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Abstract

We describe a natural isomorphism between the set of equivalence classes of pseudocycles and
the integral homology groups of a smooth manifold. Our arguments generalize to settings well-
suited for applications in enumerative algebraic geometry and for construction of the virtual
fundamental class in the Gromov-Witten theory.
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1 Introduction

In his seminal paper [G], Gromov initiated the study of pseudoholomorphic curves in symplectic
manifolds and demonstrated their usefulness by proving a number of important results in sym-
plectic topology. In [McSa] and [RT], pseudoholomorphic curves are used to define invariants of
semipositive manifolds. In particular, it is shown in [McSa] and [RT] that for every compact semi-
positive symplectic manifold (X, w), homology class A € Ho(X;Z), integers k>3 and N >0, and
generic compatible almost complex structure J on X, there exists a smooth oriented manifold
My n(A,J) and a smooth map

GV?’]‘\],Z Mk,N(A, J) — XkJrN

such that the “boundary” of ev?’]{, is small; see below. Such a smooth map is called a pseudo-
cycle and determines a homomorphism H, (X k+N. Z) — Z, which turns out to be an invariant



of (X,w;Ak,N).

In general, if X is a smooth manifold, subset Z of X is said to have dimension at most k if
there exists a k-dimensional manifold Y and a smooth map h: Y — X such that the image of h
contains Z. If f: M — X is a continuous map between topological spaces, the boundary of f is
the set
Bdf= () f(M-K).
KCM cmpt

A smooth map f: M — X is a k-pseudocycle if M is an oriented k-manifold, f(M) is a pre-
compact! subset of X, and the dimension of Bd f is at most k—2. Two k-pseudocycles fo: My — X
and fi1: M1 — X are equivalent if there exists a smooth oriented manifold M and a smooth map
f: M — X such that the image of f is a pre-compact subset of X,

dimBd f < k-1, OM =M, — My, fla, = fo, and  flar, = fu.

We denote the set of equivalence classes of pseudocycles into X by H.(X). This set is naturally a
Z-graded module over Z. In this paper, we prove

Theorem 1.1 If X is a smooth manifold, there exist natural®> homomorphisms of graded Z-
modules

V,: H(X;Z) — H(X) and ®.:H(X)— H(X;Z),
such that ®, o V,=1d and ¥, o &, =1d.

Remark 1: In [McSa] and [RT], a pseudocycle is not explicitly required to have a pre-compact
image. As [McSa] and [RT] work with compact manifolds, this condition is automatically satisfied.
However, this requirement is essential in the non-compact case. As observed in [K], there is no
surjective homomorphism from H,(X;Z) to H.(X) if X is not compact and pseudocycles are not
required to have pre-compact images.

Remark 2: 1t is sufficient to require that a pseudocycle map be continuous, as long as the same
condition is imposed on pseudocycle equivalences. All arguments in this paper go through for con-
tinuous pseudocycles. In fact, Lemma 2.1 is no longer necessary. However, smooth pseudocycles
are useful in symplectic topology for defining invariants as intersection numbers.

In order to define symplectic invariants, [McSa] and [RT] observe that every element of H.(X)
defines a homomorphism H,(X;Z) — Z, or equivalently an element of H,(X;Z)/Tor(H.(X;Z)).
Thus, Theorem 1.1 leads to the symplectic invariants that may be strictly strongly than the GW-
invariants defined in [McSa] and in [RT]. In fact, these invariants are as good as the maps ev;:’]‘\],
can give:

Corollary 1.2 If (X,w1) and (X,ws) are semipositive symplectic manifolds that have the same
GW -invariants, viewed as a collection of integral homology classes, then the corresponding collec-
tions of evaluation maps from products of moduli spaces of pseudoholomorphic maps and Rieman-
nian surfaces are equivalent as pseudocycles.

i.e. its closure is compact
2In other words, W. and ®. are natural transformations of functors H.(-;Z) and H.(-) from the category of
smooth compact manifolds and maps.



This corollary is immediate from Theorem 1.1.

The natural homomorphisms
U, H(X;Z) — H(X) and O, H(X) — Hi(X;7Z)

of Theorem 1.1 are constructed in Subsections 3.1 and 3.2, respectively. In Subsection 3.3, it is
shown that these maps are mutual inverses. The homomorphism

O, Ho(X) — Hi(X;Z)
of Subsection 3.2 induces the linear map
Ho(X) — H(X;Z)/Tor(H(X;Z))

described in [McSa] and [RT]. However, our construction of @, differs from that of the induced
map in [McSa] and [RT]. Indeed, the latter is constructed via the homomorphism ¥, and a natural
intersection pairing on H.(X). The construction of ®, in Subsection 3.2 is more direct. We use
Proposition 2.2, which describes a topological property of “small” subsets of smooth manifolds,
and Proposition 2.9, which allows us to replace the singular chain complex S,(X) by a quotient
complex S,(X). The advantage of the latter complex is that cycles can be constructed more easily.

This paper was begun while the author was a graduate student at MIT and then put on the back
burner. The aim of this paper was to clarify relations between H,(X;Z) and H.(X) that were
hinted at in [McSa] and stated without a proof in [RT]. Since then, this issue has been explored
in [K] and in [Sc]. The views taken in [K] and in [Sc] differ significantly from the present paper. In
particular, while non-compact manifolds are considered in [K], pseudocycles in [K] are not required
to have pre-compact images. Theorem 1.1 fails for such pseudocycles. The arguments in the present
paper are rather direct and use no advanced techniques, beyond standard algebraic topology. In
a sense they implement an outline proposed in Section 7.1 of [McSa]. However, a fully rigorous
implementation of this outline requires non-trivial technical facts obtained in Subsections 2.2-2.4
of this paper.

As a graduate student, the author was partially supported by an NSF Graduate Research Fellow-
ship and NSF grant DMS-9803166. The author would like to thank D. McDuff for enlightening
conversations and encouraging him to finish up the original notes.

2 Preliminaries

2.1 Notation

If A is a finite subset of R*, we denote by CH(A) and CH°(A) the (closed) convex hull of A and
the open convex hull of A, respectively, i.e.

CH(A) = { > tov: t,€00,1]; Ztv:1} and

vEA vEA
CH(A) = { 3t € (0,1); Ztv:1}.
vEA vEA



For each p=1,...,k, let e, be the pth coordinate vector in R*. Put eg=0€R¥. Denote by
Ak:CH(eo,el,...,ek) and IntAk:CHO(eg,el,...,ek)

the standard k-simplex and its interior. Let

«) = (1) € B
be the barycenter of AF.
For each p=0,1,...,k, let
Al;:CH({eq:qE{O,l,...,k}—p}) and IntA’;:CHO({eq:q€{0,1,...,k}—p})
denote the pth face of AF and its interior. Define a linear map®

if g<p;

_ €
q+1; Z P

We also define a projection map

q=k

- - 1

Wﬁ: AP —{e,} — A]; by Tr]’,f( E tqeq) = ﬁ( E tqeq).
q=0 P a#p

Put ,
bk"p = Lk,p(bk—l)a b;v,p EarT—— bk‘ +Z eq .
htl q#p

The points by, ;, and b;mp are the barycenters of the (k—1)-simplex A’; and of the k-simplex spanned
by bx and the vertices of A’; . Define a neighborhood of Int A’; in A* by

q=k
UF = {tpbhpt Y teeq: tp>0, t,>0Yg#p; Y tg=1}.
0<q<k;q7p q=0

These neighborhoods will be used to construct pseudocycles out of homology cycles.

If p,g=0,1,...,k and p#q, let
k. — Ak k
Ay =ANAY and

— _ . Ak—2 k
Lk?(p7q) = Lk7p0[/k—1,l,];17(q) - LkquLk,‘—l,L;lq(p) . A Ap,q (2'1)

3A map f: A™ — AF is called lnear if

f(toeo+. ..+ tmem) =tof(eo)+...+tmf(em) ¥ (to,...,tm) €[0,1]™" st to+...+tm=1.



€2
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Figure 1: The Standard 2-Simplex and Some of its Distinguished Subsets

be the corresponding codimension-two simplex and the inclusion map. Define neighborhoods of
Int A’;,q in A* by

r=k
Upq = {tobrp+tobiq+ Ztrer: tp,tq>0, . >0V r#p,q; Ztrzl},
r#D,q r=0
r=~k
k
Upq = {tpbk,p@?cfl,% 1 >)+tqbk‘,q(b;g—l7Lk 1 ))+ Ztrer: tp,tg >0, 6. >0Vr#p, q; Ztrzl}-
e TRa rapg r=0

These sets will be used to construct pseudocycle equivalences out of singular cycles. Note that

051411 N [7152,(12 =0 if {p17 Q1} # {p27 QQ}- (2.2)

Define a projection map

r=k
1
~k k k ~k
Tpg: A = CH(ep, eq) — Ay, by Wp,q(zt’”e’”> - i( Z trer).
r=0 1=t=ty T#p,q

Finally, let S; denote the group of permutations of the set {0,...,k}. The set S; can be viewed
as a subset of Sg1; if T€Sk, put 7(k+1)=k+1. If p~,pT=0,1,...,k+1, define

Thp-pt) €Sk bBY T (@) = (2.3)

_ . -1
L]Hl_lypf (p+), if A=ty p+ (p

€0 €1

Figure 2: The Standard 2-Simplex and Some of its Distinguished Subsets



We note that

Ukt p= Ok (p— pt) = b1 pt 1 AAF ol AR, — (2.4)
oo~ w0 Okt 07 T ) PAM — A‘;m @) (2.5)

the second equality follows from the first using (2.1). Furthermore,
Sign 7, () pr) = —(—1)P P (2.6)

For any 7 €Sy, define
i AP AR by T(eq) =€z YVqg=0,1,... k.

Lemma 2.1 If k>1,Y is the (k—2)-skeleton of A*, and Y is the (k—2)-skeleton of A**1, there
exist continuous functions

or: AF — AF and a1 AR ARHL

such that .
(i) r is smooth outside of Y and Qi1 is smooth outside of Y ;
(ii) for all p=0,... .k and 7 €Sk,

(pk‘U;’f :ﬁS‘UI’; and YR OT =TO Pg; (2.7)
(iii) for all p,q=0, ..., k+1 with p#q and 7€ Sk11,

Prrilyrer = n |Uk+1, Pr410T =T0Pp1,  and  Ppi1 0 lh1p = Lit1p© Pk (2.8)

Proof: (1) Choose a smooth function
70,1 S AR Agjlﬁ? — [O, 1]

such that 791 =1 on U(]fjl, 10,1 = 0 outside of U{f{l, and 7jp,1 is invariant under any permutation
7 € Sk41 that preserves the set {0,1}. If 7€Sy41 is any permutation, let

1. AkJrl o Ak+1

200 — [0,1].

N7(0),7(1) = 70,107

By the assumptions on 7o 1, 7jpq is a well-defined smooth function such that 7,, =1 on Uk+l

Pa
fp,q =0 outside of Uﬁ;rl, and
M (p)i(q) =0T (2.9)

for all 7€ Sk and distinct p,¢=0, ..., k+1.
(2) Define

(Pk—i-l Ak+1 AkJrl by @k—l—l —fl’+ Z npq kJrl(x) $)
0<p<g<k+1



Since 7,4 vanishes on a neighborhood of CH(e,, e4) and 78! restricts to the identity on AL, the

function 7 is well-defined, continuous everywhere, and smooth on AF1_y. By (2.2), Prr1= 521

on UFFL. By (2.9), for every 7 €Sg41

~ ~ o~ ~ ~ ~k+1 ~ ~
Pr410T =T+ Z Tp,q©T (Wp,q OT_T)

0<p<q<k+1

~ ~k+1 ~

=7t D e (ForEt ) s —7)
0<p<q<k+1

=T+ Z ﬁpq ’7’07‘(‘16—’—1 %):%O‘ﬁk—i—l'

0<p<g<k+1

Thus, @r4+1 satisfies the first two conditions in (2.8), as well as (i) above.

(3) We define @y, by the third condition in (2.8). The function ¢y is independent of the choice of p
and satisfies the second condition in (2.7). To see this, suppose p,q=0,...,k+1 and 7 € Si. Let
7€ Sk11 be defined by

T Olktlp = Lhtlg O

If ¢y, and @y, 4 are the functions corresponding to p and ¢ via the third equation in (2.8), then by
the second equation in (2.8)

Lk41,§ ©T O Phkp = T O Lky1p O Php = T O Pht1 O Lkg1p = Pk+1©T O Lkt1,p
= Qk4+1 09 lk41,gOT = lg41,g © Pk,g O T-

We conclude that
TOWkp = PkgOT Vp,q=0,...,k+1, TES.

The function ¢y, satisfies the first condition in (2.7) because
k+1 k+1
Lk+1p(U ) UperlﬁAperl and
— k+ ~k Uk
Lk+1,p © Pk = Ph+1 O Ukt1,p = Typtl ©lk+lp = tk+1p © T O Up.

Finally, ¢ satisfies (i) because ¢ry1 does.
2.2 Homology of Neighborhoods of Smooth Maps
In this subsection, we prove

Proposition 2.2 Ifh: Y — X is a smooth map and W is an open neighborhood of a subset A of
Imh in X, there exists a neighborhood U of A in W such that

H(U)=0 if I>dimY.



Note that it may not be true that
Hi(A)=0 if I>dimY.

For example, let A be the subset of X =R" consisting of countably many k-spheres of radii tending
to 0 and having a single point in common. If k>2, the set A has infinitely many nonzero homology
groups, as shown in [BM].

If h: Y — X is a smooth map and k is a nonnegative integer, put

Ni(h) = {yeY:rkdh|,<k}.
Proposition 2.2 follows from Lemma 2.4 applied with X replaced by W, Y by h~'(W), and k
by dimY.

One of the ingredients in the proof of Lemma 2.4 is Lemma 2.3. For the purposes of this paper,
a triangulation of a smooth manifold X is a pair T'= (K, n) consisting of a simplicial complex and
a homeomorphism 7: |K| — X, where |K| is a geometric realization of K in RY in the sense of
Section 3 in [Mu], such that 1|y » is smooth for every simplex o € K.

Lemma 2.3 If X,Y are smooth manifolds and h : Y — X is a smooth map, there exists a
triangulation T=(K,n) of X such that h is transverse to 1| o for every simplex c € K.

This lemma is clear. In fact, we can start with any triangulation of X and obtain a desired one by
an arbitrary small generic perturbation.

Lemma 2.4 If h: Y — X is a smooth map, for every nonnegative integer k there exists a
neighborhood U of h(Ny(h)) in X such that

HU)=0 if I>k

Proof: By Lemma 2.3, there exists a triangulation 7= (K, n) of X such that the smooth map h is
transversal to 7| » for all o€ K. In particular,

h(Ni(h)) C Un(Inta) = Un(St(bU,SdK)),
ceK,dimo>n—k ceK,dimo>n—k

where n = dim X, sd K is the barycentric subdivision of K, and St(b,,sd K) is the star of b,
in sd K.* Note that
St(by,sd K) N St(byr,sd K) = ()

unless o Co’ or ¢/ Co. Furthermore, if 01 C...C oy,
St(byy,sd K) ... N St(by, ,5d K) = St(by, ... by, ,5d K):
the last set is contractable. Put

U, = | St(bs,sd K).

m
ceK,dimo=m

4If K is a simplicial complex and o is a simplex in K, the star of o in K is the union of the subsets Int o’ taken
over the simplices ¢’ € K such that o Co’; see Section 62 in [Mu].



Then U; N.. ﬂlenj is a disjoint union of contractable open sets in |K|. Let
n
Un=nU}), m=n—k,...,n; U= U U,

Since n: [K| — X is a homeomorphism, Up,, N...NUp,; is a disjoint union of contractable open
subsets of X. It follows from Lemma 2.5 below that H;(U)=0 if [ > k. Furthermore, by the above
h(Ni(h))CU.

_ m=k
Lemma 2.5 Let {Um}z;lg be a collection of open sets in X and U= |J Up,. If
0

Hl(Umlﬂ...ﬂUmj;Z):O vViI>0, mi,...,m;=0,...,k,
then H(U)=0 for all I >k.

This lemma follows by induction from Mayer-Vietoris Theorem; see [Mu, p186].

2.3 Oriented Homology Groups

If X is a simplicial complex, the standard singular chain complex S, (X) most naturally corresponds
to the ordered simplicial chain complex of X; see Section 13 in [Mu]. In this subsection, we define
a singular chain complex S,(X) which corresponds to the standard, or oriented, simplicial chain
complex. In particular, its homology is the same as the homology of the ordinary singular chain
complex; see Proposition 2.9. On the other hand, it is much easier to construct cycles in S, (X)
than in S, (X).

If X is a topological space, let (S* (X), BX) denote its singular chain complex, i.e. the free abelian
group on the set

U Hom(AF, X)
k=0

of all continuous maps from standard simplices to X, along with a map dx of degree —1. Let
S1.(X) denote the free subgroup of S,(X) spanned by the set

f—(sign7)for: feHom(A¥, X); 7€8y; k=0,1,...}.
{

If 7€ S;—{id}, put
7 =TIdae — (sign7)7 € Sj(AF).

Then, S, (X) is the subgroup of S.(X) spanned by
{fu7: feHom(A, X); 7€8y; k=0,1,...}.
Note that if h: X — Y is a continuous map, the linear map
hay: S (X) — Su(Y)

maps S, (X) into S.(Y).



Lemma 2.6 The free abelian group S.(X) is a subcomplez of (S.(X),0x), i.e. dxSL(X)CSL(X).
Proof: (1) Suppose 7€ Sy,. For any p=0,...,k, let 7,€S;_1 be such that
T O lkp=Llir(p) © Tp: JA\ A]; c Ak

Let 71, €Sy, be defined by

tplq), ifg<k;
riplg) = 4 (D
D, if =k,

Then, 707k, = T 7(p)°Tp € Sk for all 7€Sg. Thus,
sign 7, = (—1) =)= (Pgion 7 = (—1)P+7Plsign 7. (2.10)

(2) By the above, we have

k k
OprT = (=170t = Y (1) 141507
p=0 p=0
k k
(signT Z p) (sign 7). r(p)©Tp = (signT Z P(sign 7r—1(p) )tk pOTr—1(p)-
p= p=0
Thus,
k
OpART = Z Lkp (sign 7771(p))bk7po7}71(p)) € S];,l(Ak).
=0

It follows that for any f e Sk(X),

Ix (fu7) = f4(0arT) € S_1(X).

Lemma 2.7 There exists a natural transformation of functors Dx : Sy — Ss11 such that

(i) if f: A™ — AF is a linear map, Dx f is a linear combination of linear maps A™! — AF for
all k,m=0,1,...;

(i1) Dx S.(X) C SL(X) for all topological spaces X ;

(iii) Ox Dx = (—1)**11d + Dx9x on Si(X).

Proof: (1) Suppose k€ Z*. If f: A™ — AF is a linear map, define a new linear map

fleq), ifqg=0,...,m;

(2.11)
b, if g=m+1.

Pef: A™ AR by Puf(e,) = {

The transformation P, induces a linear map on the subchain complex of S,(AF) spanned by the
linear maps. If 7€S,, CSyy1 and f€S,,(AF), then

Py(for)=Pyfor. (2.12)
Thus, P, maps the subgroup of S.(AF) spanned by the linear maps into itself. Similarly, if 7€ Sy,

T#(Pkf) =TO Pkf = Pk(TOf) = PkT#f. (2.13)

10



Furthermore,

Ok Prf = (=1)F T f + Py (0ar f). (2.14)

(2) Let Dxlg,(x) =0 if k < 1; then Dx satisfies (i)-(iii). Suppose k > 1 and we have defined
Dx|s, ,(x) so that the three requirements are satisfied wherever Dy is defined. Put

Dar(Idpar) = Pe(Idas + (—1)* T DardparIdar) € Spr1(AF). (2.15)

By the inductive assumption (i) and (2.11), Dax(Idax) is a well-defined linear combination of linear
maps. For any fcHom(A*, X), let

Dx f = faDarldpxk. (2.16)

This construction defines a natural transformation Sy — Sky1. Since Dax(Idax) is a linear com-
bination of linear maps, it is clear that the requirement (i) above is satisfied; it remains to check
(ii) and (iii).

(3) Given f € Hom(AF, X) and 7 € S, let s = fu7 € S;(X). By (2.16), (2.15), (2.13), and
naturality of Dx|s, ,,
Dx(for) = furpDarldar = furuPy(Idar + (—=1)F " D pakOprIdr)
= fuPe(T + (—1)" ' 7y DprOarIdak) (2.17)
= fuPe(T + (=1)" D ArOpkT).

Thus,
Dxs = fuPy(7 + (—1)* ™ DprOrT). (2.18)

By Lemma 2.6, the induction assumption (i), and (2.12), S},(A*) is mapped into S, (A*) by DaxOpx
and by Pg. Thus, by (2.18), Dx maps S;(X) into S;_,(X). Finally, by (2.18), (2.14), and the
inductive assumption (iii),

OxDxs = Ox f4 P (F+(=1) " DAk OprT) = fuOarPe7 + (= 1) fOpk PeD Ak OarT
= fu (15 + Poan®) + (=1 fu (1" DAk Opr T + PrOpr DakOpkT)
= ((=1)*s+Dx0xs) + fuPrOprt + (—1)" " fuP ((=1)*OprF+Dard3i7)
= (=1)**s + Dxdxs.

Corollary 2.8 All homology groups of the complex (S;(X), aX|S;(X)) are zero.
Let S,(X)=25,(X)/S.(X) and denote by
m: Su(X) — Si(X)

the projection map. Let Jx be boundary map on S,(X) induced by dx. We denote by H.(X;Z)
the homology groups of (5’*(X), GX).

11



Proposition 2.9 If X is a topological space, the projection map m: Syx(X) — Si(X) induces
a natural isomorphism H.(X;Z) — H.(X;Z). This isomorphism can be extended to relative
homologies to give an isomorphism of homology theories.

The first statement follows from the long exact sequence in homology for the short exact sequence
of chain complexes B
0— SL(X) — S.(X) = Su(X)—0

and Corollary 2.8. The second statement follows from the first and the Five Lemma.

For a simplicial complex K, there is a natural chain map from the ordered simplicial complex C%(K)
to the singular chain complex S, (|K), which induces isomorphism in homology. If the vertices of
K are ordered, there is also a chain map from C.(K) to the oriented chain complex C,(K), which
induces a natural isomorphism in homology. However, the chain map itself depends on the order-
ing of the vertices; see Section 34 in [Mu]. The advantage of the complex S,(K) is that there is a
natural chain map from C,(K) to S.(K), which induces isomorphism in homology; this chain map
is induced by the natural chain map from C,(K) to S.(|]K|) described in Section 34 of [Mu].

If (X,Bd X) is a compact oriented n-manifold, (K, K’,n) a triangulation of (X,Bd X), and for
each n-dimensional simplex o€ K,
lp: A" — 0o

is a linear map such that nol, is orientation-preserving, then the fundamental homology class
[X] € H,(X,Bd X) is represented in Si(X,Bd X) by

Z {nols} = Z m(nols),

ceK,dimo=n ceK,dimo=n

> e,

ceK,dimo=n

where 7 is as before. Note that

may not even be a cycle in Si(X,Bd X). It is definitely not a cycle if Bd X =0 and n is an even
positive integer, as the boundary of each term nol, contains one more term with coefficient +1
than —1. Similarly, if

h:(X,BdX) — (M,U)

is a continuous map, h.([X]) € Hx(M,U) is represented in Sy,(M,U) by

Z {honol,}.

ceK,dimo=n

Once again, the obvious preimage under 7 of the above chain in Si(M, U) may not be even a cycle.

2.4 Combinatorics of Oriented Singular Homology

In this subsection we characterize cycles and boundaries in S,(X) in a manner suitable for con-
verting them to pseudocycles and pseudocycle equivalences in Subsection 3.1. We will use the two
lemmas proved here to glue maps from standard simplices together to construct smooth maps from

12



smooth manifolds.

The homology groups of a smooth manifolds X can be defined with the space Hom(A*, X) of con-
tinuous maps from A* to X replaced by the space C>°(A*, X) of smooth maps; this is a standard
fact in differential topology. Note that the operator Dx of Lemma 2.7 maps smooth maps into
linear combinations of smooth maps. Thus, all of the constructions of Subsection 2.3 go through
for the chain complexes based on elements in C*°(A*, X) instead of Hom(AF, X). Below S.(X)
will refer to the quotient complex based on such maps.

j=N

If s= ) fj, where f;: A¥ — X is a continuous map for each j, let
j=1
Cs={(.p):j=1,....,N; p=0,....k}.
J=N _
Lemma 2.10 Ifk>1 and s = ) f; determines a cycle in Si(X), there exist a subset Dy CCsxCs
i=1

disjoint from the diagonal and a map

7: Dy — Sk_1, ((1, 1) (J2:P2)) — T(1.p1),Gap2)

such that

(i) if ((j1,p1), (j2,p2)) €Ds, then ((j2,p2), (j1,p1)) € Ds;
(ii) the projection Ds—Cs on either coordinate is a bijection;

(i) for all ((jl,pl), (jg,pg)) €Dq,

-1
T(j2,p2),(31:21) = T(j1,p1),(j2,p2)’ Jiz © tkpy = J1 © tkpy © T(j1,p1),(j2,p2)> (2.19)

and SIgN T(j, p1),(ja,p2) = —(—1)p1+p2. (2.20)

This lemma follows from the assumption that 9{s} =0 and from the definition of S,(X) in Subsec-
tion 2.3. The terms appearing in the boundary of s are indexed by the set Cs, and the coefficient
of the (j,p)th term is (—1)P. Since s determines a cycle in S,(X), these terms cancel in pairs,
possibly after composition with an element 7 € Sy and multiplying by sign7. This operation does
not change the equivalence class of a (k—1)-simplex in S_1(X).

Lemma 2.11 Suppose k>1 and

J=No Jj=N1
so= Y {fos} and  si= ) {fi;}
j=1 j=1
determine cycles in Sp(X). Let Ds, CCsy X Csy, Ds; CCsy XCs,
70: Dgy — Sk—1, and T1: Dgy — Sp—1
be the subsets and maps provided by Lemma 2.10. If

[{s0}] = [{s1}] € Hr(X;Z),

13



there exist

j=N _
() 3='% ;€ S (X);
]:
(b) Ds CC;s xC;s disjoint from the diagonal, Céo),Cél) CCs, and maps

T7:Ds — Sy, ((jlupl)) (j27p2)) B 7~—(jl,pl) (j2.p2)>

(}i,ﬁi):{l,...,Ni}—>C§i), and 7:2-:{17 N}—>Sk, J— T4y, 1=0,1,

such that
(i) if ((j1,p1), (j2,p2)) €Ds, then ((j2,p2), (j1,p1)) € Ds;
1),

(i) the projection Ds — Cz on either coordinate is a bijection onto the complement of(féo) uC;’;
(’l'l'l) fO’f’ all ((j17p1)7 (j27p2)) €D§;

T(j2p2).(j1.p1) = %(j:alpl)v(j27p2)7 Fiz © 1,9y = f1 © tht1,p1 © T(j1,p1),(ap2) > (2.21)
and  SIgNT(j, o) (ape) = — (=1 (2.22)

(iv) for alli=0,1 and j=1,..., N,
f]z(]) © Lkt 1,5i(5) © T(ig) = Jisg and sign 7(;,j) = _(_1)i+ﬁi(j); (2.23)

(v) (Ji, i) is a bijection onto Céi) fori=0,1 and joUj; is injective into {1,...,N};
(vi) for all i=0,1 and ((j1,p1), (j2,p2)) € Ds,, there exist

(507156)7 (307133_) (57“715;) (57’715:_) € C§ s.t.

(G0, » B3 ) = (4i(31), Bi(1), b1 e Ty (P1)). (2.24)

G By > 577 = (Gi(J2)s gy gt T0.72) (P2)s Pid2) ) (2.25)

(Gr—1.85 1), G, B)) €Ds - Vol =1,...m, (2.26)

k—il-l,p ; l(pr’ 1) = (Jw v )G B ]Hl-lp (p,, ) vri=1,...m (2.27)

T(i.2) Y01 T (1,01),(2,92)) (2.28)

- (Tla(ﬁa,ﬁ()*)%(io,ﬁg)mh,ﬁ;)) e (Tk,(ﬁ;_l,ﬁj f(ﬁ 15, 1), (ir,ﬁf))(Tk,(ﬁiﬁi)%(ivh))bk:m'

Remark 1: By (2.24), the left-hand side of (2.28) is a linear map

AL AP =AF,
v
0,51 (P1) Lk+1,ﬁa (o)

By (2.26), (2.27), and (2.3), for '=1,...,r

. k| k
Thors ) Goadt )Gin) Bty T A

~+
k+1p > k+1,ﬁ;,_1(p”*1)

is a linear map. By (2.25) and (2.3), the ending of the right-hand side of (2.28) is the linear map

(T, ) TCaio) tepe T AT — AT

14



Iy N Py Do
it J2 .
————9o ——— 9o LﬁtJ)r Do

p1 D2

Figure 3: Illustration for Lemma 2.11 and Remark 2

Thus, just like LHS of (2.28), RHS of (2.28) is a linear map

k—1 k
AT AL Gy
k155 0

In particular, if (2.24)-(2.27) hold, the two sides of (2.28) differ by an element of Sy_;.

Remark 2: In Subsection 3.1, the rather elaborate condition (vi) of Lemma 2.11 will be used
to construct a manifold M from § such that its boundary consists of the manifolds My and M;
corresponding to the cycles sy and s;. In the process of constructing M two (k4 1)-simplices
labeled j; and js will be identified along the k-simplices A’;jl and A’;;l after the twist determined
bY T(j1 1), Go,p2) € Sk> Whenever ((j1,p1), (j2,p2)) € Ds. Similarly, in the process of constructing M;,
two k-simplices labeled j; and jo will be identified along the (k—1)-simplices A’;l and A’;2 after the
(0)

twist determined by 7; (( € Sp—1 whenever ((j1,p1), (j2,p2)) € Ds,. The elements of C;

J1,01),(52:p2))
and Cél) will index the k-simplices in the boundary of § that correspond to simplices in sg and sj.
They will form the boundary of M which will be identified with M; —M;. In order to do this, we
need to make sure that whenever ((j1,p1), (j2,p2)) € Ds, the corresponding k simplices in CL(;) are
identified along (k—1)-simplices in the same way. For example, in the case of Figure 3, the two
one-simplices on LHS will be identified by joining the unlabeled vertices (0-simplices Allj , and A}m).
These two one-simplices also correspond to the bottom boundary 1-simplices on RHS. Then, the
vertices of these two bottom simplices corresponding to the unlabeled vertices on LHS must be
identified as well, i.e. there should be a sequence of triangles between the two outer triangles whose
faces are identified. These identifications must identify the unlabeled vertices in the outer triangles.
The requirement (2.28) is automatically satisfied in this case if (2.24)-(2.27) are satisfied, since both
sides are maps into

1 ~ A0
Ao A

Proof: (1) Since [{so}]=[{s1}], there exists

j=N
(3 =Y {f} €5m(X) st {5} ={s1} — {so}-

J=1

The terms making up 03 are indexed by the set Cz. By definition of S,(X), there exist disjoint
subsets Céo) and Cgl) of Cz such that for each (j,p) ECS) the (j,p)th term of 9§ equals one of the

15



terms of s;, after a composition with some 7€ Sy, and multiplying by —(—1)’sign 7. The remaining
terms of C; must cancel in pairs, as in the case of Lemma 2.10. Thus, § satisfies (i)-(iv) and the
first condition in (v). The second condition in (v) is satisfied after subdividing each A**! into k42
simplices with one of the vertices at by11.

(2) A priori § may not satisfy (vi). Given ((j1,p1), (j2,p2)) € Ds,, we can construct a sequence

(307156)7 (307153_)7 RN} (37‘713;)7 (57’7]’57—“’_) € C§ (229)

inductively, starting with (2.24) and using (2.26) and (2.27). The requirements (2.26) and (2.27)
determine (jo, P, ) uniquely from any element of this sequence. Thus, this sequence contains no
loops and must terminate at some

GroB) = (o (), ur(y)) € €. (2.30)

Define p,€{0,1,...,k} by

Br = bt T (P2)- (2.31)
We will call (2.29) the sequence of (vi) in Lemma 2.11 beginning with (ji,p1) €Cs, or ending with
(ja, P5) €Cs, . Either condition determines (2.29) via (2.26) and (2.27).

We assume that (vi) fails for ((j1,p1), (j2,p2)) € Ds,. We will modify § by adding two (k+1)-simplices
so that (j1,p1) and (j2,p2) are added to the collection of elements of Cs,UCs, that satisfy (vi) of
Lemma 2.11 and no element is removed from this collection.

Let
TRHS (Ak,b,;ilﬁ (Br)) — (Ak,b,;il’ﬁg (B5))
denote the right-hand side (2.21) without 7 j, and ¢y p,. By (2.6) and (2.22),
sign Tris = —(—1)P0 TP7 (2.32)

Define ¥ € 5,1 by

Tli,72) Ot O T ((rapn),(izopa)) = TRHSOT(ir iy Oty 0 02 AL — AL (2.33)

By (2.10), (2.23), (2.20), (2.32), (2.24), and (2.30),

signz? = (_1)p1+p2 . sign%(i,jl) . sign %(i’,jé) . Sign Ti,((jl,pl),(jg,pg)) . Sign TRHS

N (2.34)
— (_1)z+2 +p2tpy
Furthermore, by (2.23) used twice, (2.30), (2.4), (2.24)-(2.27), (2.21), (2.33), and (2.19),
fir gy © thpl, = f}robkﬂ,ﬁiOT(%"J&)OLk,p’g = fjoobk—&-l,ﬁa OTRHS O T(i",j3) © Lk,
z ~ ~1
= fjoobk—i-l,ﬁg oT(i,jl)oLk?,plOTi,((j1,p1)7(j27p2))019 (2.35)

_ . o , “1_ —1
= Ji,1 Olkp1 OTi ((1,p1),(G2p2)) OV = Jirja © Lhypy © U
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(3) Choose 15;\7“ €{0,...,k+1} such that

Let
Bro i By, 7B
5t -1 D.. = " N+1 " 2.37
Pyy = k+1,pN+1( k41,5, + (B )) {1514;7 if ﬁj—vﬂ =D, . ( )
Define 7(;/, /)ESk 1 and T( . )GSk by
-1 ~—1 CAk—1 k
kap/Q o T(i’,jé) = T(i/,]é) k Tt g )(pé) : A — A / 5 (238)

~/ —1
T/ .0l —1 ~—
(7'7]2) k7Lk+1,ﬁt (pN+1)
N+1

=l po¥ torT (l,,] ) AL — Ak (2.39)

By (2.10), (2.23), (2.31), (2.30), (2.37), (2.34), and (2.36),

) T N A N L A R A (
Sign T 1) = (—1)" @ i) (P2) sign 7y ) = —(—1) PotBr tuy g o+ (P );
-1
bl ﬁf (pN+1)+P2 . .
s1gn7'(2 ) = (—1) - sign 7(ir 1) -s1gn19
-1 ~— s ~+
o (B ) tp2 ipypr e o (P ,) o
_ _(_1) k:+1,pN+1 N+1 (_1) k+17p1\7+1 N+1 (_1)Z+Zl+p2+pl2 (240)
= —(— 1)Z+pr L TERs AT —(- 1)Z+pN+1
Choose a smooth function
fraq0t = fy 0 T
N41 % kg i35 '.54 )
Fyap A — X st 7o (2.41)
fN+1 © Lk+1,p e = figo T(i,ja)"
Such a function exists because the two requirements agree on the overlap, i.e. AF+1
q g D, 5t
N+1YN+1
fi ot = fii, 0L o tort = fy i1 Olp,y OT -1
ij2 © z ] ) ke po . ) 2,J2 k,p2 (&' ,55) i',j% k,ph (' ,54)

k+1 it (pNH-l
PNt

_fz/ ’OTZ/ é) k'rw /)p2 fz’ i 07_(1/ /)O/fkfil ~+(pT)

—fz/’OT// Ol ,—1 =+
(#,33) b Prg)
N+1

by (2.39), (2.35), (2.38), (2.31), and (2.37).
Let 0 € Sgy1 be the transposition interchanging p," and 15;([“. For each p=0,1,...,k, define 0, €S,

by
OO Llk+1,p = Lkt1,0(p) © Op- (2.42)

Note that o, is the identity if p=p;, Py otherwise, it interchanges L;j_l p(ﬁﬁr ) and L,;il p(ﬁ;”r -
Thus,

sign g, = —(—1)PTo®), (2.43)

17



Furthermore,

_ ~t
Thpi) © T, o) =0 VP FE D (2.44)
5 © Thr ) © O O kot ) = 4 VP FE D (2.45)
as can be seen from (2.3) and (2.36). Put
r _ 7 ~ _ ~— o~ ~— _ ~4 e
Five = Twpeos Dy, =0y, ) =0, by, =oy,,) = (2.46)

The last equality follows from (2.37). We note that by (2.46), (2.30), and (2.39),

g, (T (P2)) = et (R (2)) = P =g, (2.47)

~/ e
hrLpl (7o) (02)) = PRy (2.48)
We will take the replacement for § to be
§=5+Tyn+luge
At this point, we need to consider two separate cases.

(4) Case 1: Suppose (i, j5)= (i, j2), but either p,,#ps or (2.28) does not hold. Let Cg)) and Cé,l) be

obtained from Céo) and Cél) by replacing (j;(j2), s (j2)) with (N + 1,13}'[“). We modify the maps

(josP0)s (j1,P1), 7o, and 7 of Lemma 2.11 by replacing T(ijo) With 7/, . ) defined in (2.39) and

. (Zvj2)
taking . .
(7i(72), Bi(j2)) = (N+1,5% ).
It is immediate that (v) of Lemma 2.11 is still satisfied. By (2.41),

~/

OT (i ja) = fija:

fN+10Lk+1,ﬁ}+1
i.e. (i,72) still satisfies the first equation in (2.23). By (2.40), it still satisfies the second equation
in (2.23).
In this case, we set
Dy = Ds U{((jrB,), (N+1,55, ), (N+L,55, ), (B }
U{((N+2,55,,), (N+2,55 ) (N+2,5% ), (N+2,55 ,))}

U U@ +1,p), (N+2,0(p), (N+2,0(p)), (N+1,p)) };
p<k+1,p#pt

Vo1
TG S Ly ) = T )Gt =10

7~-(N-i_Q’ﬁJ?’H)’(1§H—2’15+1\7+2) - ~(;V~1+2,13§+2),(N+2,151},+2) = % © 7:(/2'7]'2) ° %(;,;2)’
T(§+10).(4200) = T(N+200)8+1p = O T o €{0 1 k1) = {pg by}
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Since Dj and Cé(.i) satisfy (i) and (ii) of Lemma 2.11, so do Dy and Cg). By construction, all
elements of Dy — D; satisfy the first condition in (2.21). By (2.41), (2.30), the first equation
n (2.23), and (2.36),

(GroB5), (N4 1,55, ) (N1, 55, ), (s B) € Da

satisfy (iii) of Lemma 2.11. By (2.43), (2.46), (2.40), the second equation in (2.23), and (2.30),

. ~ pr + +~+ e
Sen T (Fa2y, ) = —(-1" Poi . (=) PR (1)

= _(_1>p1§7+2+75}+2_
On the other hand, by (2.46), (2.42), (2.41),

fr.o0t . = f5 o001 o= f oL 00— = [ij,0 00—
N+2 k—i—l,pNJr2 N+1 k+1,pN N+1 k+1’p1§7+1 Py J2 7]2) Pyt
~)—1 ~
= e} .. \00~—-0 o ~
fiz T(i.42) ° O pr 7-(N+2,:0 )(N+27p

Y oL OO0 ~— OT N ~
N+1""k+1,p N+1 Pyio (N+2,p )(N+2

)

Pirys)

7 [eXo NN/ —
N+1 K15y, (N+2,pN+2

) (V42,5 )

N2 OLk+1,”;+2OT(N+2, (V42,5

N+2)

We conclude that
V19 5 Vo 5t V.0 At V40 -
((N+2apN+2)7 (N+2apN+2))a ((N+27p]§7+2)7 (N+27p]§7+2)) € Dg/
also satisfy (iii) of Lemma 2.11. For each p€{0,1,...,k+1} different from ﬁ]j\:,H,
((N+1,p), (N+2,0(p))), (N+2,0(p)), (N+1,p)) € Dy

satisfy (iii) of Lemma 2.11 by (2.46), (2.42), and (2.43).

The sequence of (vi) in Lemma 2.11 beginning with (ji1,p1) €Cs, is modified by adding
(N_‘_l?ﬁ]_\m_l): (N_‘_l?ﬁ]—i\_/'_i,-l) € CE’

to the right end. By (2.48), this sequence ends with (j2,p2) €Cs,. The reflection of this sequence
is the sequence now beginning (j2,p2) € Cs;. These two sequences satisfy all of the requirements
of (vi). In order to see that (2.28) holds, note that by (2.39), (2.5), (2.37), (2.31), (2.38), and (2.33),
the new right-hand side of (2.28) is given by

/
TRHS 7, T Ry TRHS T Ly, —1 Y
RHS TG ) (N1 ) O ) TG) e = TRES it )l e () T0)
+
= TRHS {;. ,—1 38 i, v = TRHS {;. -1 **Ti,' )
kil ﬁ]_m(pNH) T(i.j2) R L o ) (632)

= TRHS Lk,f(i,m(pg)T(i,jz)ﬁ = TRHS 7(i,j2) U,y ¥ = T(i,j1) O L1 OTi, (j1,p1),(j2,p2)
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On the other hand, by (2.25)-(2.27), (2.37), (2.31), (2.42), (2.46), and (2.48), for each (j2,p) €Cs,
with p#pe, p, the sequence of (vi) in Lemma 2.11 ending with (jo, p) is modified by adding

(N+1’ﬁ_ﬁ+1)’ (N‘Hv Lk+1,ﬁ§+f(i,jz)(p))> (N"‘Qv o Lk+1,p‘]—vﬂ%(i,jz)(p))’ (N+2vﬁ+]\7+2)v

. — = ~/ 7 ~/ \7 ~+
(N+27p]\7+2)a (N+27O-Lk+1,j§+]\,]+17-(i,j2)(p))a <N+17 Lk+1,ﬁ}']+17—i,j2 (p))v (N+17p]\7+1) € C§’

as the last four pairs. Thus, the new sequence still ends with (j2, p). Furthermore, the corresponding
sequence in (2.28) is modified by replacing 7; j, with

Tii aty (vaq s \Tw (o - T/ N S N
(jT’pT ),(N+1,p~ ) k,(p~ o s—  T(i,j )(p)) (N+17L s—  T(i,5 )(p)),(N+2,0'L s—  T(4,j )(p))
N+1 N+1 k+1,p1\_]+1 ©:J2 k+1,pN+1 ©:J2 Ic+1,pN+1 2,32

(p))

X T, ~ ~+ T/ % ~+ Y ~— T (=— ~
k?(aLk+1713;]+17—(i,j2)(p)apN+2) (N+2,p5 )s(N+2p ) k’(pjfl+2’o-l'k+1,fzt T(liij)

N+42 N+42 N1

- ~/
X T . - . T - T
(N+2,00, o T @)(N+Ley 0 75 ) k(e o ()P, ) 902
kHLBG (4,72) ktLpg 72 HLPL B2 N+1

= \Ty /x— ~ ag . T, ~ ~+
( k’(pN+1’Lk+1,z§I_\7+lT“’j2)(p)) Lk+1,5]—v+17(z,12)(1’) k(o Lk+1,51—v+1T(i,j2>(P)7pN+2))

~ ~1—1 ~/
X TiioTs (0’~—7‘ __ - o = T . _ )T~ .
5,J2 14,59 Dr k‘,(pN+2,O' bppr gt T(Ii’jz)(lﬂ)) Lk+1,ﬁ+]\7+17i,j2 () ka(Lk+1 5t Til,jz (p),p}+1) nJ2
TN+1 ’

ides A =
=id- TijaTi ja id Tijo = Tirjo

by (2.46), (2.44), and (2.45). Thus, the above procedure does not change the ends of the sequence
of (vi) or the difference between LHS and RHS in (2.28) when one of the ends of the original
sequence is (j2,p) with p#£po, py. The only other elements of Cy,UCs, for which the corresponding
sequences of (vi) in Lemma 2.11 are modified are (jo2,p)) and the endpoint of the sequence previ-
ously corresponding to (j2,p2). We conclude that this construction adds a new element of Cq,UCs,
to the set of elements satisfying (vi) without removing any of the elements from this set.

(5) Case 2: Suppose (i, j5) # (i, j2). Let Cg)) and Cé}) be obtained from Céo) and Cél) by replacing
(7i(32), Di(j2)) and (ji(j5), pir (J5)) with (N—i—l,ﬁJFNH) and (N+2,]3;\5]+2), respectively. We modify
the maps (jo, Po), (j1,P1), 70, and 71 of Lemma 2.11 by replacing T(i,jo) With %(’Z. ) defined in (2.39)
and taking

(i), Bi32)) = (N+105,) - and - (@), 96 (73) = (V42,5 ,)-

It is immediate that (v) of Lemma 2.11 is still satisfied. By (2.41), (2.46), and (2.42), (¢, j5)
and (¢/,75) still satisfy the first equation in (2.23). By (2.40) and (2.46), they still satisfy the
second equation as well.

7j2)

In this case, we take
Dy = Ds U{(Gr i), (V155 ) (N 415, ) Gro )
U{((N+2,55 ), (Gi(52), Bi(52))). (i (G2). Bi(2)), (N+2a25]_\~,+2))}

U UV +1,0), (N+2,0(0))), (N+2,0(p)), (N+1,p))};

p<k+Lp#EDy
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~’T ~ ~ - :i
TGebh) (N+155, ) (N+17pN+1) Grit) = 14

o~—1 _ ~/ ~—1
T2 ). Geli2)5402)) = T(Gulio) o)) (F425, ) — 77 © TG02) © Teagay

o . =F - — S st
TN +1p)(N+200) = T(N4+200).(F41p) = O ¥ 0 €{0, 1 k+1} = {pe . Pg. )

Since D; and Céi) satisfy (i) and (ii) of Lemma 2.11, so do Dy and Cg). By construction, all
elements of Dy —Dj satisfy the first condition in (2.21). The elements

(GroB5), (N+ 1,55, )) (N1 55, ), G ),
(N+1,p), (N+2,0(p))), (N+2,0(p)), (N+1,p)), with p#pw;,

of Dy satisfy (iii) of Lemma 2.11 for the same reasons as in Case 1. On the other hand, by (2.43),
(2.46), (2.40), the second equation in (2.23), and (2.30),

S~ ~ . pr+pt (L i+p L (NPT
SIS0 TN ) Gati)na)) = — (DT R (1) ()T

= —(-1) N+2+P1(J2)

By the first equation in (2.23), (2.41), (2.42), and (2.46),

Fistie) Ot 1,5u032) = Jiia %1 iy = 2 ©7(535) 005 O T w42 B yo) (i (32) 5 (32))
= Foe1®ta gt 2% (N2 )G i)
= F541°0%0 415 O (4255 ,).Gil2) Fi(2)
= Fiaotsay,, O (W2, ).Gili) i)
We conclude that
((N+2’]§7N+2)’ (Ji(32), Bi(52)))» (i (j2). Bi (j2)), (N+2715;§,+2)) € Dy
also satisfy (iii) of Lemma 2.11.

Finally, the sequence of (vi) in Lemma 2.11 beginning with (ji,p1) €Cs, is modified by adding
(N+17ﬁ]:[+1)7 (N+1aﬁﬁ+1) € C§’

to the right end. By (2.48), this sequence ends with (j2,p2) €Cs,. The reflection of this sequence
is now the sequence beginning with (j2,p2) €Cs,. By exactly the same computation as in Case 1,
these two sequences now satisfy all of the requirements of (vi) in Lemma 2.11. By (2.25)-(2.27),
(2.42), (2.46), and (2.48), for each (ja2,p) € Cs, with p # pa the sequence of (vi) in Lemma 2.11
ending with (j2,p) is modified by adding

(N+2’ﬁz_§7+2) (N+2 Y15 *%'/ (p)), (N+1 Ukt1,5t 5,

N+2 Pr 7’7]2

~’L,j2 (p))7 (N+17ﬁ+]v+1) € C§’

1
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as the last two pairs. Thus, the new sequence still ends with (jo, p). Furthermore, the corresponding
sequence in (2.28) is modified by replacing 7; j, with

T(Gs (52),5i (=), (N+2,5

o) Tk, (57 o 7 (o) (N+24

=/
o__T: .
N2k1_ 4,92 k+1,p by ©J2
+ +pN+2 Dy b +pN+ Pr b
~/

oy L
k41 p;+17—i’j2(p)7p]\~]+1) 5.J2

O+t Ty )
“+1

it ))%i/m

~ ~1—1
= T(;.i\T/: - O-~—Ty (~— ~r
(27‘72) (17]2) ( Dr k’(pN s Lk+1‘ﬁ4j\:r+17—i’j2 (p)’pN+1

~/ g =
Ol s+ TP e gt T
+2 k+l,pN+1 4,72 + 7pN+l

:7:( ,J2)7-( )ldT 7~_i,j27

by (2.42), (2.46), and (2.45). Thus, the above procedure does not change the ends of the sequence
in (vi) or the difference between LHS and RHS in (2.28) when one of the ends of the original
sequence is (j2,p) with p#po.

Similarly, for each (j3, p) €Cs,, with p# ph the sequence of (vi) in Lemma 2.11 that ends with (j, p)
is modified by adding

\ S— \ \ St
(N+1,55, ), (N+1, ey, Ty (P )),(N+2,Lk+1’ﬁ}-] T (), (N+2,5% ) €Cs

as the last two pairs. Note that o;+ =id. Thus, the new sequence still ends with (45,p). The
corresponding sequence in (2.28) is modified by replacing 7 ; , with

Trx T, (e S - < .
(‘77"777‘ ),(N—l—l,p J ) k,(p 3 oy, =— 52 (p)) (N+17L =— Tl il (p)),(N+2 L 5t Tyl ! (p))

N+1 N+1 k+1,pN+1 75 1c+1,pN+1 i’,55 k+1,5 Pis Vi

X T, ~ + Tir 1
k(¢ s 0 (p),D - ) 502

k+1,pN+2 i35 N+2
= \T (5— ~ o = T, ~ ~ Tir i1 = Ty it
( k(P L = Tt gt (p)='¢ s— Tyl ® 'k (ot T (p)PL )) 1,95 i ,jh»

N+41’ k+1,pN+l 2Jo k+1,pN+1 o ’ k+1,pN+l i35 N+2

by (2.42), (2.46), and (2.44). Thus, the above procedure does not change the ends of the sequence
in (vi) or the difference between LHS and RHS in (2.28) when one of the ends of the original
sequence is (j5,p) with p # p,. The only other elements of Cs,UCs, for which the corresponding
sequences in (vi) of Lemma 2.11 are modified are (jy,p5) € Cs, and the endpoint of sequence
previously corresponding to (ja2,p2). We conclude that this construction adds a new element of
Cs,UCs, to the set of elements satisfying (vi) without removing any of the elements from this set.

3 Integral Homology and Pseudocycles

3.1 From Integral Cycles to Pseudocycles

In this subsection, we prove

Proposition 3.1 If X is a smooth manifold, there exists a homomorphism
U, H(X;Z) — H(X),

which is natural with respect to smooth maps.
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In the proof of Lemma 3.2, we construct a homomorphism from the subgroup of cycles in S, (X)
to H.(X). Starting with a cycle {s} as in Lemma 2.10, we will glue the functions f;joqy together,
where ¢y, is the self-map of A* provided by Lemma 2.1. These functions continue to satisfy the
second equation in (2.19), i.e.

J5200k © Lk py = [j1 9Pk © Lty © T(jy 1), (j2,p2) v ((j1,p1), (jo2, p2)) €Ds, (3.1)

because ¢, =id on A* —Int A* by the first equation (2.7). The proof of Lemma 3.2 implements a
construction suggested in Section 7.1 of [McSa].

Lemma 3.3 shows that the map of Lemma 3.2 descends to the homology groups. Starting with a
chain {5} as in Lemma 2.11, we will glue the functions fjogékﬂogpkﬂ together, where @1 and
@p41 are the self-maps of A1 provided by Lemma 2.1. If i=0,1 and j=1,...,N;, by the third
equation in (2.8), the second equation in (2.7), and the first equation in (2.23)

F3:0) @ Ph41 © U1 5:(7) O T(ig) = S5.(5) © Ue+1,5:() O PR OT(0g) = S5,(5) © th+15:(5) O T(5.5) O Pk
= fijopk.

Since p41 =id on AFT —Int AF1 it follows that

J5.) 0 Ph4100kt1 © g1 5,() O Tag) = figor ¥V j=1,..., Ni, i=0,1. (3.2)

Similarly, if ((j1,p1), (j2,p2)) € Ds, by the third equation in (2.8) used twice, the second equation
in (2.21), and the second equation in (2.7),

szo@cﬂ O lkt1py = szobkﬂ,mo@k = fjlo[’k+1,771O%(jl,pl),(jz,pz) © Pk
= ];J'l O Lk+1,p1 ©Pk © T(j1,p1).(j2.p2) = fjl OPk+1 0 Lh+1,p1 ©T(j1 1), (j2.p2)*
Since p41 =id on AFt —Int A1 it follows that
Fio 0Pk 10Ph410 Uit 1 ps = F1 OBkl OPh41 O Lot 1p1 Oy ), (ope) ¥ ((31,11), (J2, p2)) €Ds. (3.3)

Thus, the functions f}o@k+1og0k+l are the analogues (in the sense of Lemma 2.11) of the functions fj
for the maps fo jopr and fi jopy.

Lemma 3.2 If X is a smooth manifold, every integral k-cycle in X, based on C®(AF; X), deter-
mines an element of Hy(X).

Proof: (1) If k=0, this is obvious. Suppose k>1 and
j=N

s=> fi
j=1

determines a cycle in S’k(X). Let Ds be the set provided by Lemma 2.10 and let 7: Dy — S be
the corresponding map. Let

j=N
M = ( |_| {j}xAk)/ ~, where
j=1

(jla lk,py (T(jlypl),(jg,pg)(t))) ~ (j27 Lk po (t)) v ((jlapl)a (j27p2)) EDSa tGAk_l-
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Let m be the quotient map. Define

F:M — X by F([51) = fi(ex(t).

This map is well-defined by (3.1) and continuous by the Pasting Lemma. Let M be the complement
in M’ of the set
j=N
(L=y),
j=1

where Y is the (k—2)-skeleton of A*. By continuity of ', compactness of M’, and the first equation
in (2.7),

j=N j=N
BdF|y = F(M'=M) = | fi(en(Y)) = J (V). (3.4)
i=1 j=1

Since fj|int o is smooth for all j=1,..., N and all simplices o C AF, Bd F|j; has dimension at most
k—2 by (3.4). Thus, F|ys is a k-pseudocycle, provided M is a smooth oriented manifold and F|y,
is a smooth map. This is shown below.

(2) Let [j,t] € M be any point. If t €Int A*, then 7({j} xInt A¥) is an open set about [, t], which
is naturally homeomorphic to Int A*. If

[j7 ﬂ = [.jl;l/k,}n (tl)] = [.j27[’/€,p2<t2)]

with (j1,p1) # (j2,p2) and t1 €Int AP et
U= W({jl}XU]]fl) UW({jQ}XU;;).

This is an open neighborhood of [j,¢] in M. It is homeomorphic in a canonical way to the disjoint
union of Ulfl and UI’; with Int Algl C U]’fl and Int A’;z C UIZ identified by the linear map

-1 . k k
Lk,pr © T(j1,p1),(j2,p2) © Lhpy - Int APQ — Int Am (3’5)

and thus to an open subset of R*. By (2.20), the transition map (3.5) is orientation-reversing if
the open simplices Int A]1§1 and Int A’;Q are oriented as boundaries of the k-manifolds U;fl and U1§2
with their natural orientations. This means that the induced orientations of T,U coming from the
two k-manifolds with boundary agree. On any nonempty overlap of this coordinate chart with any
other coordinate chart, the transition map is the identity map on an open subset of Int A¥. Thus,
M is a smooth oriented manifold. The map F is smooth on {j}xInt A* for all j by our assumptions
on F. If

[7:t] = [0, thps (£1)] = [J2, thepo (2)]

then F' is smooth on the open set U, defined as above, because it is smooth on
m({i1}xUE) and w({j2}xUL),

and all derivatives in the direction normal to m({j; } xInt A’; ,) vanish by the first equation in (2.7).

24



Remark: The pseudocycle F'|y; constructed above depends on the choice of Dy and 7. However, as
the next lemma shows, the image of F'|5s in Hj(X) depends only on [{s}].

Given § as in Lemma 2.11 and j=1,..., N, denote by
&i(5) c{0,1,....k+1} x {0,1,...,k+1}
the set of pairs (p~, p™) such that
(.p70") = (s By, 7))

for the sequence of (vi) in Lemma 2.11 beginning with some (j1,p1) €Cs,, i =0, 1, and for some 7.
The set £;(5) depends on the choice of D;. Let

Ak+1

k+1
£ = A

be the union of the (k—2)-skeleton of A*+! with all (k—1)-simplices in A**! that are not of the
form A*TL - for some (p~, pt) €&;(5).
P

Lemma 3.3 Under the construction of Lemma 3.2, homologous k-cycles determine the same equiv-
alence class of pseudocycles in H(X).

Proof: (1) If k=0, this is obvious. Suppose k>0 and

7=No j=N1

S0 = Z fQJ‘ and S1 = Z ij
j=1 7j=1

determine two homologous k-cycles in Sy (X). Let Ds, and Ds, be the sets provided by Lemma 2.10
and let 79 and 71 be the corresponding maps into Sk_1. Denote by (M), My, Fy) and (M, M, Fy)
the triples constructed in the proof of Lemma 3.2 corresponding to sg and s;. Let

j=N

ot

j=1
be a chain in Sk11(X) provided by Lemma 2.11 for the homologous cycles sy and s;. Denote by
CSO), Cgl), Ds, (ji, pi»71), and 7 the corresponding objects of Lemma 2.11.

S S

(2) Put
P
( |_| }xAkH), where
(jh Lk+1,p1( (J1.p1),(j2,p2) ) (]27 Lk+1,p2 ) v ((j17p1)7 (j27p2)) 6155, tEAk
Let

j=N
w | [ {ixartt —
j=1
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be the quotient map. Define
F:M' — X by F([5,1]) = fi(@ra(pri(D))-

This map is well-defined by (3.3) and continuous by the Pasting Lemma. Let M be the complement
in M’ of the set

( |_| {j}xAkH )

By continuity of F', compactness of M’, and the first equation in (2.8),

i=N =N
BdF|y = F(M' =M) = ] fi(@r1(per1(A i U k“ (3.6)
j=1 j=1
Since fjhnw is smooth for all j=1,... , N and all simplices ¢ ¢ A1 Bd F’M has dimension at

most k—1 by (3.6). Thus, F| 17 18 a pseudocycle equivalence between Fy|y, and Fi|ar,, provided
M is a smooth oriented manifold, F | ;7 is a smooth map, and

O(Flyr) = Filan, — Folu-
This is shown below.
(3) Let [,t] € M be any point. If t€Int A¥!, then

U; = 7({j} xInt AFF1)
is an open set about [, t], which is naturally homeomorphic to Int A1, If
.t = [J, ther1,p(1)]

for some (j,1) ECS))UCS), then

= 7 ({j} x (Int A" UInt AFH)
is an open neighborhood of [j, ¢] in M naturally homeomorphic to an open subset of RFf!xR*. If

s t] = 15 thr1p0 (1)) = [d20 thr1,p5 (22)]
with (j1,p1)# (jo, p2) and t; €Int AF, let
Uljrp),Gaps) = T ({71} % (Int AFL U Int Al;j'l)) U 7 ({j2} x (Int AF U Int AI;QH)).

Similarly to the case of Lemma 3.2, this is an open neighborhood of [j,¢] in M which is naturally
homeomorphic to an open subset of R¥*! by an orientation-preserving map. It overlaps smoothly
with the charts U; and Uy; ) above.

Finally, suppose
te A];f}r for some (p~,p") € &(3).
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By definition, there exist i=0,1, ((j1,p1), (J2,p2)) € Ds,, and a sequence
(90,50 )+ (40,88 )s - -+ (s B ), (G ) € Cs
satisfying (vi) of Lemma 2.11 such that
G,p~p") = (G, 5,0 B5) for some r=0,1,...,r
By (2.24)-(2.27), this sequence (up to reflection) depends only on j and {p~,p™}. Let

l=r
. ~ (7 k+1
U(j1,p1)7(j2,p2) - U W(]ZXUPZ o )
=0

This is a neighborhood of [j,¢] in M. For each [=1,...,r, define 7,€S;_; by

Tz o4 ) (55— Ol —1 4y = Uy = -1 o7
(]lflvplfl)»(]lapl ) 7Lk+1,ﬁ; (Pl ) — 77'(” 1 pl DG l’ﬁf)Lk+lyﬁf (Pl )

(3.7)

=1l -1 =— yOT]
ko )
s k+1,151+71(pl_1)

the last equality holds by (2.27). We define a linear map
zﬂl:CH( kl;—7bkﬁ+v{eq Q#pl }) — RFFI=RF1xC by
mi(r—1)/(r mi(r+1-0)/(r
wl(bkyﬁ;) _ (0,6 i( )/( +1))’ wl(bk,ﬁl*) — (0,6 i(r+1-1)/( +1))’
wloLk+1(ﬁ7pl+) idAk—l 0T7T10...0T].
Then, by (2.27),
~1 _
{Wo%ﬂ,ﬁf}( k1,57 (pz ) = {¢1710Lk+1,ﬁl 1}( kL5 (qu))
_ -1 -
= 1o YOGt 0Gom) ey @) (3.8)
~ ~ -1 ~

= 1ot oGt )G 3 (¢ w1 ).

On the other hand, by (2.1) used twice and (3.7),

o ~— O — ~ = (¢] o = (¢} o (¢}
VU1 © Ut ) T VIt a) T VL G ) O T
Fl

= V10t gt Ok, g ) T (3.9)

= V-1t O TGt ). Gosr) “k,L;jLﬁf(ﬁ)'
By (3.8), (3.9), and linearity of ¢;_; and ¢,
VLo g = Vim0 gt O TGt )Gy L b

Thus, by (2.2), the maps 1); induce a well-defined homeomorphism

Lk Uj1,p1)7(j2,p2) — P, where
r+1 b1 il
P= {Zt ep+2tl (0,e™/ Y ¢ >0V p, §,>0VI; thJerz:l} C RF1xC = RFHL
p=0 =0
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Note that P is an open subset of RF xR*.

The chart (U ), %) on M intersects

J1,p1),(52:p2

U-

i UGesyy: and U

B )
with the overlap map equal to the restriction of the diffeomorphism );, with /=0, r in the last two
cases, to

Int Ak+1ﬁU{€f1~+, (Int AMHUInt A Y NU**L - and  (Int AFHUInt A¥FY) 0 Uﬁrﬂ
JZ

Py sP; Po Po »Po r DPr sPr

respectively. It also intersects the open sets U( with [=1,...,r. The overlap map in

this case is the diffeomorphism

Ji—1.B1-1),(Gu,B1)°

7 ({Ji—1} % ((Tnt A+ U Tnt A’““ )NUEE ) U ({5} % ((Int AR U Ing Ak“)mUlf_*L))

1—1 Pi_1Pr—1 by Py 5Py
I+1 k—1 I+1
1-U 1 g
—>{Zt ep—i-Ztl/ 0, emi(rH1=1)/(r+ )):tp>0Vp; t; >0, tj41>0; th—i— Ztl’zl}
I'=l-1 p=0 I'=l—1

induced by ¢;—1 and v¢;. The open set U(j, ) (jo,p.) does not intersect any of the other charts

described above. Thus, M is a smooth oriented manifold with boundary.

(4) For the same reasons as in the proof of Lemma 3.2, the function F is smooth on the open sets

Uj, Ugrpys and UGip))Gows)  J =100 N, (7".pyecPucth, (1. p1), (J2,p2)) €Ds,

defined above. If i=0,1 and ((j1,p1), (J2,p2)) EDSZ, F is also smooth on Uiy p1),(a,pe) DECAUSE it

is smooth on 7 (j; x UkH) and 7(j; x UF_JF;JF) with j;, 5, ,p; as in (3) above, and all its derivatives

in the directions normal to
7 (i % A’;l;tl) < 7 (i % Ugjl) and 7 (j; A’ff}) C 7 (jix UML)
vanish by Lemma 2.1. Thus, the restriction of F to M is smooth.

(5) For i=0, 1, define

j=Ni j=N
/ii:MZ'EMiI—W<|_|{j}><Y>—>MEM,—7~i’<|_| j}XA?’é) by

j=1 Jj=1

Hi([jv t]) = DZ(J) Lk-i—l,p,(j ) ]

To see that this map is well-defined, suppose

[,8] = [J1, b (81)] = [z, thops (£2)] for some  ((j1,p1), (j2,p2)) €Ds,, t1,t2€Int AR

By definition of the equivalence relation in the proof of Lemma 3.2,
B = Ti((rpn). (2.2 (£2): (3.10)

28



On the other hand, by definition of the equivalence relation in (2) above and (2.4),

-1, LkH,ﬁltl(7:(3171757,1),(31,13[)7—’67(13[,13?)(t))] = [, e (7 ,(ﬁ;,ﬁf)(t))]
= 3 tpr g (B)] v tEA%IW(ﬁZ_)j (3.11)
where (ji,p; , ;) are as in (3) above. By (3.11) and (2.25),
[507 Y15t (Tk,(pg,pg)LRHS(t2))] = [»;rv Ukt 1,5, (T(3,2) bk p2 (t2))] (3.12)

= [Gi(32)s tht1.5:Gia) (Fli o) oo (£2)) ]

where (s denotes the right-hand side of (2.28). Finally, by (2.24), (2.4), (3.10), (2.28), and (3.12),

[ji (j1)7 Lk+1,5:(j1) (%(i,ﬁ)Lk,Pl (tl))] = [307 [’k+171§a (%(i,ﬁ)bk,pl (tl))]
= (505 1 gt (Tt ) F60) s T (G 1), (o)) (£2))]
= [5i(32)s tht1,5, (o) (P o) oo (£2)) ]

Thus, the map x; is well-defined.

As can be seen from its restrictions to the individual simplices, the map x; is a diffeomorphism
onto the union of components of the boundary of M given

UrGx @y =agh)).
(j.p)ect?

By the second equation in (2.23), kg is orientation-reversing, while k; is orientation-preserving.
Thus, .
oM ~ M1 — Mo,

with the isomorphism given by rolUk;. Furthermore, by (3.2), F;|u;, = Fok; for i=0,1. Thus,
O(F i) = Fila, — Foly,s

as claimed.

3.2 From Pseudocycles to Integral Cycles

In this subsection, we prove

Proposition 3.4 If X is a smooth manifold, there exists a homomorphism
O,: Ho(X)— Hi(X;Z),

which is natural with respect to smooth maps.

Lemma 3.5 Every k-pseudocycle determines a class in Hyp(X;7Z).
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Proof: (1) Suppose h: M — X is a k-pseudocycle and f: N — X a smooth map such that
dimN = k-2 and Bdh C Im f.
By Proposition 2.2, there exists an open neighborhood U of Bd h in X such that
H(U;Z)=0 Vi > k—2.

Let K =M —h~(U). Since the closure of h(M) is compact in X, K is a compact subset of M by
definition of Bd h. Let V' be an open neighborhood of K in M such that V' is a compact manifold
with boundary. It inherits an orientation from the orientation of M and thus defines a homology

[V] € H(V,BdV;Z).

Put

[h] = ha([V]) € He(X,U; Z) = Hp(X; Z), (3.13)

where

hi: Hy(V,BdV;Z)— Hy(X,U; Z) (3.14)

is the homology homomorphism induced by h. The isomorphism in (3.13) is induced by inclusion.
It is an isomorphism by the assumption on the homology of U as follows from the long exact
sequence in homology for the pair (X, U).

(2) The homology class [h] is independent of the choice of V. Suppose V' is another choice such
that V. CV’. Choose a triangulation of V' extending some triangulation of (Bd V') [J(Bd V’); such
a triangulation exists by Section 16 in [Mu]. The cycles

he([V]), ha([V']) € Hi(X, U Z)
then differ by singular simplices lying in U; see discussion at the end of Subsection 2.3. Thus,

hae([V']) = ha([V]) € Hi(X, U Z2).

(3) The cycle [h] is also independent of the choice of U. Suppose U’ CU is another choice. By (2),
it can be assumed that V' and V' chosen as in (1) are the same. Since the isomorphism in (3.13)
is the composite of isomorphisms

Hy(X:Z) — Hy(X, U Z) — Hy(X,U;Z)
induced by inclusions and the homomorphism (3.14) is the composition
Hy(V,BdV;Z) — Hy(X,U"Z) — Hy(X,U;Z),

the homology classes obtained in Hy(X;Z) from U and U’ are equal. Finally, if U and U’ are two
arbitrary choices of open sets in (1), by Proposition 2.2 there exists a third choice U” CUNU".

Lemma 3.6 Equivalent k-pseudocycles determine the same class in Hy(X,Z).
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Proof: Suppose h; : M; — X, i=0, 1, are two equivalent k-pseudocycles and h: M— X is an
equivalence between them. In particular, M is oriented,

OM = M, — My, and  hly, = hi
Let U be an open neighborhood of Bd h in X such that
H(U;Z)=0 YI>k-1.
Let U; be an open neighborhood of Bd h; CBdh in U such that
H|(U;Z) =0 ViI>k-2,

as provided by Proposition 2.2. Let V; C M; be a choice of an open set as in (1) of the proof of
Lemma 3.5. For i=0, 1, choose a triangulation of M; that extends a triangulation of BdV;. Extend
these two triangulations to a triangulation T'= (K, ) of M. Let K be a finite sub-complex of K
such that

Vi CA(K])  and B —hN(0) € Int |K]).

Such a subcomplex exists because h(M) is a pre-compact subset of X and thus M —h~1(U) is a
compact subset of M. Put

Ki={oeK:n(lo)cV;}  for i=0,1.

By the proof of Lemma 3.5, (Kj, ﬁoﬁ“Ki‘) determines the homology class [h;] € Hi(X,U;; Z). Let
[h}] denote its image in Hy(X,U;Z) under the homomorphism induced by inclusion. The above
assumptions on K imply that

6(Kaﬁoﬁ|K) = (Klvﬁoﬁ’Kl) - (K07;LO77|K0)

in S(M,U). Thus, 3
[ho] =[] € Hi(X, U Z),

and this class lies in the image of the homomorphism
Hy(X;Z) — Hy(X,U;7Z) (3.15)
induced by inclusion. This map is equal to the composites

Hy(X;Z) — Hp(X,Up; Z) — Hp(X,U;Z)  and
Hy(X;Z) — Hp(X,U1; Z) — Hp(X,U; 7).

Since Hy,(U;Z)=0, the homomorphism (3.15) is injective. Thus, [ho] and [h1] come from the same
element of Hy(X;7Z).
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3.3 Isomorphism of Homology Theories
In this subsection we conclude the proof of Theorem 1.1.

Lemma 3.7 If X is a smooth manifold, the composition
O, 0V, H(X;Z) — H«(X) — H(X;Z)

is the identity map on H.(X;Z).
Proof: Suppose

N

{s} =D {fi} € Su(X)

j=1

is a cycle and F': M — X is a pseudocycle corresponding to s via the construction of Lemma 3.2.

Recall that M is the complement of the (k—2)-simplices in a compact space M’ and F is the
restriction of a continuous map F’: M’ — X induced by the maps

fiowr: AF — X, j=1,...,N.
Since ¢y, is homotopic to the identity on A¥, with boundary fixed,
fio vk — fj € 0Sk41(X) vVj=1,...,N. (3.16)
Let U be a neighborhood of Bd F' such that
H)(U;Z)=0 ViIi>k-2.

Put K =M — f~Y(U). Let V be a pre-compact neighborhood of K such that (V,0V) is a smooth
manifold with boundary. Choose a triangulation T'= (K, n) of (V,0V) such that every k-simplex
of T is contained in a set of the form 7({j} x A¥), where 7 is as in the proof of Lemma 3.2. Put

K;={ceK: n(U)CW({j}XAk)}, K;Op ={o€K;:dimo = k}.

Let Tj = (f(j,nj) be a triangulation of a subset of A* that along with K gives a triangulation
of AF. Put . .
K = {o€K;: dimo = k}.
By definition of T, 3
fiovr(nj(0)) C U Vo e K™ (3.17)
Furthermore, by (3.16)

{s}= > {fjovxonols}

oEKtop

N N - (3.18)
=3 > Afjovkonoloy +> > {fjopreiljolst  mod dSki1(X),

7j=1 UEK;.OP j=1 Uef(;op

since subdivisions of cycles do not change the homology class. By the proof of Lemma 3.5, the first
sum on the right-hand side of (3.18) represents [F] in Si(X,U). By (3.17), the second sum lies in
Si(U). Since the sum of the two terms is a cycle in Si(X), it must represent [F] in Sk(X). Thus,

{F} = {s} € Hx(X;2),

and the claim follows.

32



Lemma 3.8 If X is a smooth manifold, the homomorphism ®,.: H.(X)— H.(X;Z) is injective.

Proof: (1) Suppose a k-pseudocycle h : M’ — X determines the zero homology class. It can
be assumed that k> 1; otherwise, there is nothing to prove. Let {Ui}zl be a sequence of open
pre-compact neighborhoods of Bd A in X such that

Uz'+1 CUi, ﬂUi:Bdh, and HZ(UZ';Z):O Vi>k-2.
1=1

Existence of such a collection follows from Proposition 2.2 and metrizability of any manifold. Let
{Vi}zl be a corresponding collection of open sets in M’ as in (1) of the proof of Lemma 3.5. It can
be assumed that V; C V;11. Choose a triangulation T'= (K, n) of M’ that extends a triangulation

of U BdV;. Let
=1

Ktop — {UEK: dima:k}, Cp = {(a,p): oe KP, p:O,l,...,k:}.

For each o € K%P, let
lo: AF — o C |K| c R®

be a linear map such that nol, is orientation-preserving. Put

Jo=honol, YV oc K™P and
Dy = {((Ulﬁpl)a (J2ap2))ecnxcn : (o1, p1) #(02,p2), oy (A,;J:laz(A]IL)}‘

For each ((o1,p1), (02,p2)) €D,;, define
T(o1,p1)s(02p2) € Sk-1 by Loy Olk,py = loy Olke,py © T(a1,p1),(02,p2)
Since K is an oriented simplicial complex,
D, C C,;xCy and T7: Dy — Sp1

satisfy (i)-(iii) of Lemma 2.10. Furthermore, M’ is the topological space corresponding to (Cy, Dy, T)
via the construction of Lemma 3.2 and A is the continuous map described by

h’W(UXAk) = fo-

As in the proof of Lemma 3.2, let M be the complement of the (k—2)-simplices in M’; the
pseudocycles h and h|ys are equivalent. Since (. is homotopic to the identity on AF with boundary
fixed, the pseudocycle h|js is in turn equivalent to the pseudocycle F|ys, where as in the proof of
Lemma 3.2

F:M — X, Fonol, = fyopy.

(2) For each i>1, let

K = {oe K*P: (o) CVi}, Coi = {(0,p) €Cy: 0 €K}, and Dy = DyN(Cri X Coi)-
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By construction of [h], for every i> 1, there exists a singular chain

N;
si= > fij € S(Ui)
=1

such that

> {nonol}+{si}

oEK[P
is a cycle in Sg(X) representing [h]. Similarly to Lemma 2.10, there exist a symmetric subset
D; C (CpylUCs;) % (CpuiUCs;)
disjoint from the diagonal and a map
7i: Di — Sk—1

such that
(1) Dnﬁ CDZ and TZ"DUJ :T’Dn,z7
(ii) the projection map D; — C,;;LICs; on either coordinate is a bijection;
(iii) for all ((j1,p1), (J2,p2)) €D,

_ -~ —1 . — f . . .
T(j2:p2),(71:21) = T(j1,p1),(j2p2)’ figa © thpy = fijja © Uhepr © T(j1 1),z op2)»
i . . — _(_1\p1tDp2
and sigh T(lepl)z(]Q:pQ) - ( 1) ’

where f; » = f, for all O'EK,;EOP.
(3) By (2), for each i>2

Z {h ono lo’} + {81} — {Si—l} € gk(Ui—l)

top _ g-top
oeK;T =K

is a cycle. Since Hy(U;—1;7)=0, it must be a boundary. If :=1, this conclusion is still true with
Up=X, K, P — () and sy =0, since [h] =0 by assumption. Therefore, similarly to Lemma 2.11,
there exist

N;
EZ i € Skr1(Uiz1), éi(o) Céi£|_|05i,7

a symmetric subset D; CC; xC; disjoint from the diagonal, and maps

71 Dj — S, ((G1,11); (J2, p2)) — Ti(1,01):(j2.p2))
(Gispi): KPPU{L, ..., N;} — éfo), and 7 K;°PU{1,...,N;} — Sk, j — i

such th%t 3
() Di CDis1, Tialp, =Tis and (i1, Pit1s Ti1)| ror = (s Dis i) roe;
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5(0),

(ii) the projection D; —C; on either coordinate is a bijection onto the complement of C;
(iii) for all ((j1,p1), (J2,p2)) €DiN(Cs;, X Cs,,),

Ti (o). (101) = Ti(Grpn)Gopa))r iz © et Lps = fir gt © Ut Lpn © T ((G1.p1), (o))

and  SIgNT; (1), (japr)) = —(— 1P

. t t
(iv) for all 0 € K;°P — K,
fijigy © i) © Ty = fo - and sign iy = —(=1)"0;
(v) (ji, ps) is a bijection onto CNZ(O) and 3i|Ktop7Ktop is injective into {1,..., N;};
1 i—1
(vi) for all ((j1,p1), (J2,p2)) € Dy, there exist
(joaﬁ(]) (jovpo)a" (]T’?pr) (]Tapr) Eé’i s.t.
(jOap() ,po (J ]1 , Di ]1 Lk+171567(i7j1)(p1))7
(.jﬁﬁ;:pr (.] .72 Lk_t,_l,pr (i,jz)(pQ)aﬁi(jQ))7
((57"—17p+ ) (5 )) ED Vr/:17"'7r7

- N~ i -1 =+ I
k+1,p, l(pr,,l) —Tu((z./,l,ﬁ:,l),(jrf,ﬁ;))LkH,ﬁ;(pr/) vr=1...,m

T(,51) be,p1 Ta,((j1,01) (52,p2))

= (T ) TG Grar ) - (Tt st i Gt G ) T ) TG052)) -
For each ¢>1 and j=1,... ,Nl-, denote by
Ej {01, k+1} x {0,1,... k+1}
the set of pairs (p~,p™) such that
(G0~ 0") = (o, 5,0, B;0)
for the sequence of (vi) above beginning with some (ji,p1) €C, and some r’. Let

AEFL C AkH
J

be the union of the (k—2)-skeleton of A*! with all (k—1)-simplices in A**! that are not of the

Ak+1

form A" | for some (p~,pt)€E; ;.

(4) Put

- (|_| |_|{z'}><{j}><Ak+1>/ ~,  where
i=1j=1
(i1, 415 bk Fis(Grp), o)) (8)) ~ (232, thpn (1)) Y ((G1,21), (G2, 12)) €DiN(Cs,, X Cs,), tEAP,
Let )
oo N;
7 |_| |_|{z’}><{j}><A’“rl —

i=1j=1
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be the quotient map. Define

F:M —X by F([i,5,1]) = fij(@rr1(ops1())),

where @1 and @i, are the self-maps of A1 provided by Lemma 2.1. Similarly to the proof of
Lemma 3.3, this map is well-defined and continuous. Since the image of

o N,
L] | JHid () < b
i=2 j=1

under F is contained in the pre-compact subset Uy of X, F (M ') is a pre-compact subset of X as well.

Let M be the complement in M’ of the set

gt

Similarly to the proof of Lemma 3.3, M is a smooth manifold, F|M is a smooth map, and Bd F|M
is of dimension at most k—1. Furthermore, there is a well-defined map

8

i=Ni
L] {xakh).
j=1

i=1

Ko: M — M
which is an orientation-reversing diffeomorphism onto &M such that
Fly = F o k.

Thus, )
8(F’]\~4) = _F|M7

i.e. F|p and h represent the zero element in Hy(M).
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