude that

(

(Ñ+2, p̃−
Ñ+2

), (Ñ+2, p̃+
Ñ+2

)
)

,
(

(Ñ+2, p̃+
Ñ+2

), (Ñ+2, p̃−
Ñ+2

)
)

∈ Ds̃′

also satisfy (iii) of Lemma 2.11. For each p∈{0, 1, . . . , k+1} different from p̃±N+1,

(

(Ñ+1, p), (Ñ+2, σ(p))
)

,
(

(Ñ+2, σ(p)), (Ñ+1, p)
)

∈ Ds̃′

satisfy (iii) of Lemma 2.11 by (2.46), (2.42), and (2.43).

The sequence of (vi) in Lemma 2.11 beginning with (j1, p1)∈Csi
is modified by adding

(Ñ+1, p̃−N+1), (Ñ+1, p̃+
N+1) ∈ Cs̃′

to the right end. By (2.48), this sequence ends with (j2, p2)∈Csi
. The reflection of this sequence

is the sequence now beginning (j2, p2) ∈ Csi
. These two sequences satisfy all of the requirements

of (vi). In order to see that (2.28) holds, note that by (2.39), (2.5), (2.37), (2.31), (2.38), and (2.33),
the new right-hand side of (2.28) is given by

τRHS τ̃(j̃r,p̃+
r ),(Ñ+1,p̃−

Ñ+1
)τk,(p̃−

Ñ+1
,p̃+

Ñ+1
)τ̃

′
(i,j2)ιk,p2 = τRHS τk,(p̃−

Ñ+1
,p̃+

Ñ+1
)ιk,ι−1

k+1,p̃
+

Ñ+1

(p̃−
Ñ+1

)τ(i,j2)ϑ

= τRHS ιk,ι−1

k+1,p̃
−

Ñ+1

(p̃+

Ñ+1
)τ(i,j2)ϑ = τRHS ιk,ι−1

k+1,p̃
+
r

(p̃−r )τ(i,j2)ϑ

= τRHS ιk,τ̃(i,j2)(p
′
2)τ(i,j2)ϑ = τRHS τ̃(i,j2)ιk,p′2

ϑ = τ̃(i,j1)◦ιk,p1◦τi,(j1,p1),(j2,p2).
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On the other hand, by (2.25)-(2.27), (2.37), (2.31), (2.42), (2.46), and (2.48), for each (j2, p)∈Csi

with p 6=p2, p
′
2 the sequence of (vi) in Lemma 2.11 ending with (j2, p) is modified by adding

(

Ñ+1, p̃−
Ñ+1

)

,
(

Ñ+1, ιk+1,p̃−
Ñ+1

τ̃(i,j2)(p)
)

,
(

Ñ+2, σ ιk+1,p̃−
Ñ+1

τ̃(i,j2)(p)
)

,
(

Ñ+2, p̃+
Ñ+2

)

,

(

Ñ+2, p̃−
Ñ+2

)

,
(

Ñ+2, σ ιk+1,p̃+

Ñ+1

τ̃ ′(i,j2)(p)
)

,
(

Ñ+1, ιk+1,p̃+

Ñ+1

τ̃ ′i,j2(p)
)

, (Ñ+1, p̃+
Ñ+1

) ∈ Cs̃′

as the last four pairs. Thus, the new sequence still ends with (j2, p). Furthermore, the corresponding
sequence in (2.28) is modified by replacing τ̃i,j2 with

τ̃(jr,p̃+
r ),(Ñ+1,p̃−

Ñ+1
)τk,(p̃−

Ñ+1
,ι

k+1,p̃
−

Ñ+1

τ̃(i,j2)(p))τ̃(Ñ+1,ι
k+1,p̃

−

Ñ+1

τ̃(i,j2)(p)),(Ñ+2,σ ι
k+1,p̃

−

Ñ+1

τ̃(i,j2)(p))

× τk,(σ ι
k+1,p̃

−

Ñ+1

τ̃(i,j2)(p),p̃+

Ñ+2
)τ̃(Ñ+2,p̃+

Ñ+2
),(Ñ+2,p̃−

Ñ+2
)τk,(p̃−

Ñ+2
,σ ι

k+1,p̃
+

Ñ+1

τ̃ ′

(i,j2)
(p))

× τ̃(Ñ+2,σ ι
k+1,p̃

+

Ñ+1

τ̃ ′

(i,j2)
(p)),(Ñ+1,ι

k+1,p̃
+

Ñ+1

τ̃ ′
i,j2

(p))τk,(ι
k+1,p̃

+

Ñ+1

τ̃ ′
i,j2

(p),p̃+

Ñ+1
)τ̃

′
i,j2

=
(

τk,(p̃−
Ñ+1

,ι
k+1,p̃

−

Ñ+1

τ̃(i,j2)(p))σι
k+1,p̃

−

Ñ+1

τ̃(i,j2)(p)τk,(σ ι
k+1,p̃

−

Ñ+1

τ̃(i,j2)(p),p̃+

Ñ+2
)

)

× τ̃i,j2 τ̃
′ −1
i,j2

(

σp̃−r
τk,(p̃−

Ñ+2
,σ ι

k+1,p̃
+

Ñ+1

τ̃ ′

(i,j2)
(p))σι

k+1,p̃
+

Ñ+1

τ̃ ′
i,j2

(p)τk,(ι
k+1,p̃

+

Ñ+1

τ̃ ′
i,j2

(p),p̃+

Ñ+1
)

)

τ̃ ′i,j2

= id · τ̃i,j2 τ̃
′ −1
i,j2

· id · τ̃ ′i,j2 = τ̃i,j2

by (2.46), (2.44), and (2.45). Thus, the above procedure does not change the ends of the sequence
of (vi) or the difference between LHS and RHS in (2.28) when one of the ends of the original
sequence is (j2, p) with p 6=p2, p

′
2. The only other elements of Cs0∪Cs1 for which the corresponding

sequences of (vi) in Lemma 2.11 are modified are (j2, p
′
2) and the endpoint of the sequence previ-

ously corresponding to (j2, p2). We conclude that this construction adds a new element of Cs0∪Cs1

to the set of elements satisfying (vi) without removing any of the elements from this set.

(5) Case 2: Suppose (i′, j′2) 6=(i, j2). Let C
(0)
s̃′ and C

(1)
s̃′ be obtained from C

(0)
s̃ and C

(1)
s̃ by replacing

(j̃i(j2), p̃i(j2)) and (j̃i′(j
′
2), p̃i′(j

′
2)) with (Ñ+1, p̃+

Ñ+1
) and (Ñ+2, p̃+

Ñ+2
), respectively. We modify

the maps (j̃0, p̃0), (j̃1, p̃1), τ̃0, and τ̃1 of Lemma 2.11 by replacing τ̃(i,j2) with τ̃ ′(i,j2) defined in (2.39)
and taking

(

j̃′i(j2), p̃
′
i(j2)

)

=
(

Ñ+1, p̃+
Ñ+1

)

and
(

j̃′i′(j
′
2), p̃

′
i′(j

′
2)

)

=
(

Ñ+2, p̃+
Ñ+2

)

.

It is immediate that (v) of Lemma 2.11 is still satisfied. By (2.41), (2.46), and (2.42), (i′, j′2)
and (i′, j′2) still satisfy the first equation in (2.23). By (2.40) and (2.46), they still satisfy the
second equation as well.

In this case, we take

Ds̃′ = Ds̃ ∪
{

((j̃r, p̃
+
r ), (Ñ+1, p̃−

Ñ+1
)), ((Ñ+1, p̃−

Ñ+1
), (j̃r, p̃

+
r ))

}

∪
{

((Ñ+2, p̃−
Ñ+2

), (j̃i(j2), p̃i(j2))), ((j̃i(j2), p̃i(j2)), (Ñ+2, p̃−
Ñ+2

))
}

∪
⋃

p≤k+1,p 6=p̃±
Ñ+1

{

((Ñ+1, p), (Ñ+2, σ(p))), ((Ñ+2, σ(p)), (Ñ+1, p))
}

;
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τ̃(j̃r,p̃+
r ),(Ñ+1,p̃−

Ñ+1
) = τ̃(Ñ+1,p̃−

Ñ+1
),(j̃r,p̃+

r ) = id,

τ̃(Ñ+2,p̃−
Ñ+2

),(j̃i(j2),p̃i(j2))
= τ̃−1

(j̃i(j2),p̃i(j2)),(Ñ+2,p̃−
Ñ+2

)
= σp̃−r

◦ τ̃ ′(i,j2) ◦ τ̃
−1
(i,j2),

τ̃(Ñ+1,p),(Ñ+2,σ(p)) = τ̃(Ñ+2,σ(p)),(Ñ+1,p) = σp ∀ σ ∈
{

0, 1, . . . , k+1
}

−
{

p̃−
Ñ+1

, p̃+
Ñ+1

}

.

Since Ds̃ and C
(i)
s̃ satisfy (i) and (ii) of Lemma 2.11, so do Ds̃′ and C

(i)
s̃′ . By construction, all

elements of Ds̃′−Ds̃ satisfy the first condition in (2.21). The elements

(

(j̃r, p̃
+
r ), (Ñ+1, p̃−

Ñ+1
)
)

,
(

(Ñ+1, p̃−
Ñ+1

), (j̃r, p̃
+
r )

)

,
(

(Ñ+1, p), (Ñ+2, σ(p))
)

,
(

(Ñ+2, σ(p)), (Ñ+1, p)
)

, with p 6= p̃±N+1,

of Ds̃′ satisfy (iii) of Lemma 2.11 for the same reasons as in Case 1. On the other hand, by (2.43),
(2.46), (2.40), the second equation in (2.23), and (2.30),

sign τ̃(Ñ+2,p̃−
Ñ+2

),(j̃i(j2),p̃i(j2))
= −(−1)

p̃−r +p̃+

Ñ+1 · (−1)
i+p̃+

Ñ+1 · (−1)i+p̃+
r

= −(−1)
p̃−

Ñ+2
+p̃i(j2).

By the first equation in (2.23), (2.41), (2.42), and (2.46),

f̃j̃i(j2)
◦ιk+1,p̃i(j2) = fi,j2◦τ̃

−1
(i,j2) = fi,j2◦τ̃

′ −1
(i,j2)◦σp̃−r

◦τ̃(Ñ+2,p̃−
Ñ+2

),(j̃i(j2),p̃i(j2))

= f̃Ñ+1◦ιk+1,p̃+

Ñ+1

◦σp̃−r
◦τ̃(Ñ+2,p̃−

Ñ+2
),(j̃i(j2),p̃i(j2))

= f̃Ñ+1◦σ◦ιk+1,p̃−
Ñ+2

◦τ̃(Ñ+2,p̃−
Ñ+2

),(j̃i(j2),p̃i(j2))

= f̃Ñ+2◦ιk+1,p̃−
Ñ+2

◦τ̃(Ñ+2,p̃−
Ñ+2

),(j̃i(j2),p̃i(j2)).

We conclude that

(

(Ñ+2, p̃−
Ñ+2

), (j̃i(j2), p̃i(j2))
)

,
(

(j̃i(j2), p̃i(j2)), (Ñ+2, p̃−
Ñ+2

)
)

∈ Ds̃′

also satisfy (iii) of Lemma 2.11.

Finally, the sequence of (vi) in Lemma 2.11 beginning with (j1, p1)∈Csi
is modified by adding

(Ñ+1, p̃−N+1), (Ñ+1, p̃+
N+1) ∈ Cs̃′

to the right end. By (2.48), this sequence ends with (j2, p2)∈Csi
. The reflection of this sequence

is now the sequence beginning with (j2, p2)∈Csi
. By exactly the same computation as in Case 1,

these two sequences now satisfy all of the requirements of (vi) in Lemma 2.11. By (2.25)-(2.27),
(2.42), (2.46), and (2.48), for each (j2, p) ∈ Csi

with p 6= p2 the sequence of (vi) in Lemma 2.11
ending with (j2, p) is modified by adding

(

Ñ+2, p̃−
Ñ+2

)

,
(

Ñ+2, ιk+1,p̃−
Ñ+2

σp̃−r
τ̃ ′i,j2(p)

)

,
(

Ñ+1, ιk+1,p̃+

Ñ+1

τ̃ ′i,j2(p)
)

, (Ñ+1, p̃+
Ñ+1

) ∈ Cs̃′
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as the last two pairs. Thus, the new sequence still ends with (j2, p). Furthermore, the corresponding
sequence in (2.28) is modified by replacing τ̃i,j2 with

τ̃(ji(j2),p̃i(j2)),(Ñ+2,p̃−
Ñ+2

)τk,(p̃−
Ñ+2

,ι
k+1,p̃

−

Ñ+2

σ
p̃
−
r

τ̃ ′
i,j2

(p))τ̃(Ñ+2,ι
k+1,p̃

−

Ñ+2

σ
p̃
−
r

τ̃ ′
i,j2

(p)),(Ñ+1,ι
k+1,p̃

+

Ñ+1

τ̃ ′
i,j2

(p))

× τk,(ι
k+1,p̃

+

Ñ+1

τ̃ ′
i,j2

(p),p̃+

Ñ+1
)τ̃

′
i,j2

= τ̃(i,j2)τ̃
′ −1
(i,j2)

(

σp̃−r
τk,(p̃−

Ñ+2
,σ ι

k+1,p̃
+

Ñ+1

τ̃ ′
i,j2

(p))σι
k+1,p̃

+

Ñ+1

τ̃ ′
i,j2

(p))τk,(ι
k+1,p̃

+

Ñ+1

τ̃ ′
i,j2

(p),p̃+

Ñ+1
)

)

τ̃ ′i,j2

= τ̃(i,j2)τ̃
′ −1
(i,j2) id τ̃ ′i,j2 = τ̃i,j2 ,

by (2.42), (2.46), and (2.45). Thus, the above procedure does not change the ends of the sequence
in (vi) or the difference between LHS and RHS in (2.28) when one of the ends of the original
sequence is (j2, p) with p 6=p2.

Similarly, for each (j′2, p)∈Csi′
with p 6=p′2 the sequence of (vi) in Lemma 2.11 that ends with (j′2, p)

is modified by adding

(Ñ+1, p̃−
Ñ+1

),
(

Ñ+1, ιk+1,p̃−
Ñ+1

τ̃i′,j′2(p)
)

, (Ñ+2, ιk+1,p̃+

Ñ+2

τ̃i′,j′2(p)
)

,
(

Ñ+2, p̃+
Ñ+2

)

∈ Cs̃′

as the last two pairs. Note that σp̃+
r

= id. Thus, the new sequence still ends with (j′2, p). The
corresponding sequence in (2.28) is modified by replacing τ̃i′,j′2 with

τ̃(j̃r,p̃+
r ),(Ñ+1,p̃−

Ñ+1
)τk,(p̃−

Ñ+1
,ι

k+1,p̃
−

Ñ+1

τ̃i′,j′2
(p))τ̃(Ñ+1,ι

k+1,p̃
−

Ñ+1

τ̃i′,j′2
(p)),(Ñ+2,ι

k+1,p̃
+

Ñ+2

τ̃i′,j′2
(p))

× τk,(ι
k+1,p̃

+

Ñ+2

τ̃i′,j′2
(p),p̃+

Ñ+2
)τ̃i′,j′2

=
(

τk,(p̃−
Ñ+1

,ι
k+1,p̃

−

Ñ+1

τ̃i′,j′2
(p))σι

k+1,p̃
−

Ñ+1

τ̃i′,j′2
(p)τk,(σ ι

k+1,p̃
−

Ñ+1

τ̃i′,j′2
(p),p̃+

Ñ+2
)

)

τ̃i′,j′2 = τ̃i′,j′2 ,

by (2.42), (2.46), and (2.44). Thus, the above procedure does not change the ends of the sequence
in (vi) or the difference between LHS and RHS in (2.28) when one of the ends of the original
sequence is (j′2, p) with p 6= p′2. The only other elements of Cs0 ∪Cs1 for which the corresponding
sequences in (vi) of Lemma 2.11 are modified are (j′2, p

′
2) ∈ Csi′

and the endpoint of sequence
previously corresponding to (j2, p2). We conclude that this construction adds a new element of
Cs0∪Cs1 to the set of elements satisfying (vi) without removing any of the elements from this set.

3 Integral Homology and Pseudocycles

3.1 From Integral Cycles to Pseudocycles

In this subsection, we prove

Proposition 3.1 If X is a smooth manifold, there exists a homomorphism

Ψ∗ : H∗(X; Z)−→H∗(X),

which is natural with respect to smooth maps.
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In the proof of Lemma 3.2, we construct a homomorphism from the subgroup of cycles in S̄∗(X)
to H∗(X). Starting with a cycle {s} as in Lemma 2.10, we will glue the functions fj◦ϕk together,
where ϕk is the self-map of ∆k provided by Lemma 2.1. These functions continue to satisfy the
second equation in (2.19), i.e.

fj2◦ϕk ◦ ιk,p2 = fj1◦ϕk ◦ ιk,p1 ◦ τ(j1,p1),(j2,p2) ∀
(

(j1, p1), (j2, p2)
)

∈Ds, (3.1)

because ϕk =id on ∆k−Int ∆k by the first equation (2.7). The proof of Lemma 3.2 implements a
construction suggested in Section 7.1 of [McSa].

Lemma 3.3 shows that the map of Lemma 3.2 descends to the homology groups. Starting with a
chain {s̃} as in Lemma 2.11, we will glue the functions f̃j ◦ϕ̃k+1◦ϕk+1 together, where ϕ̃k+1 and
ϕk+1 are the self-maps of ∆k+1 provided by Lemma 2.1. If i=0, 1 and j=1, . . . , Ni, by the third
equation in (2.8), the second equation in (2.7), and the first equation in (2.23)

f̃j̃i(j)
◦ϕ̃k+1 ◦ ιk+1,p̃i(j)◦τ̃(i,j) = f̃j̃i(j)

◦ ιk+1,p̃i(j)◦ϕk◦τ̃(i,j) = f̃j̃i(j)
◦ ιk+1,p̃i(j)◦τ̃(i,j)◦ϕk

= fi,j◦ϕk.

Since ϕk+1 =id on ∆k+1−Int ∆k+1, it follows that

f̃j̃i(j)
◦ϕ̃k+1◦ϕk+1 ◦ ιk+1,p̃i(j)◦τ̃(i,j) = fi,j◦ϕk ∀ j=1, . . . , Ni, i=0, 1. (3.2)

Similarly, if ((j1, p1), (j2, p2))∈Ds̃, by the third equation in (2.8) used twice, the second equation
in (2.21), and the second equation in (2.7),

f̃j2◦ϕ̃k+1 ◦ ιk+1,p2 = f̃j2◦ιk+1,p2◦ϕk = f̃j1◦ιk+1,p1◦τ̃(j1,p1),(j2,p2) ◦ ϕk

= f̃j1 ◦ ιk+1,p1◦ϕk ◦ τ̃(j1,p1),(j2,p2) = f̃j1◦ϕ̃k+1 ◦ ιk+1,p1◦τ̃(j1,p1),(j2,p2).

Since ϕk+1 =id on ∆k+1−Int ∆k+1, it follows that

f̃j2◦ϕ̃k+1◦ϕk+1 ◦ ιk+1,p2 = f̃j1◦ϕ̃k+1◦ϕk+1 ◦ ιk+1,p1◦τ̃(j1,p1),(j2,p2) ∀ ((j1, p1), (j2, p2))∈Ds̃. (3.3)

Thus, the functions f̃j◦ϕ̃k+1◦ϕk+1 are the analogues (in the sense of Lemma 2.11) of the functions f̃j

for the maps f0,j◦ϕk and f1,j◦ϕk.

Lemma 3.2 If X is a smooth manifold, every integral k-cycle in X, based on C∞(∆k;X), deter-
mines an element of Hk(X).

Proof: (1) If k=0, this is obvious. Suppose k≥1 and

s ≡

j=N
∑

j=1

fj

determines a cycle in S̄k(X). Let Ds be the set provided by Lemma 2.10 and let τ : Ds−→Sk−1 be
the corresponding map. Let

M ′ =
(

j=N
⊔

j=1

{j}×∆k
)/

∼, where

(

j1, ιk,p1(τ(j1,p1),(j2,p2)(t))
)

∼
(

j2, ιk,p2(t)
)

∀
(

(j1, p1), (j2, p2)
)

∈Ds, t∈∆k−1.
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Let π be the quotient map. Define

F : M ′ −→ X by F
(

[j, t]
)

= fj

(

ϕk(t)
)

.

This map is well-defined by (3.1) and continuous by the Pasting Lemma. Let M be the complement
in M ′ of the set

π
(

j=N
⊔

j=1

{j}×Y
)

,

where Y is the (k−2)-skeleton of ∆k. By continuity of F , compactness of M ′, and the first equation
in (2.7),

BdF |M = F (M ′−M) =

j=N
⋃

j=1

fj

(

ϕk(Y )
)

=

j=N
⋃

j=1

fj(Y ). (3.4)

Since fj |Int σ is smooth for all j=1, . . . , N and all simplices σ⊂∆k, BdF |M has dimension at most
k−2 by (3.4). Thus, F |M is a k-pseudocycle, provided M is a smooth oriented manifold and F |M
is a smooth map. This is shown below.

(2) Let [j, t]∈M be any point. If t∈ Int ∆k, then π({j}×Int ∆k) is an open set about [j, t], which
is naturally homeomorphic to Int ∆k. If

[j, t] =
[

j1, ιk,p1(t1)
]

=
[

j2, ιk,p2(t2)
]

with (j1, p1) 6=(j2, p2) and t1∈ Int ∆k−1, let

U = π
(

{j1}×U
k
p1

)

∪ π
(

{j2}×U
k
p2

)

.

This is an open neighborhood of [j, t] in M . It is homeomorphic in a canonical way to the disjoint
union of Uk

p1
and Uk

p2
with Int∆k

p1
⊂Uk

p1
and Int ∆k

p2
⊂Uk

p2
identified by the linear map

ιk,p1 ◦ τ(j1,p1),(j2,p2) ◦ ι
−1
k,p2

: Int∆k
p2

−→ Int ∆k
p1

(3.5)

and thus to an open subset of R
k. By (2.20), the transition map (3.5) is orientation-reversing if

the open simplices Int ∆k
p1

and Int ∆k
p2

are oriented as boundaries of the k-manifolds Uk
p1

and Uk
p2

with their natural orientations. This means that the induced orientations of TpU coming from the
two k-manifolds with boundary agree. On any nonempty overlap of this coordinate chart with any
other coordinate chart, the transition map is the identity map on an open subset of Int∆k. Thus,
M is a smooth oriented manifold. The map F is smooth on {j}×Int∆k for all j by our assumptions
on F . If

[j, t] =
[

j1, ιk,p1(t1)
]

=
[

j2, ιk,p2(t2)
]

,

then F is smooth on the open set U , defined as above, because it is smooth on

π
(

{j1}×U
k
p1

)

and π
(

{j2}×U
k
p2

)

,

and all derivatives in the direction normal to π({j1}×Int∆k
p1

) vanish by the first equation in (2.7).
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Remark: The pseudocycle F |M constructed above depends on the choice of Ds and τ . However, as
the next lemma shows, the image of F |M in Hk(X) depends only on [{s}].

Given s̃ as in Lemma 2.11 and j=1, . . . , Ñ , denote by

Ej(s̃) ⊂
{

0, 1, . . . , k+1
}

×
{

0, 1, . . . , k+1
}

the set of pairs (p−, p+) such that

(

j, p−, p+
)

=
(

j̃r′ , p̃
−
r′ , p̃

+
r′

)

for the sequence of (vi) in Lemma 2.11 beginning with some (j1, p1)∈Csi
, i=0, 1, and for some r′.

The set Ej(s̃) depends on the choice of Ds̃. Let

∆k+1
Ej(s̃)

= ∆k+1

be the union of the (k−2)-skeleton of ∆k+1 with all (k−1)-simplices in ∆k+1 that are not of the
form ∆k+1

p−,p+ for some (p−, p+)∈Ej(s̃).

Lemma 3.3 Under the construction of Lemma 3.2, homologous k-cycles determine the same equiv-
alence class of pseudocycles in Hk(X).

Proof: (1) If k=0, this is obvious. Suppose k>0 and

s0 ≡

j=N0
∑

j=1

f0,j and s1 ≡

j=N1
∑

j=1

f1,j

determine two homologous k-cycles in S̄k(X). Let Ds0 and Ds1 be the sets provided by Lemma 2.10
and let τ0 and τ1 be the corresponding maps into Sk−1. Denote by (M ′

0,M0, F0) and (M ′
1,M1, F1)

the triples constructed in the proof of Lemma 3.2 corresponding to s0 and s1. Let

s̃ =

j=Ñ
∑

j=1

f̃j

be a chain in Sk+1(X) provided by Lemma 2.11 for the homologous cycles s0 and s1. Denote by

C
(0)
s̃ , C

(1)
s̃ , Ds̃, (j̃i, p̃i, τ̃i), and τ̃ the corresponding objects of Lemma 2.11.

(2) Put

M̃ ′ =
(

j=Ñ
⊔

j=1

{j}×∆k+1
)

, where

(

j1, ιk+1,p1(τ̃(j1,p1),(j2,p2)(t))
)

∼
(

j2, ιk+1,p2(t)
)

∀
(

(j1, p1), (j2, p2)
)

∈D̃s̃, t∈∆k.

Let

π̃ :

j=Ñ
⊔

j=1

{j}×∆k+1 −→ M̃ ′
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be the quotient map. Define

F̃ : M̃ ′ −→ X by F̃
(

[j, t]
)

= f̃j

(

ϕ̃k+1(ϕk+1(t))
)

.

This map is well-defined by (3.3) and continuous by the Pasting Lemma. Let M̃ be the complement
in M̃ ′ of the set

π̃
(

j=Ñ
⊔

j=1

{j}×∆k+1
Ej(s̃)

)

.

By continuity of F̃ , compactness of M̃ ′, and the first equation in (2.8),

Bd F̃ |M̃ = F̃ (M̃ ′−M̃) =

j=Ñ
⋃

j=1

f̃j

(

ϕ̃k+1(ϕk+1(∆
k+1
Ej(s̃)

))
)

=

j=Ñ
⋃

j=1

f̃j

(

∆k+1
Ej(s̃)

)

. (3.6)

Since f̃j |Int σ is smooth for all j = 1, . . . , Ñ and all simplices σ⊂∆k+1, Bd F̃ |M̃ has dimension at

most k−1 by (3.6). Thus, F̃ |M̃ is a pseudocycle equivalence between F0|M0 and F1|M1 , provided

M̃ is a smooth oriented manifold, F̃ |M̃ is a smooth map, and

∂
(

F̃ |M̃
)

= F1|M1 − F0|M0 .

This is shown below.

(3) Let [j, t]∈M̃ be any point. If t∈ Int∆k+1, then

Uj ≡ π̃({j}×Int ∆k+1)

is an open set about [j, t], which is naturally homeomorphic to Int ∆k+1. If

[j, t] =
[

j, ιk+1,p(t)
]

for some (j, t)∈C
(0)
s̃ ∪C

(1)
s̃ , then

U(j,p) ≡ π̃
(

{j}×(Int ∆k+1∪Int ∆k+1
p )

)

is an open neighborhood of [j, t] in M̃ naturally homeomorphic to an open subset of R
k+1×R̄

+. If

[j, t] =
[

j1, ιk+1,p1(t1)
]

=
[

j2, ιk+1,p2(t2)
]

with (j1, p1) 6=(j2, p2) and t1∈ Int ∆k, let

U(j1,p1),(j2,p2) ≡ π̃
(

{j1}×(Int ∆k+1 ∪ Int ∆k+1
p1

)
)

∪ π̃
(

{j2}×(Int ∆k+1 ∪ Int ∆k+1
p2

)
)

.

Similarly to the case of Lemma 3.2, this is an open neighborhood of [j, t] in M̃ which is naturally
homeomorphic to an open subset of R

k+1 by an orientation-preserving map. It overlaps smoothly
with the charts Uj and U(j,p) above.

Finally, suppose
t ∈ ∆k+1

p−,p+ for some (p−, p+) ∈ Ej(s̃).
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By definition, there exist i=0, 1, ((j1, p1), (j2, p2))∈Dsi
, and a sequence

(j̃0, p̃
−
0 ), (j̃0, p̃

+
0 ), . . . , (j̃r, p̃

−
r ), (j̃r, p̃

+
r ) ∈ Cs̃

satisfying (vi) of Lemma 2.11 such that

(j, p−, p+) =
(

j̃r′ , p̃
−
r′ , p̃

+
r′

)

for some r′ = 0, 1, . . . , r.

By (2.24)-(2.27), this sequence (up to reflection) depends only on j and {p−, p+}. Let

U(j1,p1),(j2,p2) =
l=r
⋃

l=0

π̃
(

j̃l×Ũ
k+1

p−
l

,p+
l

)

.

This is a neighborhood of [j, t] in M̃ . For each l=1, . . . , r, define τl∈Sk−1 by

τ̃(j̃l−1,p̃+
l−1),(j̃l,p̃

−

l
) ◦ ιk,ι−1

k+1,p̃
−

l

(p̃+
l

) ≡ ιk,τ̃
(j̃l−1,p̃

+
l−1

),(j̃l,p̃
−

l
)
ι−1

k+1,p̃
−

l

(p̃+
l

) ◦ τl

= ιk,ι−1

k+1,p̃
+
l−1

(p̃−
l−1)

◦ τl;
(3.7)

the last equality holds by (2.27). We define a linear map

ψl : CH
(

bk,p̃−
l
, bk,p̃+

l
, {eq : q 6=p±l }

)

−→ R
k+1 =R

k−1×C by

ψl(bk,p̃−
l
) = (0, eπi(r−l)/(r+1)), ψl(bk,p̃+

l
) = (0, eπi(r+1−l)/(r+1)),

ψl ◦ ιk+1,(p̃−
l

,p̃+
l

) = id∆k−1 ◦ τ1 ◦ . . . ◦ τl.

Then, by (2.27),
{

ψl◦ιk+1,p̃−
l

}(

ι−1

k+1,p̃−
l

(p̃+
l )

)

=
{

ψl−1◦ιk+1,p̃+
l−1

}(

ι−1

k+1,p̃+
l−1

(p̃−l−1)
)

=
{

ψl−1◦ιk+1,p̃+
l−1

}(

τ̃(j̃l−1,p̃+
l−1),(j̃l,p̃

−

l
)ι
−1

k+1,p̃−
l

(p̃+
l )

)

=
{

ψl−1◦ιk+1,p̃+
l−1

◦τ̃(j̃l−1,p̃+
l−1),(j̃l,p̃

−

l
)

}(

ι−1

k+1,p̃−
l

(p̃+
l )

)

.

(3.8)

On the other hand, by (2.1) used twice and (3.7),

ψl◦ιk+1,p̃−
l
◦ ιk,ι−1

k+1,p̃
−

l

(p̃+
l

) = ψl◦ιk+1,(p̃−
l

,p̃+
l

) = ψl−1◦ιk+1,(p̃−
l−1,p̃+

l−1) ◦ τl

= ψl−1◦ιk+1,p̃+
l−1

◦ ιk,ι−1

k+1,p̃
+
l−1

(p̃−
l−1)

◦ τl

= ψl−1◦ιk+1,p̃+
l−1

◦τ̃(j̃l−1,p̃+
l−1),(j̃l,p̃

−

l
) ◦ ιk,ι−1

k+1,p̃
−

l

(p̃+
l

).

(3.9)

By (3.8), (3.9), and linearity of ψl−1 and ψl,

ψl ◦ ιk+1,p̃−
l

= ψl−1◦ιk+1,p̃+
l−1

◦ τ̃(j̃l−1,p̃+
l−1),(j̃l,p̃

−

l
) ∀ l=1, . . . , r.

Thus, by (2.2), the maps ψl induce a well-defined homeomorphism

ψ : U(j1,p1),(j2,p2) −→ P, where

P =
{

k−1
∑

p=0

tpep +
r+1
∑

l=0

t̃l(0, e
πil/(r+1)) : tp>0 ∀ p, t̃l≥0 ∀l;

k−1
∑

p=0

tp+
r+1
∑

l=0

t̃l =1
}

⊂ R
k−1×C = R

k+1.
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Note that P is an open subset of R
k×R̄

+.

The chart (U(j1,p1),(j2,p2), ψ) on M̃ intersects

Uj̃l
, U(j̃0,p̃−0 ), and U(j̃r,p̃+

r ),

with the overlap map equal to the restriction of the diffeomorphism ψl, with l=0, r in the last two
cases, to

Int ∆k+1∩Uk+1

p̃−
l

,p̃+
l

, (Int ∆k+1∪Int ∆k+1

p̃−0
) ∩Uk+1

p̃−0 ,p̃+
0

, and (Int ∆k+1∪Int ∆k+1

p̃+
r

) ∩Uk+1

p̃−r ,p̃+
r

respectively. It also intersects the open sets U(j̃l−1,p̃l−1),(j̃l,p̃l)
, with l=1, . . . , r. The overlap map in

this case is the diffeomorphism

π̃
(

{j̃l−1}×((Int ∆k+1 ∪ Int∆k+1
p̃+

l−1

)∩Uk+1
p̃−

l−1,p̃+
l−1

)
)

∪ π
(

{j̃l}×((Int ∆k+1 ∪ Int ∆k+1
p̃−

l

)∩Uk+1
p̃−

l
,p̃+

l

)
)

−→
{

k−1
∑

p=0

tpep +
l+1
∑

l′=l−1

t̃l′(0, e
πi(r+1−l′)/(r+1)) : tp>0 ∀ p; tl>0, tl±1≥0;

k−1
∑

p=0

tp+
l+1
∑

l′=l−1

t̃l′ =1
}

induced by ψl−1 and ψl. The open set U(j1,p1),(j2,p2) does not intersect any of the other charts

described above. Thus, M̃ is a smooth oriented manifold with boundary.

(4) For the same reasons as in the proof of Lemma 3.2, the function F̃ is smooth on the open sets

Uj , U(j′,p), and U(j1,p1),(j2,p2) j = 1, . . . , Ñ , (j′, p)∈C
(0)
s̃ ∪C

(1)
s̃ ,

(

(j1, p1), (j2, p2)
)

∈Ds̃,

defined above. If i=0, 1 and ((j1, p1), (j2, p2))∈Dsi
, F̃ is also smooth on U(j1,p1),(j2,p2) because it

is smooth on π̃(j̃l×U
k+1

p̃±
l

) and π̃(j̃l×U
k+1

p̃−
l

,p̃+
l

), with j̃l, p̃
−
l , p̃

+
l as in (3) above, and all its derivatives

in the directions normal to

π̃
(

j̃l×∆k+1

p̃±
l

)

⊂ π̃
(

j̃l×U
k+1

p̃±
l

)

and π̃
(

j̃l×∆k+1

p̃−
l

,p̃+
l

)

⊂ π̃
(

j̃l×U
k+1

p̃−
l

,p̃+
l

)

vanish by Lemma 2.1. Thus, the restriction of F̃ to M̃ is smooth.

(5) For i=0, 1, define

κi : Mi ≡M ′
i − π

(

j=Ni
⊔

j=1

{j}×Y
)

−→ M̃ ≡ M̃ ′ − π̃
(

j=Ñ
⊔

j=1

{j}×∆k+1
Ej(s̃)

)

by

κi

(

[j, t]
)

=
[

j̃i(j), ιk+1,p̃i(j)(τ̃(i,j)(t))
]

.

To see that this map is well-defined, suppose

[j, t] =
[

j1, ιk,p1(t1)
]

=
[

j2, ιk,p2(t2)
]

for some
(

(j1, p1), (j2, p2)
)

∈Dsi
, t1, t2∈ Int ∆k−1.

By definition of the equivalence relation in the proof of Lemma 3.2,

t1 = τi,((j1,p1),(j2,p2))(t2). (3.10)
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On the other hand, by definition of the equivalence relation in (2) above and (2.4),

[

j̃l−1, ιk+1,p̃+
l−1

(τ̃(j̃l−1,p̃+
l−1),(j̃l,p̃

−

l
)τk,(p̃−

l
,p̃+

l
)(t))

]

=
[

j̃l, ιk+1,p̃−
l
(τk,(p̃−

l
,p̃+

l
)(t))

]

=
[

j̃l, ιk+1,p̃+
l
(t)

]

∀ t∈∆k
ι−1

k+1,p̃
+
l

(p̃−
l

)
,

(3.11)

where (j̃l, p̃
−
l , p̃

+
l ) are as in (3) above. By (3.11) and (2.25),

[

j̃0, ιk+1,p̃+
0
(τk,(p̃+

0 ,p̃−0 )ιRHS(t2))
]

=
[

j̃r, ιk+1,p̃+
r
(τ̃(i,j2)ιk,p2(t2))

]

=
[

j̃i(j2), ιk+1,p̃i(j2)(τ̃(i,j2)ιk,p2(t2))
]

,
(3.12)

where ιRHS denotes the right-hand side of (2.28). Finally, by (2.24), (2.4), (3.10), (2.28), and (3.12),

[

j̃i(j1), ιk+1,p̃i(j1)(τ̃(i,j1)ιk,p1(t1))
]

=
[

j̃0, ιk+1,p̃−0
(τ̃(i,j1)ιk,p1(t1))

]

=
[

j̃0, ιk+1,p̃+
0
(τk,(p̃+

0 ,p̃−0 )τ̃(i,j1)ιk,p1τi,((j1,p1),(j2,p2))(t2))
]

=
[

j̃i(j2), ιk+1,p̃i(j2)(τ̃(i,j2)ιk,p2(t2))
]

.

Thus, the map κi is well-defined.

As can be seen from its restrictions to the individual simplices, the map κi is a diffeomorphism
onto the union of components of the boundary of M̃ given

⋃

(j,p)∈C
(i)
s̃

π̃
(

j×(∆k+1
p −∆k+1

Ej(s̃)
)
)

.

By the second equation in (2.23), κ0 is orientation-reversing, while κ1 is orientation-preserving.
Thus,

∂M̃ ≈M1 −M0,

with the isomorphism given by κ0⊔κ1. Furthermore, by (3.2), Fi|Mi
= F̃ ◦κi for i=0, 1. Thus,

∂
(

F̃ |M̃
)

= F1|M1 − F0|M0 ,

as claimed.

3.2 From Pseudocycles to Integral Cycles

In this subsection, we prove

Proposition 3.4 If X is a smooth manifold, there exists a homomorphism

Φ∗ : H∗(X)−→H∗(X; Z),

which is natural with respect to smooth maps.

Lemma 3.5 Every k-pseudocycle determines a class in Hk(X; Z).
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Proof: (1) Suppose h : M−→X is a k-pseudocycle and f : N−→X a smooth map such that

dimN = k−2 and Bdh ⊂ Im f.

By Proposition 2.2, there exists an open neighborhood U of Bdh in X such that

Hl(U ; Z) = 0 ∀l > k−2.

Let K=M−h−1(U). Since the closure of h(M) is compact in X, K is a compact subset of M by
definition of Bdh. Let V be an open neighborhood of K in M such that V̄ is a compact manifold
with boundary. It inherits an orientation from the orientation of M and thus defines a homology

[V̄ ] ∈ Hk(V̄ ,Bd V̄ ; Z).

Put
[h] = h∗([V̄ ]) ∈ Hk(X,U ; Z) ≈ Hk(X; Z), (3.13)

where
h∗ : Hk(V̄ ,Bd V̄ ; Z)−→Hk(X,U ; Z) (3.14)

is the homology homomorphism induced by h. The isomorphism in (3.13) is induced by inclusion.
It is an isomorphism by the assumption on the homology of U as follows from the long exact
sequence in homology for the pair (X,U).

(2) The homology class [h] is independent of the choice of V . Suppose V ′ is another choice such
that V̄ ⊂V ′. Choose a triangulation of V̄ ′ extending some triangulation of (Bd V̄ )

⋃

(Bd V̄ ′); such
a triangulation exists by Section 16 in [Mu]. The cycles

h∗([V̄ ]), h∗([V̄
′]) ∈ Hk(X,U ; Z)

then differ by singular simplices lying in U ; see discussion at the end of Subsection 2.3. Thus,

h∗([V̄
′]) = h∗([V̄ ]) ∈ Hk(X,U ; Z).

(3) The cycle [h] is also independent of the choice of U . Suppose U ′⊂U is another choice. By (2),
it can be assumed that V and V ′ chosen as in (1) are the same. Since the isomorphism in (3.13)
is the composite of isomorphisms

Hk(X; Z) −→ Hk(X,U
′; Z) −→ Hk(X,U ; Z)

induced by inclusions and the homomorphism (3.14) is the composition

Hk(V̄ ,Bd V̄ ; Z) −→ Hk(X,U
′; Z) −→ Hk(X,U ; Z),

the homology classes obtained in Hk(X; Z) from U and U ′ are equal. Finally, if U and U ′ are two
arbitrary choices of open sets in (1), by Proposition 2.2 there exists a third choice U ′′⊂U∩U ′.

Lemma 3.6 Equivalent k-pseudocycles determine the same class in Hk(X,Z).
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Proof: Suppose hi : Mi −→X, i= 0, 1, are two equivalent k-pseudocycles and h̃ : M̃ −→X is an
equivalence between them. In particular, M̃ is oriented,

∂M̃ =M1−M0, and h̃|Mi
= hi.

Let Ũ be an open neighborhood of Bd h̃ in X such that

Hl(Ũ ; Z) = 0 ∀ l > k−1.

Let Ui be an open neighborhood of Bdhi⊂Bd h̃ in Ũ such that

Hl(Ui; Z) = 0 ∀ l > k−2,

as provided by Proposition 2.2. Let Vi ⊂Mi be a choice of an open set as in (1) of the proof of
Lemma 3.5. For i=0, 1, choose a triangulation of Mi that extends a triangulation of Bd V̄i. Extend
these two triangulations to a triangulation T̃ =(K̃, η̃) of M̃ . Let K be a finite sub-complex of K̃
such that

V0, V1 ⊂ η̃(|K|) and M̃ − h̃−1(Ũ) ⊂ η̃(Int |K|).

Such a subcomplex exists because h̃(M̃) is a pre-compact subset of X and thus M̃−h̃−1(Ũ) is a
compact subset of M̃ . Put

Ki =
{

σ∈K : η(σ)⊂ V̄i

}

for i = 0, 1.

By the proof of Lemma 3.5, (Ki, h̃◦η̃||Ki|) determines the homology class [hi]∈Hk(X,Ui; Z). Let

[h′i] denote its image in Hk(X, Ũ ; Z) under the homomorphism induced by inclusion. The above
assumptions on K imply that

∂(K, h̃ ◦ η̃|K) = (K1, h̃ ◦ η̃|K1) − (K0, h̃ ◦ η̃|K0)

in S̄(M, Ũ). Thus,
[h′0] = [h′1] ∈ Hk(X, Ũ ; Z),

and this class lies in the image of the homomorphism

Hk(X; Z) −→ Hk(X, Ũ ; Z) (3.15)

induced by inclusion. This map is equal to the composites

Hk(X; Z) −→ Hk(X,U0; Z) −→ Hk(X, Ũ ; Z) and

Hk(X; Z) −→ Hk(X,U1; Z) −→ Hk(X, Ũ ; Z).

Since Hk(Ũ ; Z)=0, the homomorphism (3.15) is injective. Thus, [h0] and [h1] come from the same
element of Hk(X; Z).
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3.3 Isomorphism of Homology Theories

In this subsection we conclude the proof of Theorem 1.1.

Lemma 3.7 If X is a smooth manifold, the composition

Φ∗ ◦ Ψ∗ : H∗(X; Z) −→ H∗(X) −→ H∗(X; Z)

is the identity map on H∗(X; Z).

Proof: Suppose

{s} =
N

∑

j=1

{fj} ∈ S̄k(X)

is a cycle and F : M−→X is a pseudocycle corresponding to s via the construction of Lemma 3.2.
Recall that M is the complement of the (k−2)-simplices in a compact space M ′ and F is the
restriction of a continuous map F ′ : M ′−→X induced by the maps

fj◦ ϕk : ∆k −→ X, j = 1, . . . , N.

Since ϕk is homotopic to the identity on ∆k, with boundary fixed,

fj◦ ϕk − fj ∈ ∂Sk+1(X) ∀ j = 1, . . . , N. (3.16)

Let U be a neighborhood of BdF such that

Hl(U ; Z) = 0 ∀ l > k−2.

Put K=M−f−1(U). Let V be a pre-compact neighborhood of K such that (V̄ , ∂V̄ ) is a smooth
manifold with boundary. Choose a triangulation T =(K, η) of (V̄ , ∂V̄ ) such that every k-simplex
of T is contained in a set of the form π({j}×∆k), where π is as in the proof of Lemma 3.2. Put

Kj =
{

σ∈K : η(σ)⊂π({j}×∆k)
}

, Ktop
j =

{

σ∈Kj : dimσ = k
}

.

Let T̃j = (K̃j , ηj ) be a triangulation of a subset of ∆k that along with Kj gives a triangulation
of ∆k. Put

K̃top
j =

{

σ∈K̃j : dimσ = k
}

.

By definition of T ,
fj◦ϕk

(

ηj (σ)
)

⊂ U ∀ σ ∈ K̃ top
j . (3.17)

Furthermore, by (3.16)

{s} =
∑

σ∈Ktop

{fj◦ϕk ◦ η ◦ lσ}

=
N

∑

j=1

∑

σ∈Ktop
j

{fj◦ϕk ◦ η ◦ lσ} +
N

∑

j=1

∑

σ∈K̃top
j

{fj◦ϕk ◦ η̃j ◦ lσ} mod ∂S̄k+1(X),
(3.18)

since subdivisions of cycles do not change the homology class. By the proof of Lemma 3.5, the first
sum on the right-hand side of (3.18) represents [F ] in S̄k(X,U). By (3.17), the second sum lies in
S̄k(U). Since the sum of the two terms is a cycle in S̄k(X), it must represent [F ] in S̄k(X). Thus,

{F} = {s} ∈ Hk(X; Z),

and the claim follows.
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Lemma 3.8 If X is a smooth manifold, the homomorphism Φ∗ : H∗(X)−→H∗(X; Z) is injective.

Proof: (1) Suppose a k-pseudocycle h : M ′ −→ X determines the zero homology class. It can
be assumed that k≥ 1; otherwise, there is nothing to prove. Let

{

Ui

}∞

i=1
be a sequence of open

pre-compact neighborhoods of Bdh in X such that

Ui+1 ⊂ Ui,
∞
⋂

i=1

Ui = Bdh, and Hl(Ui; Z) = 0 ∀ l > k−2.

Existence of such a collection follows from Proposition 2.2 and metrizability of any manifold. Let
{

Vi

}∞

i=1
be a corresponding collection of open sets in M ′ as in (1) of the proof of Lemma 3.5. It can

be assumed that V̄i ⊂Vi+1. Choose a triangulation T =(K, η) of M ′ that extends a triangulation

of
∞
⋃

i=1
Bd V̄i. Let

Ktop =
{

σ∈K : dimσ=k
}

, Cη =
{

(σ, p) : σ∈Ktop, p=0, 1, . . . , k
}

.

For each σ∈Ktop, let
lσ : ∆k −→ σ ⊂ |K| ⊂ R

∞

be a linear map such that η◦lσ is orientation-preserving. Put

fσ = h ◦ η ◦ lσ ∀ σ∈Ktop and

Dη =
{

((σ1, p1), (σ2, p2))∈Cη×Cη : (σ1, p1) 6=(σ2, p2), lσ1(∆
k
p1

)= lσ2(∆
k
p2

)
}

.

For each ((σ1, p1), (σ2, p2))∈Dη, define

τ(σ1,p1),(σ2,p2) ∈ Sk−1 by lσ2◦ιk,p2 = lσ1◦ιk,p1 ◦ τ(σ1,p1),(σ2,p2).

Since K is an oriented simplicial complex,

Dη ⊂ Cη×Cη and τ : Dη −→ Sk−1

satisfy (i)-(iii) of Lemma 2.10. Furthermore, M ′ is the topological space corresponding to (Cη,Dη, τ)
via the construction of Lemma 3.2 and h is the continuous map described by

h|π(σ×∆k) = fσ.

As in the proof of Lemma 3.2, let M be the complement of the (k− 2)-simplices in M ′; the
pseudocycles h and h|M are equivalent. Since ϕk is homotopic to the identity on ∆k with boundary
fixed, the pseudocycle h|M is in turn equivalent to the pseudocycle F |M , where as in the proof of
Lemma 3.2

F : M ′ −→ X, F ◦ η ◦ lσ = fσ◦ϕk.

(2) For each i≥1, let

Ktop
i =

{

σ∈Ktop : η(σ)⊂ V̄i

}

, Cη;i =
{

(σ, p)∈Cη : σ∈Ktop
i

}

, and Dη;i = Dη∩(Cη;i×Cη;i).
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By construction of [h], for every i≥1, there exists a singular chain

si ≡
Ni
∑

j=1

fi,j ∈ Sk(Ui)

such that
∑

σ∈Ktop
i

{h ◦ η ◦ lσ} + {si}

is a cycle in S̄k(X) representing [h]. Similarly to Lemma 2.10, there exist a symmetric subset

Di ⊂ (Cη;i⊔Csi
)×(Cη;i⊔Csi

)

disjoint from the diagonal and a map

τi : Di −→ Sk−1

such that
(i) Dη;i⊂Di and τi|Dη;i =τ |Dη;i ;

(ii) the projection map Di −→ Cη;i⊔Csi
on either coordinate is a bijection;

(iii) for all ((j1, p1), (j2, p2))∈Di,

τ(j2,p2),(j1,p1) = τ −1
(j1,p1),(j2,p2), fi,j2 ◦ ιk,p2 = fi,j1 ◦ ιk,p1 ◦ τ(j1,p1),(j2,p2),

and sign τ(j1,p1),(j2,p2) = −(−1)p1+p2 ,

where fi,σ≡fσ for all σ∈Ktop
i .

(3) By (2), for each i≥2

∑

σ∈Ktop
i −Ktop

i−1

{h ◦ η ◦ lσ} + {si} − {si−1} ∈ S̄k(Ui−1)

is a cycle. Since Hk(Ui−1; Z)=0, it must be a boundary. If i=1, this conclusion is still true with
U0 =X, Ktop

0 = ∅, and s0 = 0, since [h] = 0 by assumption. Therefore, similarly to Lemma 2.11,
there exist

s̃i ≡
Ñi
∑

j=1

f̃i,j ∈ Sk+1(Ui−1), C̃
(0)
i ⊂ C̃i≡

i′=i
⊔

i′=1

Cs̃i′
,

a symmetric subset D̃i⊂C̃i×C̃i disjoint from the diagonal, and maps

τ̃i : D̃i −→ Sk,
(

(j1, p1), (j2, p2)
)

−→ τ̃i,((j1,p1),(j2,p2)),

(j̃i, p̃i) : Ktop
i ⊔{1, . . . , Ni} −→ C̃

(0)
i , and τ̃i : K

top
i ⊔{1, . . . , Ni} −→ Sk, j −→ τ̃(i,j),

such that
(i) D̃i⊂D̃i+1, τ̃i+1|D̃i

= τ̃i, and (j̃i+1, p̃i+1, τ̃i+1)|Ktop
i

= (j̃i, p̃i, τ̃i)|Ktop
i

;
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(ii) the projection D̃i−→C̃i on either coordinate is a bijection onto the complement of C̃
(0)
i ;

(iii) for all ((j1, p1), (j2, p2))∈D̃i∩(Cs̃i1
×Cs̃i2

),

τ̃i,((j2,p2),(j1,p1)) = τ̃ −1
i,((j1,p1),(j2,p2)), f̃i2,j2 ◦ ιk+1,p2 = f̃i1,j1 ◦ ιk+1,p1 ◦ τ̃i,((j1,p1),(j2,p2)),

and sign τ̃i,((j1,p1),(j2,p2)) = −(−1)p1+p2 ;

(iv) for all σ∈Ktop
i −Ktop

i−1,

f̃i,j̃i(j)
◦ ιk+1,p̃i(j) ◦ τ̃(i,j) = fσ and sign τ̃(i,j) = −(−1)p̃i(j);

(v) (j̃i, p̃i) is a bijection onto C̃
(0)
i and j̃i|Ktop

i −Ktop
i−1

is injective into {1, . . . , Ñi};

(vi) for all ((j1, p1), (j2, p2))∈Dη;i, there exist

(j̃0, p̃
−
0 ), (j̃0, p̃

+
0 ), . . . , (j̃r, p̃

−
r ), (j̃r, p̃

+
r ) ∈ C̃i s.t.

(j̃0, p̃
−
0 , p̃

+
0 ) =

(

j̃i(j1), p̃i(j1), ιk+1,p̃−0
τ̃(i,j1)(p1)

)

,

(j̃r, p̃
−
r , p̃

+
r ) =

(

j̃i(j2), ιk+1,p̃+
r
τ̃(i,j2)(p2), p̃i(j2)

)

,
(

(j̃r′−1, p̃
+
r′−1), (j̃r′ , p̃

−
r′)

)

∈ D̃i ∀ r′ = 1, . . . , r,

ι−1

k+1,p̃+
r′−1

(p̃−r′−1) = τ̃i,((j̃r′−1,p̃+
r′−1

),(j̃r′ ,p̃
−

r′
))ι

−1

k+1,p̃−
r′

(p̃+
r′) ∀ r′ = 1, . . . , r,

τ̃(i,j1)ιk,p1τi,((j1,p1),(j2,p2))

=
(

τk,(p̃−0 ,p̃+
0 )τ̃i,((j̃0,p̃+

0 ),(j̃1,p̃−1 ))

)

. . .
(

τk,(p̃−r−1,p̃+
r−1)τ̃i,((j̃r−1,p̃+

r−1),(j̃r,p̃−r ))

)(

τk,(p̃−r ,p̃+
r )τ̃(i,j2)

)

ιk,p2 .

For each i≥1 and j=1, . . . , Ñi, denote by

Ei,j ⊂
{

0, 1, . . . , k+1
}

×
{

0, 1, . . . , k+1
}

the set of pairs (p−, p+) such that
(

j, p−, p+
)

=
(

j̃r′ , p̃
−
r′ , p̃

+
r′

)

for the sequence of (vi) above beginning with some (j1, p1)∈Cη and some r′. Let

∆k+1
Ei,j

⊂ ∆k+1

be the union of the (k−2)-skeleton of ∆k+1 with all (k−1)-simplices in ∆k+1 that are not of the
form ∆k+1

p−,p+ for some (p−, p+)∈Ei,j .

(4) Put

M̃ ′ =
(

∞
⊔

i=1

Ñi
⊔

j=1

{i}×{j}×∆k+1
)/

∼, where

(

i1, j1, ιk,p1(τ̃i,((j1,p1),(j2,p2))(t))
)

∼
(

i2, j2, ιk,p2(t)
)

∀ ((j1, p1), (j2, p2))∈D̃i∩(Cs̃i1
×Cs̃i2

), t∈∆k.

Let

π̃ :
∞
⊔

i=1

Ñi
⊔

j=1

{i}×{j}×∆k+1 −→ M̃ ′
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be the quotient map. Define

F̃ : M̃ ′ −→ X by F̃
(

[i, j, t]
)

= f̃i,j

(

ϕ̃k+1(ϕk+1(t))
)

,

where ϕ̃k+1 and ϕk+1 are the self-maps of ∆k+1 provided by Lemma 2.1. Similarly to the proof of
Lemma 3.3, this map is well-defined and continuous. Since the image of

∞
⊔

i=2

Ñi
⊔

j=1

{i}×{j}×∆k+1

under F̃ is contained in the pre-compact subset U1 ofX, F̃ (M̃ ′) is a pre-compact subset ofX as well.

Let M̃ be the complement in M̃ ′ of the set

π̃
(

∞
⊔

i=1

j=Ñi
⊔

j=1

{j}×∆k+1
Ei,j

)

.

Similarly to the proof of Lemma 3.3, M̃ is a smooth manifold, F̃ |M̃ is a smooth map, and Bd F̃ |M̃
is of dimension at most k−1. Furthermore, there is a well-defined map

κ0 : M −→ M̃

which is an orientation-reversing diffeomorphism onto ∂M̃ such that

F |M = F̃ ◦ κ0.

Thus,
∂
(

F̃ |M̃
)

= −F |M ,

i.e. F |M and h represent the zero element in Hk(M).
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