COMPLETION OF KATZ-QIN-RUAN'S ENUMERATION OF GENUS-TWO PLANE CURVES

ALEKSEY ZINGER

Abstract

We give a formula for the number of genus-two fixed-complex-structure degree- d plane curves passing through $3 d-2$ points in general position. This is achieved by completing Katz-Qin-Ruan's approach. This paper's formula agrees with the one obtained by the author in a completely different way.

1. Introduction

In the past decade, significant progress has been in enumerative algebraic geometry based on ideas of Gromov's compactness and quantum cohomology. In particular, $[\mathrm{KM}]$ and $[\mathrm{RT}]$ derived a recursive formula for the number N_{d} of rational degree- d plane curves passing through (3d-1) points in general position. In [I] and [P], a simple relation between the number $N_{1, d}$ of fixed- j-invariant elliptic degree- d plane curves passing through $(3 d-1)$ points and the number N_{d} is obtained. The approaches in the two papers are drastically different. In [P], the number $N_{1, d}$ is computed by a beautiful degeneration argument. In [I], the number $N_{1, d}$ is compared to the corresponding symplectic invariant as defined in $[\mathrm{RT}]$. Like the methods of $[\mathrm{KM}]$ and $[\mathrm{RT}]$ in the genus-zero case, the approach of $[\mathrm{I}]$ applies to all projective spaces.

The subject of this paper is the number $N_{2, d}$ of genus-two degree- d plane curves that have a fixed complex structure on the normalization and pass through ($3 d-2$) points in general position. Using a degeneration argument similar to $[\mathrm{P}],[\mathrm{KQR}]$ express $N_{2, d}$ in terms of the numbers $N_{d^{\prime}}$ with $d^{\prime} \leq d$. Recently the author extended the approach of $[\mathrm{I}]$ to obtain formulas for the genus-two numbers in \mathbb{P}^{2} and \mathbb{P}^{3}. However, the formulas for $N_{2, d}$ in $[\mathrm{KQR}]$ and $[\mathrm{Z}]$ are not equivalent. The relation between the two is

$$
N_{2, d}^{Z}=6\left(N_{2, d}^{K Q R}+T_{d}\right),
$$

where T_{d} is the number of degree- d tacnodal rational plane curves passing through $(3 d-2)$ points. The formulas in $[\mathrm{Z}]$ satisfy all the required classical checks that the author is aware of. In particular, $N_{2,4}^{Z}$ is the same as the corresponding number for three points and seven lines in \mathbb{P}^{3}. The author then explored the details of the argument $[\mathrm{KQR}]$ and found three errors, one of which is significant. They are described briefly in the paragraph following the table and in more detail in Section 3. Once these errors are corrected, the formula of $[Z]$ is recovered:

Theorem 1.1.

$$
N_{2, d}=3\left(d^{2}-1\right) N_{d}+\frac{1}{2} \sum_{d_{1}+d_{2}=d}\left(d_{1}^{2} d_{2}^{2}+28-16 \frac{9 d_{1} d_{2}-1}{3 d-2}\right)\binom{3 d-2}{3 d_{1}-1} d_{1} d_{2} N_{d_{1}} N_{d_{2}}
$$

[^0]The table below gives the numbers $N_{2, d}$ for small values of d, computed directly from Theorem 1.1. The first three values have long been known to be zero. We use $N_{1}=N_{2}=1, N_{3}=12, N_{4}=620$, $N_{5}=87,304, N_{6}=26,312,976$, and $N_{7}=14,616,808,192$.

d	1	2	3	4	5	6	7
$N_{2, d}$	0	0	0	14,400	$6,350,400$	$3,931,128,000$	$3,718,909,209,600$

The first step in the proof of Theorem 1.1 via the recipe of $[\mathrm{KQR}]$ is Lemma 2.1, which allows one to reduce the computation to a very degenerate genus-two curve. The relevant intersection number is then computed by Propositions 3.1-3.4. Propositions 3.1 and 3.3 are proved in [KQR]. Proposition 3.4 is implied by Remark 3.12 in $[\mathrm{KQR}]$. However, this remark is stated without a proof and contradicts Proposition 3.2. This is the significant error in $[\mathrm{KQR}]$. A minor error is the statement about boundary relations at the beginning of the proof of Lemma 2.18. A posteriori, it turns out that this statement is in fact correct, at least in the relevant cases, but it does not follow from the argument given. The remaining error is dividing by an extra factor of six when computing contributions to the intersection number.

Since our goal is to correct the computation in $[\mathrm{KQR}]$, we attempt to follow their notation as closely as possible. The outline of this paper is as follows. We first review the notation and setup in [KQR]. In Section 3, four propositions that imply Theorem 1.1 are stated. The last two sections prove the two propositions not proved in $[\mathrm{KQR}]$.

The author would like to thank T. Mrowka for many discussions and encouragement. He is also grateful to A. J. de Jong, J. Starr, and R. Vakil for their help with algebraic geometry. In particular, it was A. J. de Jong's idea to approach Corollary 5.2 via the family of curves of Lemma 5.1. Finally, the author thanks R. Pandharipande for explaining details of his argument in [P] and Z. Qin for careful consideration of the issues with $[\mathrm{KQR}]$ raised by the author.

2. Review of Notation and Setup

Denote by $\overline{\mathfrak{M}}_{2}$ the Deligne-Mumford moduli space of stable genus-two curves. If $d \geq 3$, let

$$
\overline{\mathfrak{M}}_{2}(d) \equiv \overline{\mathfrak{M}}_{2,3 d-2}\left(\mathbb{P}^{2}, d \ell\right)
$$

be Kontsevich's moduli space of stable maps from (3d-2)-pointed genus-two curves to \mathbb{P}^{2} of degree d, where $\ell \in H_{2}\left(\mathbb{P}^{2} ; \mathbb{Z}\right)$ is the homology class of a line. Let $\pi: \overline{\mathfrak{M}}_{2}(d) \longrightarrow \overline{\mathfrak{M}}_{2}$ be the forgetful map. Denote by $W_{2}(d) \subset \overline{\mathfrak{M}}_{2}(d)$ the subset of stable maps with irreducible domains and by $\bar{W}_{2}(d)$ the closure of $W_{2}(d)$ in $\overline{\mathfrak{M}}_{2}(d)$.

Every element of $\overline{\mathfrak{M}}_{2}(d)$ can be written as $\left[\mu:\left(D, p_{1}, \ldots, p_{3 d-2}\right)\right]$, where D is a prestable genus-two curve, $\mu: D \longrightarrow \mathbb{P}^{2}$ is a (holomorphic) map, and $p_{1}, \ldots, p_{3 d-2} \in D$ are the marked points. There are natural evaluation maps

$$
e_{i}: \overline{\mathfrak{M}}_{2}(d) \longrightarrow \mathbb{P}^{2}, \quad e_{i}\left(\left[\mu:\left(D, p_{1}, \ldots, p_{3 d-2}\right)\right]\right)=\mu\left(p_{i}\right), \quad i=1, \ldots, 3 d-2
$$

Let $\mathcal{L}_{i}=e_{i}^{*}\left(\mathcal{O}_{\mathbb{P}^{2}}(1)\right)$ and

$$
Z=\left[\bar{W}_{2}(d)\right] \cap c_{1}^{2}\left(\mathcal{L}_{1}\right) \cap \ldots \cap c_{1}^{2}\left(\mathcal{L}_{3 d-2}\right) \in H_{6}\left(\bar{W}_{2}(d)\right) .
$$

If $q_{1}, \ldots, q_{3 d-2}$ are points in \mathbb{P}^{2} in general position, then $\left\{e_{1} \times \ldots \times e_{3 d-2}\right\}^{-1}\left(q_{1} \times \ldots \times q_{3 d-2}\right)$ is a representative for Z; see $[\mathrm{KQR}]$ for details.

Lemma 2.1. For every $[C] \in \overline{\mathfrak{M}}_{2}$,

$$
N_{2, d}=\left[\pi^{-1}(C)\right] \cdot Z,
$$

where $\left[\pi^{-1}(C)\right] \cdot Z$ is the intersection pairing of $\pi^{-1}([C])$ and Z in $\bar{W}_{2}(d)$.
This is a special case of Lemma 2.5 in [KQR]. In particular, if C_{0} consists of two rational components identified at 3 pairs of points, i.e.

then $N_{2, d}=\left[\pi^{-1}\left(C_{0}\right)\right] \cdot Z$. The space $\pi^{-1}\left(C_{0}\right) \subset \overline{\mathfrak{M}}_{2}(d)$ can be written as the disjoint union $\bigsqcup W_{T}$, where W_{T} is the space of stable maps $\left[\mu:\left(D, p_{1}, \ldots, p_{3 d-2}\right)\right]$, such that the domain D is the union of R_{1}, R_{2}, and trees T_{1}, \ldots, T_{s} of \mathbb{P}^{1} in a way encoded by T. The stable reduction of D must be C_{0}. See Figure 1 below for some examples.

In order to compute $\left[\pi^{-1}\left(C_{0}\right)\right] \cdot Z,[\mathrm{KQR}]$ consider the intersection of Z with every nonempty space W_{T}. It is fairly easy to show that $Z \cap W_{T}$ is empty for all but a small number of trees T, independent of d. If $\left[\mu:\left(D, p_{1}, \ldots, p_{3 d-2}\right)\right] \in Z \cap W_{T}$, the map $\mu: D \longrightarrow \mathbb{P}^{2}$ has degree d and passes through $3 d-2$ points in \mathbb{P}^{2} in general position. Thus, if D_{1}, \ldots, D_{m} are the irreducible components of D to which μ restricts non-trivially, $m=1$ or $m=2$. Then D can have at most two components, other than R_{1}, R_{2}, on which the map μ is constant.

The complete list of possibilities for D, up to equivalence, is given in Figure 1. Denote by $C_{i j}$ the curve as in the i th row and j th column of Figure 1. Similarly, denote by $W_{i j}$ be the space of stable maps with domain $C_{i j}$ and a distribution of the degree d between the components of $C_{i j}$ such that the image of some stable map in $W_{i j}$ passes through ($3 d-2$) points. We clarify this statement in the relevant cases:
(1) if $\left[\mu:\left(D, p_{1}, \ldots, p_{3 d-2}\right)\right]$ lies in $W_{13}, W_{32}, W_{41}, W_{43}$, or $W_{5 j}$, the degree of $\mu \mid D_{i}$ is $d_{i} \neq 0$, and the restriction of μ to all other components is constant;
(2) if $\left[\mu:\left(D, p_{1}, \ldots, p_{3 d-2}\right)\right]$ lies in W_{24}, W_{31}, or W_{42}, the degree of $\mu \mid D_{1}$ is $d_{1} \neq 0, \mu \mid R_{i}$ is constant, and in the case of W_{42} the restriction of μ to the vertical component (in the diagram) is constant.
Furthermore, for stability reasons, every component of $C_{i j}$, on which μ is constant and which does not contain three singular point of $C_{i j}$, must contain one of the marked points p_{i}.

3. Computation of the Intersection Number

Proposition 3.1. The contribution to $\left[\pi^{-1}\left(C_{0}\right)\right] \cdot Z$ from W_{11} is

$$
\frac{3(d-1)(d-2)(d-3)}{d} N_{d}+\frac{1}{2} \sum_{d_{1}+d_{2}=d}\left(d_{1}^{2} d_{2}^{2}-6 d_{1} d_{2}-4+18 \frac{d_{1} d_{2}}{d}\right)\binom{3 d-2}{3 d_{1}-1} d_{1} d_{2} N_{d_{1}} N_{d_{2}} .
$$

Figure 1
This proposition is essentially proved in [KQR]; see equation (2.9) and Lemmas 2.12, 2.16, and 3.2 in $[\mathrm{KQR}]$. The above number is six times the number given by Theorem 1.1 of [KQR]. It is easy to see that the authors divide by six an extra time. For example, in Lemma 2.12, one should take ordered triplets of nodes, i.e. $\binom{d_{1} d_{2}}{3}$ should be replaced by

$$
d_{1} d_{2}\left(d_{1} d_{2}-1\right)\left(d_{1} d_{2}-2\right),
$$

since they are dividing by the order of $\operatorname{Aut}\left(C_{0}\right)$. Similarly, the number in Lemma 2.16 should be replaced by six times itself.

Proposition 3.2. The contribution to $\left[\pi^{-1}\left(C_{0}\right)\right] \cdot Z$ from W_{13} is

$$
\frac{6\left(3 d^{2}-12 d+9\right) n_{d}}{d}+3 \sum_{d_{1}+d_{2}=d}\left(d_{1} d_{2}+4-9 \frac{d_{1} d_{2}}{d}\right)\binom{3 d-2}{3 d_{1}-1} d_{1} d_{2} N_{d_{1}} N_{d_{2}} .
$$

We prove this proposition in Section 5. What we show is that $\bar{W}_{2}(d) \cap W_{13}$ is the space of all stable maps $\left[\mu:\left(D, p_{1}, \ldots, p_{3 d-2}\right)\right]$ such that $\mu(D)$ is a tacnodal curve in \mathbb{P}^{2}, and μ maps the two nodes of D to the same tacnode of $\mu(D)$. The number of Proposition 3.2 is $6 T_{d}$. Note that the number T_{d} is well-known; see equation (1.2) in [DH] and Subsection 3.2 in [V1].

Proposition 3.3. If $(i, j) \in\{(1,2),(1,4),(2,1),(2,2),(2,3),(3,3),(3,4),(4,4)\}, Z \cap W_{i j}=\emptyset$. Thus, $W_{i j}$ does not contribute to $\left[\pi^{-1}\left(C_{0}\right)\right] \cdot Z$.

Most of this proposition is proved by Lemmas 2.18 and 3.7 of $[\mathrm{KQR}]$. The cases $(i, j)=(3,3)$ and $(i, j)=(3,4)$ can be deduced from the proofs of these two lemmas. The modification required is similar
to the extension of the main part of the proof of Lemma 1 in $[\mathrm{P}]$ to cases of multiple blowups; see also the proof of Lemma 4.4 below. Note that since Lemma 3.7 of $[\mathrm{KQR}]$ does not apply to the remaining possibilities for (i, j), neither does Lemma 2.18 of $[\mathrm{KQR}]$.

Proposition 3.4. If $(i, j) \in\{(2,4),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4)\}$, $Z \cap W_{i j}=\emptyset$. Thus, $W_{i j}$ does not contribute to $\left[\pi^{-1}\left(C_{0}\right)\right] \cdot Z$.

We prove this proposition in the next section. The number in Theorem 1.1 is the sum of the numbers in Propositions 3.1 and 3.2. However, one has to make use of Kontsevich's recursion to obtain the formula in Theorem 1.1:

$$
N_{d}=\frac{1}{6(d-1)} \sum_{d_{1}+d_{2}=d}\left(d_{1} d_{2}-2 \frac{\left(d_{1}-d_{2}\right)^{2}}{3 d-2}\right)\binom{3 d-2}{3 d_{1}-1} d_{1} d_{2} N_{d_{1}} N_{d_{2}}
$$

4. Proof of Proposition 3.4

4.1. The Semi-Standard Cases. We prove Proposition 3.4 by exhibiting conditions that stable maps in $\bar{W}_{2}(d) \cap W_{i j}$ must satisfy. This approach is analogous to methods in [P] and [KQR], but we make no use of the spaces X and Y of these two papers. It should be possible to describe the space $\bar{W}_{2}(d) \cap \pi^{-1}\left(C_{0}\right) \subset \overline{\mathfrak{M}}_{2}(d)$ explicitly by using arguments as in this section to obtain necessary conditions for an element of $\pi^{-1}\left(C_{0}\right)$ to be in $\bar{W}_{2}(d)$ and by applying methods similar to the next section to show that these conditions are sufficient. However, much less is needed to prove Theorem 1.1.

Suppose $\left[\mu:\left(D, p_{1}, \ldots, p_{3 d-2}\right)\right] \in \bar{W}_{2}(g) \cap W_{i j}$. Then by definition of stable-map convergence, there exist
(T1) a one-parameter family of curves $\tilde{\eta}: \tilde{\mathcal{F}} \longrightarrow \Delta$ such that Δ is a neighborhood of 0 in $\mathbb{C}, \tilde{\mathcal{F}}$ is a smooth space, $\tilde{\eta}^{-1}(0)=D$, and $C_{t} \equiv \tilde{\eta}^{-1}(t)$ is a smooth genus-two curve for all $t \in \Delta^{*} \equiv \Delta-\{0\}$; (T2) a $\operatorname{map} \tilde{\mu}: \tilde{\mathcal{F}} \longrightarrow \mathbb{P}^{2}$ such that $\tilde{\mu} \mid \eta^{-1}(0)=\mu$.
In many cases, $\tilde{\mathcal{F}}$ can be obtained by a sequence of blowups from another smooth bundle $\eta: \mathcal{F} \longrightarrow \Delta$ of curves. This observation is used often in the proofs of the lemmas that follow.

Lemma 4.1. If $\left[\mu:\left(D, p_{1}, \ldots, p_{3 d-2}\right)\right] \in \bar{W}_{2}(d) \cap W_{24}$ and the degree of $\mu \mid D_{1}$ is $d, \mu(D)$ has a cusp at the image of the node of D_{1}.

Proof. (1) Let $\tilde{\eta}: \tilde{\mathcal{F}} \longrightarrow \Delta$ be a family as in (T1) above with central fiber $\tilde{C}_{0}=D$, and $\tilde{\mu}: \tilde{\mathcal{F}} \longrightarrow \mathbb{P}^{2}$ a map as in (T2). Then there exists another family $\eta: \mathcal{F} \longrightarrow \Delta$ as in (T1) such that the central fiber is C_{13} and $\tilde{\mathcal{F}}$ is the blowup of \mathcal{F} at a smooth point $p \in D_{1} \subset C_{13}$.
(2) Let $\psi \in H^{0}\left(C_{13} ; \omega_{C_{13}}\right)$ be an element such that $\psi \mid D_{1} \neq 0$. From the point of view of complex geometry, $H^{0}\left(C_{13} ; \omega_{C_{13}}\right)$ is the space harmonic (1,0)-forms on the three components of C_{13}, which have simple poles at the singular points with residues that add up to zero at each node. Thus, such an element exists. Let (t, w) be coordinates near $p \in \mathcal{F}$ such that w is the vertical coordinate, i.e. $d \eta \left\lvert\, \frac{\partial}{\partial w}=0\right.$. Then ψ extends to a family of elements $\psi_{t} \in H^{0}\left(C_{t} ; \omega_{C_{t}}\right)$ such that

$$
\begin{equation*}
\left.\psi_{t}\right|_{w}=a\left(1+o\left(1_{(t, w)}\right)\right) d w \tag{4.1}
\end{equation*}
$$

for some $a \in \mathbb{C}^{*}$.
(3) On a neighborhood of $D_{1}^{*} \subset D=C_{24}$, the complement of the node in D_{1}, we have local coordinates
$(t, z) \longrightarrow(t, w=t z,[1, z])$. Note that in these coordinates, (4.1) becomes

$$
\begin{equation*}
\left.\psi_{t}\right|_{z}=a t\left(1+o\left(1_{t}\right)\right) d z \tag{4.2}
\end{equation*}
$$

Let L_{1} and L_{2} be any two lines in general position in \mathbb{P}^{2}. In particular, we assume that they miss the image under μ of the node of D_{1}. Then for all $t \in \Delta$, sufficiently small,

$$
\begin{equation*}
\mu_{t}^{-1}\left(L_{i}\right)=\left\{z_{1}^{(i)}(t), \ldots, z_{d}^{(i)}(t)\right\} \subset C_{t} \quad \text { and } \quad z_{j}^{(i)}(t)=z_{j}^{(i)}(0)+o\left(1_{t}\right) \tag{4.3}
\end{equation*}
$$

where $\mu_{t}=\tilde{\mu} \mid C_{t}$. Since $\sum z_{j}^{(1)}(t)$ and $\sum z_{j}^{(2)}(t)$ are linearly equivalent divisors in C_{t},

$$
\begin{equation*}
\sum_{j=1}^{j=d} \int_{z_{j}^{(1)}(t)}^{z_{j}^{(2)}(t)} \psi_{t}=0 \quad \forall t \in \Delta^{*} \tag{4.4}
\end{equation*}
$$

where the line integrals are taken inside of the coordinate chart. Plugging (4.2) and (4.3) into (4.4) gives

$$
\begin{equation*}
a t \sum_{j=1}^{j=d}\left(z_{j}^{(2)}(0)-z_{j}^{(1)}(0)+o\left(1_{t}\right)\right)=0 \quad \forall t \in \Delta^{*} \tag{4.5}
\end{equation*}
$$

Dividing this equation by at and then taking the limit as $t \longrightarrow 0$, we conclude that

$$
\begin{equation*}
\sum_{j=1}^{j=d} z_{j}^{(1)}(0)=\sum_{j=1}^{j=d} z_{j}^{(2)}(0) \tag{4.6}
\end{equation*}
$$

Condition (4.6) can be explicitly interpreted as follows. Let $[u, v]$ be homogeneous coordinates on D_{1} such that $z=\frac{v}{u}$. Then a map $D_{1} \longrightarrow \mathbb{P}^{2}$ of degree- d corresponds to three homogeneous polynomials

$$
p_{i}=\sum_{j=0}^{j=d} p_{i j} u^{j} v^{d-j}
$$

Since equality (4.6) holds for a dense subset of lines in \mathbb{P}^{2}, there exists $K=K(\mu) \in \mathbb{P}^{1}$ such that

$$
\begin{gather*}
\frac{c_{0} p_{0, d-1}+c_{1} p_{1, d-1}+c_{2} p_{2, d-1}}{c_{0} p_{0, d}+c_{1} p_{1, d}+c_{2} p_{2, d}}=K \quad \forall\left(c_{0}, c_{1}, c_{2}\right) \in \mathbb{C}^{3}-\{0\} \Longrightarrow \\
\left(p_{0, d-1}, p_{1, d-1}, p_{2, d-1}\right)=K\left(p_{0, d}, p_{1, d}, p_{2, d}\right) \tag{4.7}
\end{gather*}
$$

Equation (4.7) imposes two linearly independent conditions on the map $\mu \mid D_{1}$ if $\mu \in \bar{W}_{2}(d) \cap W_{24}$. Geometrically, they mean that $\mu(D)$ has a cusp at the image of the node of D_{1}.

Corollary 4.2. If $\left[\mu:\left(D, p_{1}, \ldots, p_{3 d-2}\right)\right] \in Z \cap W_{24}$, the degree of $\mu \mid D_{1}$ is less than d.
Proof. Suppose the degree of $\mu \mid D_{1}$ is d. Then by Lemma 4.1, $\mu\left(D_{1}\right)$ has a cusp at the image of the node of D_{1}. Since the points $q_{1}, \ldots, q_{3 d-2}$ are in general position, $\mu\left(D_{1}\right)$ has one simple cusp and $\binom{d-1}{2}-1$ simple nodes. Let $\tilde{\mathcal{F}}$ and $\tilde{\mu}$ be as in the proof of Lemma 4.1. Then $\tilde{\mu}\left(C_{t}\right)$ converges to $\mu\left(D_{1}\right)$. By Lemma 2.4.1 or Example 3.2.2 in [V2], D_{1} must have an elliptic tail, i.e. the map $\tilde{\mu}: \tilde{\mathcal{F}} \longrightarrow \mathbb{P}^{2}$ cannot exist. In the given case, this can also be seen directly as follows. The image under μ_{t} of the intersection of C_{t} with the coordinate chart described in (3) of the proof of Lemma 4.1 has $\binom{d-1}{2}-1$ simple nodes, close to the simple nodes of $\mu\left(D_{1}\right)$. The complement of the coordinate chart in C_{t} is a genus two curve with a small coordinate neighborhood removed. Thus, it contributes at least 2 to the arithmetic genus of $\mu\left(C_{t}\right)$. This means that the arithmetic genus of $\mu\left(C_{t}\right)$ is at least $\binom{d-1}{2}+1$, instead of $\binom{d-1}{2}$.

Lemma 4.3. The image of every element $\left[\mu:\left(D, p_{1}, \ldots, p_{3 d-2}\right)\right] \in \bar{W}_{2}(d) \cap W_{43}$ has a cusp at $\mu\left(p_{i}\right)$ for some $i=1, \ldots, 3 d-2$. The same is true for every element of $\bar{W}_{2}(d) \cap W_{42}$ such that the degree of $\mu \mid D_{1}$ is d. Thus, $Z \cap W_{43}=\emptyset$, while for every element $\left[\mu:\left(D, p_{1}, \ldots, p_{3 d-2}\right)\right] \in Z \cap W_{42}$, the degree of $\mu \mid D_{1}$ is less thand.

Proof. (1) The proof of the first statement is nearly the same as the proof of Lemma 4.1. The only difference is that the central fiber of \mathcal{F} will be C_{32}.
(2) The family $\tilde{\mathcal{F}}$ of the second claim of this lemma is obtained from $\tilde{\mathcal{F}}$ of Lemma 4.1 by blowing up a smooth point of the exceptional divisor $D_{1} \subset C_{24}$. Thus, nearly the same argument as in Lemma 4.1 applies if the degree of $\mu \mid D_{1}$ is d; see $[\mathrm{P}]$ for an extension in an analogous situation.

Lemma 4.4. If $(i, j) \in\{(5,2),(5,4)\}$, the image of every element of $\bar{W}_{2}(d) \cap W_{i j}$ is a two-component rational cuspidal curve. The same is true for all $\left[\mu:\left(D, p_{1}, \ldots, p_{3 d-2}\right)\right] \in \bar{W}_{2}(d) \cap W_{42}$, such that the degree of $\mu \mid D_{1}$ is less than d. Thus, $Z \cap W_{i j}=\emptyset$ in all three cases.

Proof. (1) We first consider the case $\left[\mu:\left(D, p_{1}, \ldots, p_{3 d-2}\right)\right] \in \bar{W}_{2}(d) \cap W_{42}$ and the degree of $\mu \mid D_{1}$ is $d_{1}<d$. The case $d_{1}=d$ is considered in Lemma 4.3. The family $\tilde{\mathcal{F}} \longrightarrow \Delta$ corresponding to this case can be obtained as follows. We start with a family $\mathcal{F} \longrightarrow \Delta$ as in (2) of the proof of Lemma 4.1, blow it up at a smooth point $p \in D_{1} \subset C_{13}$, and then blow up the resulting space at a smooth point p_{1} of the new exceptional divisor $E \equiv D_{1} \subset C_{24}$. Denote the last exceptional divisor by E_{1}. We use coordinates (t, z) near E^{*} as before and coordinates $\left(t, z_{1}\right) \longrightarrow\left(t, z=p_{1}+t z_{1},\left[1, z_{1}\right]\right)$ near E_{1}^{*}. Then,

$$
\begin{gathered}
\left.\psi_{t}\right|_{z}=a t\left(1+o\left(1_{t}\right)\right) d z,\left.\quad \psi_{t}\right|_{z_{1}}=a t^{2}\left(1+o\left(1_{t}\right)\right) d z_{1} ; \\
\mu_{t}^{-1}\left(L_{i}\right)=\left\{z_{1,1}^{(i)}(t), \ldots, z_{1, d_{1}}^{(i)}(t), z_{d_{1}+1}^{(i)}(t), \ldots, z_{d}^{(i)}(t)\right\} \subset C_{t}, \quad \text { with } \\
z_{1, j}^{(i)}(t)=z_{1, j}^{(i)}(0)+o\left(1_{t}\right), \quad z_{j}^{(i)}(t)=z_{j}^{(i)}(0)+o\left(1_{t}\right) ; \\
\sum_{j=1}^{j=d_{1}} \int_{z_{1, j}^{(1)}(t)}^{z_{1, j}^{(2)}(t)} \psi_{t}+\sum_{j=d_{1}+1}^{j=d} \int_{z_{j}^{(1)}(t)}^{z_{j}^{(2)}(t)} \psi_{t}=0 \quad \forall t \in \Delta^{*}
\end{gathered}
$$

Each line integral is taken inside the corresponding coordinate chart. Proceeding as in the proof of Lemma 4.1, we obtain

$$
\begin{aligned}
a t^{2} \sum_{j=1}^{j=d_{1}}\left(z_{1, j}^{(1)}(0)-z_{1, j}^{(2)}(0)\right. & \left.+o\left(1_{t}\right)\right)+a t \sum_{j=d_{1}+1}^{j=d}\left(z_{j}^{(2)}(0)-z_{j}^{(1)}(0)+o\left(1_{t}\right)\right)=0 \quad \forall t \in \Delta^{*} \\
& \Longrightarrow \sum_{j=d_{1}+1}^{j=d} z_{j}^{(1)}(0)=\sum_{j=d_{1}+1}^{j=d} z_{j}^{(2)}(0)
\end{aligned}
$$

As before, the last identity implies that $\mu \mid E$ maps $z=\infty \in E$ to a cusp of $\mu(E)$.
(2) The argument in the case of W_{54} is the same, except we replace the family \mathcal{F} of Lemma 4.1 with the family \mathcal{F} of (1) of Lemma 4.3. Finally, the case of W_{52} simply involves an extra blowup at a smooth point as compared to the case of W_{42}.

Lemma 4.5. If $(i, j) \in\{(4,1),(5,1)\}$, the image of every element of $\bar{W}_{2}(d) \cap W_{i j}$ is a two-component rational curve that has a tacnode. Thus, $Z \cap W_{i j}=\emptyset$.

Proof. (1) The family $\tilde{\mathcal{F}}$ corresponding to the case of W_{41} is obtained by blowing up the family \mathcal{F} of Lemma 4.1 at two smooth points, p_{1} and p_{2}, of $D_{1} \subset C_{13}$. On a neighborhood of $D_{i}^{*} \subset C_{41}$, we use
local coordinates $\left(t, z_{i}\right) \longrightarrow\left(t, p_{i}+t z_{i},\left[1, z_{i}\right]\right)$. Then,

$$
\begin{gathered}
\left.\psi_{t}\right|_{z_{i}}=a_{i} t\left(1+o\left(1_{t}\right)\right) d z_{i} ; \\
\mu_{t}^{-1}\left(L_{i}\right)=\left\{z_{1,1}^{(i)}(t), \ldots, z_{1, d_{1}}^{(i)}(t), z_{2, d_{1}+1}^{(i)}(t), \ldots, z_{2, d}^{(i)}(t)\right\} \subset C_{t}, \quad z_{\iota, j}^{(i)}(t)=z_{\iota, j}^{(i)}(0)+o\left(1_{t}\right) ; \\
\sum_{j=1}^{j=d_{1}} \int_{z_{1, j}^{(1)}(t)}^{z_{1, j}^{(2)}(t)} \psi_{t}+\sum_{j=d_{1}+1}^{j=d} \int_{z_{2, j}^{(1)}(t)}^{z_{2, j}^{(2)}(t)} \psi_{t}=0 \quad \forall t \in \Delta^{*} .
\end{gathered}
$$

for some $a_{1}, a_{2} \in \mathbb{C}^{*}$, which depend on D, but not on $\mu \mid D_{i}$. Proceeding as before, we obtain

$$
\begin{align*}
& a_{1} t \sum_{j=1}^{j=d_{1}}\left(z_{1, j}^{(1)}(0)-z_{1, j}^{(2)}(0)+o\left(1_{t}\right)\right)+a_{2} t \sum_{j=d_{1}+1}^{j=d}\left(z_{2, j}^{(2)}(0)-z_{2, j}^{(1)}(0)+o\left(1_{t}\right)\right)=0 \quad \forall t \in \Delta^{*} \Longrightarrow \\
& a_{1} \sum_{j=1}^{j=d_{1}} z_{1, j}^{(1)}(0)+a_{2} \sum_{j=d_{1}+1}^{j=d} z_{2, j}^{(1)}(0)=a_{1} \sum_{j=1}^{j=d_{1}} z_{1, j}^{(2)}(0)+a_{2} \sum_{j=d_{1}+1}^{j=d} z_{2, j}^{(2)}(0) . \tag{4.8}
\end{align*}
$$

Let $p_{i}^{(1)}$ and $p_{i}^{(2)}$ be the homogeneous polynomials corresponding to $\mu \mid D_{1}$ and $\mu \mid D_{2}$, respectively. Since (4.8) holds for a dense subset of lines, there exist $K=K(\mu) \in \mathbb{C}$ such that

$$
\begin{equation*}
a_{1} \frac{c_{0} p_{0, d_{1}-1}^{(1)}+c_{1} p_{1, d_{1}-1}^{(1)}+c_{2} p_{2, d_{1}-1}^{(1)}}{c_{0} p_{0, d_{1}}^{(1)}+c_{1} p_{1, d_{1}}^{(1)}+c_{2} p_{2, d_{1}}^{(1)}}+a_{2} \frac{c_{0} p_{0, d_{2}-1}^{(2)}+c_{1} p_{1, d_{2}-1}^{(2)}+c_{2} p_{2, d_{2}-1}^{(2)}}{c_{0} p_{0, d_{2}}^{(2)}+c_{1} p_{1, d_{2}}^{(2)}+c_{2} p_{2, d_{2}}^{(2)}}=K \tag{4.9}
\end{equation*}
$$

for all $\left(c_{0}, c_{1}, c_{2}\right) \in \mathbb{C}^{3}-\{0\}$. Since μ maps the nodes of D_{1} and D_{2} to the same point,

$$
\left(p_{0, d_{1}}^{(1)}, p_{1, d_{1}}^{(1)}, p_{2, d_{1}}^{(1)}\right)=\kappa\left(p_{0, d_{2}}^{(2)}, p_{1, d_{2}}^{(2)}, p_{2, d_{2}}^{(2)}\right)
$$

for some $\kappa \in \mathbb{C}$. Using this equation, it is easy to see that condition (4.9) is equivalent to saying that μ maps the singular points of D_{1} and D_{2} into a tacnode of its image. Thus, the image of very element of $\bar{W}_{2}(d) \cap W_{41}$ is a two-component curve with a tacnode.
(2) Nearly the same argument applies to W_{51}. In this case, an extra blowup is required, and we will have $a_{1}=a_{2}=a$.

Lemma 4.6. The image of every element of $\bar{W}_{2}(d) \cap W_{53}$ is a two-component rational curve such that both components have a cusp at one of the nodes of the image curve. Thus, $Z \cap W_{53}=\emptyset$.

Proof. The proof is a minor modification of the proof of Lemma 4.1. The central fiber of \mathcal{F} in this case is C_{32}. We can then choose $\psi \in H^{0}\left(C_{32} ; \omega_{C_{32}}\right)$ such that the restriction of ψ to the right vertical component (in the diagram) is zero. In terms of coordinates $\left(t, w_{1}\right)$ and $\left(t, w_{2}\right)$ near the smooth points p_{1} and p_{2} of the two vertical components, we will have

$$
\left.\psi_{t}\right|_{w_{1}}=a\left(1+o\left(1_{(t, w)}\right)\right) d w_{1} \quad \text { and }\left.\quad \psi_{t}\right|_{w_{2}}=o\left(1_{t}\right) d w_{2}
$$

for some $a \in \mathbb{C}^{*}$. Proceeding as above, we then conclude that μ maps the node of $D_{1} \subset C_{53}$ to a cusp of $\mu\left(D_{1}\right)$. The same argument applies to $\mu \mid D_{2}$.
4.2. The Remaining Cases. The arguments in the previous subsection look very much like the arguments in $[\mathrm{P}]$ and $[\mathrm{KQR}]$. However, some differences appear in this subsection.

Lemma 4.7. If $\left[\mu:\left(D, p_{1}, \ldots, p_{3 d-2}\right)\right] \in \bar{W}_{2}(d) \cap W_{13}$, the image of μ is a tacnodal rational curve and μ maps the nodes of D to a tacnode of $\mu(D)$.

Proof. (1) We use coordinates (t, w) near $D_{1}^{*} \subset C_{13}$ such that the two nodes of D_{1} correspond to $w=0$ and $w=\infty$. Let $\psi_{t} \in H^{0}\left(C_{t} ; \omega_{C_{t}}\right)$ be such that

$$
\left.\psi_{t}\right|_{w}=\left(1+o\left(1_{t}\right)\right) \frac{d w}{w}
$$

Proceeding as above, we obtain

$$
\begin{gather*}
\mu_{t}^{-1}\left(L_{i}\right)=\left\{w_{1}^{(i)}(t), \ldots, w_{d}^{(i)}(t)\right\} \subset C_{t}, \quad w_{j}^{(i)}(t)=w_{j}^{(i)}(0)+o\left(1_{t}\right) \\
\sum_{j=1}^{j=d} \int_{w_{j}^{(1)}(t)}^{w_{j}^{(2)}(t)} \psi_{t}=0 \in \mathbb{C} / 2 \pi i \mathbb{Z} \quad \forall t \in \Delta^{*} ; \\
\prod_{j=1}^{j=d} w_{j}^{(1)}(0)=\prod_{j=1}^{j=d} w_{j}^{(2)}(0) \equiv K \tag{4.10}\\
\left(p_{0,0}, p_{1,0}, p_{2,0}\right)=K\left(p_{0, d}, p_{1, d}, p_{2, d}\right) \tag{4.11}
\end{gather*}
$$

for some $K=K(\mu) \in \mathbb{C}$. Condition (4.11) on the coefficients of the homogeneous polynomials corresponding to $\mu \mid D_{1}$ follows from the fact that (4.10) holds for a dense subset of lines in \mathbb{P}^{2}. However, (4.11) by itself tells us nothing new about $\mu \mid D_{1}$, since we already know that μ maps the nodes of D_{1} to the same point.
(2) We instead consider the limit of the left-hand side of (4.10) as L_{1} approaches the line tangent to the branch $w=0$ of $\mu(D)$. If the node $\mu(0)$ of $\mu(D)$ is simple, two of the numbers $w_{j}^{(1)}(0)$ tend to 0 and one to ∞, all at comparable rates. Thus, we must have $K=0$. By the same argument, $K=\infty$. This means

$$
p_{0,0}=p_{1,0}=p_{2,0}=p_{0, d}=p_{1, d}=p_{2, d}=0
$$

If $[u, v]$ are homogeneous coordinates on $E^{(1)}$ with $w=\frac{v}{u}$, it follows that $u v$ divides all three homogeneous polynomials p_{0}, p_{1}, p_{2}, i.e. $\mu \mid D$ has degree at most $d-2$, not d, contrary to the assumption. Thus, $\mu(0)=\mu(\infty)$ has to be a tacnode of $\mu(D)$ if $\left[\mu:\left(D, p_{1}, \ldots, p_{3 d-2}\right)\right] \in \bar{W}_{2}(d) \cap W_{13}$.

Lemma 4.8. The image of every element $\left[\mu:\left(D, p_{1}, \ldots, p_{3 d-2}\right)\right] \in \bar{W}_{2}(d) \cap W_{32}$ has a tacnode at $\mu\left(p_{i}\right)$ for some $i=1, \ldots, 3 d-2$. If $\left[\mu:\left(D, p_{1}, \ldots, p_{3 d-2}\right)\right] \in \bar{W}_{2}(d) \cap W_{24}$ and the degree of $\mu \mid D_{1}$ is less than d, then $\mu(D)$ is a two-component rational tacnodal curve. Thus, $Z \cap W_{i j}=\emptyset$ in both cases.

Proof. Since the proof of Lemma 4.7 carries over to the case of W_{32} with no change, the first claim is clear. For the second claim, we use coordinates (t, w) and (t, z) as in the proofs of Lemmas 4.1 and 4.7. Then,

$$
\begin{gathered}
\left.\psi_{t}\right|_{w}=\left(1+o\left(1_{t}\right)\right) \frac{d w}{w},\left.\quad \psi_{t}\right|_{z}=o\left(1_{t}\right) ; \\
\mu_{t}^{-1}\left(L_{i}\right)=\left\{z_{1}^{(i)}(t), \ldots, z_{d_{1}}^{(i)}(t), w_{d_{1}+1}^{(i)}(t), \ldots, w_{d}^{(i)}(t)\right\} \subset C_{t}, \quad \text { with } \\
z_{j}^{(i)}(t)=z_{j}^{(i)}(0)+o\left(1_{t}\right), \quad w_{j}^{(i)}(t)=w_{j}^{(i)}(0)+o\left(1_{t}\right) ; \\
\sum_{j=1}^{j=d_{1}} \int_{z_{j}^{(1)}(t)}^{z_{j}^{(2)}(t)} \psi_{t}+\sum_{j=d_{1}+1}^{j=d} \int_{w_{j}^{(1)}(t)}^{w_{j}^{(2)}(t)} \psi_{t}=0 \in \mathbb{C} / 2 \pi i \mathbb{Z} \quad \forall t \in \Delta^{*} ; \\
\prod_{j=d}^{j=d} w_{j}^{(1)}(0)=\prod_{j=d_{1}+1}^{j=d} w_{j}^{(2)}(0)
\end{gathered}
$$

The last identity implies that $\mu \mid D_{2}$ has a tacnode. The remaining claim of the lemma follows from the first two and Corollary 4.2.

Lemma 4.9. If $\left[\mu:\left(D, p_{1}, \ldots, p_{3 d-2}\right)\right] \in \bar{W}_{2}(d) \cap W_{31}$ and the degree of $\mu \mid D_{1}$ is $d, \mu(D)$ has a tacnode at $\mu\left(p_{i}\right)$ for some $i=1, \ldots, 3 d-2$. If the degree of $\mu \mid D_{1}$ is less than $d, \mu(D)$ is a two-component tacnodal rational curve. Thus, $Z \cap W_{31}=\emptyset$.

Proof. The proof of Lemma 4.7 applies to the first case with no change. For the second case, we use coordinate $\left(t, w_{1}\right)=(t, w)$ and $\left(t, w_{2}\right)$ analogous to (t, w), such that $w_{1}=\infty$ and $w_{2}=\infty$ are identified in C_{31}. Since the residues of $\psi \in H^{0}\left(\tilde{C}_{0} ; \omega_{\tilde{C}_{0}}\right)$ at $w_{1}=\infty$ and $w_{2}=\infty$ add up to zero, $\psi \left\lvert\, D_{2}=-\frac{d w_{2}}{w_{2}}\right.$. Thus, proceeding as in the proof of Lemma 4.7, we obtain

$$
\begin{align*}
& \prod_{j=1}^{j=d_{1}} w_{1, j}^{(1)}(0) \cdot\left(\prod_{j=d_{1}+1}^{j=d} w_{2, j}^{(1)}(0)\right)^{-1}=\prod_{j=1}^{j=d_{1}} w_{1, j}^{(2)}(0) \cdot\left(\prod_{j=d_{1}+1}^{j=d} w_{2, j}^{(2)}(0)\right)^{-1} \equiv K \\
& \frac{c_{0} p_{0,0}^{(1)}+c_{1} p_{1,0}^{(1)}+c_{2} p_{2,0}^{(1)}}{c_{0} p_{0, d_{1}}^{(1)}+c_{1} p_{1, d_{1}}^{(1)}+c_{2} p_{2, d_{1}}^{(1)}} \cdot \frac{c_{0} p_{0, d_{2}}^{(2)}+c_{1} p_{1, d_{2}}^{(2)}+c_{2} p_{2, d_{2}}^{(2)}}{c_{0} p_{0,0}^{(2)}+c_{1} p_{1,0}^{(2)}+c_{2} p_{2,0}^{(2)}}=K \quad \forall\left(c_{0}, c_{1}, c_{2}\right) \in \mathbb{C}^{3}-\{0\}, \tag{4.12}
\end{align*}
$$

for some $K \in \mathbb{C}$. Since $\mu\left(w_{2}=\infty\right)=\mu\left(w_{1}=\infty\right)$,

$$
\left(p_{0, d_{1}}^{(1)}, p_{1, d_{1}}^{(1)}, p_{2, d_{1}}^{(1)}\right)=\kappa\left(p_{0, d_{2}}^{(2)}, p_{1, d_{2}}^{(2)}, p_{2, d_{2}}^{(2)}\right)
$$

for some $\kappa \in \mathbb{C}^{*}$. Thus, as a condition on $\mu,(4.12)$ is equivalent to

$$
\left(p_{0,0}^{(1)}, p_{1,0}^{(1)}, p_{2,0}^{(1)}\right)=K\left(p_{0,0}^{(2)}, p_{1,0}^{(2)}, p_{2,0}^{(2)}\right)
$$

for some $K \in \mathbb{C}$. Suppose $\mu\left(w_{2}=\infty\right)=\mu\left(w_{1}=0\right)$ is not a tacnode of $\mu(D)$. Then as in (2) of the proof of Lemma 4.7, we conclude that

$$
p_{0,0}^{(1)}=p_{1,0}^{(1)}=p_{2,0}^{(1)}=p_{0,0}^{(2)}=p_{1,0}^{(2)}=p_{2,0}^{(2)}
$$

This means $\mu \mid D_{1}$ and $\mu \mid D_{2}$ have degrees at most $d_{1}-1$ and $d_{2}-1$, respectively, contrary to the assumption.

5. Proof of Proposition 3.2

By Lemma 4.7, if $\left[\mu:\left(D, p_{1}, \ldots, p_{3 d-2}\right)\right] \in Z \cap W_{13}, \mu$ maps the nodes of D into the tacnode of $\mu(D)$. We now prove the converse and determine the multiplicity with which the number T_{d} enters into $\left[\pi^{-1}\left(C_{0}\right)\right] \cdot Z$.

Lemma 5.1. Suppose C_{0}^{\prime} is a tacnodal rational curve and $\eta: \mathcal{W} \longrightarrow \mathcal{B}$ is a local deformation space for C_{0}. Let $q_{1}, \ldots, q_{3 d-2}$ be points in general position in \mathbb{P}^{2} and $f: C_{0}^{\prime} \longrightarrow \mathbb{P}^{2}$ be a map of degree d passing through the $(3 d-2)$ points. Then there exists a map $\tilde{f}: \mathcal{W} \longrightarrow \mathbb{P}^{2}$, perhaps after shrinking \mathcal{B}, such that $\tilde{f} \mid C_{0}^{\prime}=f$ and $\tilde{f} \mid \eta^{-1}(t)$ passes through the $(3 d-2)$ points.

Proof. Since $T_{d}=0$ for $d \leq 3$, we can assume $d \geq 3$. Then $H^{1}\left(C_{0}^{\prime} ; f^{*} \mathcal{O}_{\mathbb{P}^{2}}(1)\right)=0$. Thus, there is no obstruction to extending f to a neighborhood of C_{0}^{\prime} in \mathcal{W}.

Corollary 5.2. Suppose $\left[\mu:\left(D, p_{1}, \ldots, p_{3 d-2}\right)\right] \in W_{13}, \mu\left(p_{i}\right)=q_{i}$ for all $i=1, \ldots, 3 d-2$, and μ maps the nodes of D_{1} to the tacnode of $\mu(D)$. Then $\left[\mu:\left(D, p_{1}, \ldots, p_{3 d-2}\right)\right] \in \bar{W}_{2}(d)$.

Proof. We apply Lemma 5.1 to the normalization $f: C_{0}^{\prime} \longrightarrow \mu(D)$ of $\mu(D)$ at the simple nodes. Let C_{t} be a family of rational curves identified at two pairs of points, i.e.

As the nodes of C_{t} come together, C_{t} approaches C_{0}^{\prime} in \mathcal{B}. For all $t \neq 0$ sufficiently small, let $f_{t}: C_{t} \longrightarrow \mathbb{P}^{2}$ be the maps provided by Lemma 5.1. Then $f_{t}\left(C_{t}\right)$ converges to $f\left(C_{0}^{\prime}\right)$. Furthermore, C_{t} converges to C_{0} in $\overline{\mathfrak{M}}_{2}$. Thus, if

$$
\lim _{t \longrightarrow 0}\left[f_{t}:\left(C_{t}, f_{t}^{-1}\left(q_{1}\right), \ldots, f_{t}^{-1}\left(q_{3 d-2}\right)\right)\right]=\left[\mu^{\prime}:\left(D^{\prime}, p_{1}^{\prime}, \ldots, p_{3 d-2}^{\prime}\right)\right] \in \overline{\mathfrak{M}}_{2}(d)
$$

D^{\prime} must be one of the curves $C_{i j}$ of Figure 1, and $\mu^{\prime}\left(D^{\prime}\right)$ is a tacnodal rational curve. By Propositions 3.3 and 3.4, we conclude that

$$
\left[\mu:\left(D, p_{1}, \ldots, p_{3 d-2}\right)\right]=\left[\mu^{\prime}:\left(D^{\prime}, p_{1}^{\prime}, \ldots, p_{3 d-2}^{\prime}\right)\right] \in \overline{\mathfrak{M}}_{2}(d)
$$

Lemma 5.3. The contribution of W_{13} to $\left[\pi^{-1}\left(C_{0}\right)\right] \cdot Z$ is $6 T_{d}$.
Proof. Suppose $\left[\mu:\left(D, p_{1}, \ldots, p_{3 d-2}\right)\right] \in Z \cap W_{13}$. Given a fixed complex structure j on Σ such that (Σ, j) is very close to $\left[C_{0}\right]$ in $\overline{\mathfrak{M}}_{2}$, we need to determine the number of maps $\mu_{j}: \Sigma \longrightarrow \mathbb{P}^{2}$ close to μ. By Corollary 5.2 , there exists a family of curves $\tilde{\eta}: \tilde{\mathcal{F}} \longrightarrow \Delta$ and of maps $\tilde{\mu}: \tilde{\mathcal{F}} \longrightarrow \mathbb{P}^{2}$ restricting to μ on the central fiber D. There are six automorphisms of C_{0} that preserve its components. Corresponding to these automorphisms and $(\tilde{\mathcal{F}}, \tilde{\eta})$, we obtain six maps $\mu_{j}: \Sigma \longrightarrow \mathbb{P}^{2}$. None of these maps are equivalent, since we did not switch the two components of C_{0}.

References

[DH] S. Diaz and J Harris, Geometry of Severi Varieties, Trans. Amer. Math. Soc. 1, No. 1 (1988), 1-34.
[GH] P. Griffiths and J. Harris, Principles of Algebraic Geometry, John Willey \& Sons, 1994.
[I] E. Ionel, Genus-One Enumerative Invariants in \mathbb{P}^{n} with Fixed j-Invariant, Duke Math. J. 94 (1998), no. 2, $279-324$.
[KM] M. Kontsevich and Yu. Manin, Gromov-Witten Classes, Quantum Cohomology, and Enumerative Geometry, Comm. Math. Phys. 164 (1994), no. 3, 525-562.
[KQR] S. Katz, Z. Qin, and Y. Ruan, Enumeration of Nodal Genus-2 Plane Curves with Fixed Complex Structure, J. Algebraic Geom. 7 (1998), no. 3, 569-587.
[P] R. Pandharipande, Counting Elliptic Plane Curves with Fixed j-Invariant, Proc. Amer. Math. Soc. 125 (1997), no. 12, 3471-3479.
[RT] Y. Ruan and G. Tian, A Mathematical Theory of Quantum Cohomology, J. Diff. Geom. 42 (1995), no. 2, $259-367$.
[V1] R. Vakil, Enumerative Geometry of Plane Curve of Low Genus, AG/9803007.
[V2] R. Vakil, A Tool for Stable Reduction of Curves on Surfaces, Advances in Algebraic Geometry Motivated by Physics, 145-154, Amer. Math. Soc., 2001.
[Z] A. Zinger, Enumeration of Genus-Two Curves with a Fixed Complex Structure in \mathbb{P}^{2} and \mathbb{P}^{3}, math.SG/0201254.

[^0]: Partially supported by NSF Graduate Research Fellowship and NSF grant DMS-9803166.

