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COMPLETION OF KATZ-QIN-RUAN’S ENUMERATION

OF GENUS-TWO PLANE CURVES

ALEKSEY ZINGER

Abstract

We give a formula for the number of genus-two fixed-complex-structure degree-d plane curves passing
through 3d−2 points in general position. This is achieved by completing Katz-Qin-Ruan’s approach.
This paper’s formula agrees with the one obtained by the author in a completely different way.

1. Introduction

In the past decade, significant progress has been in enumerative algebraic geometry based on ideas of

Gromov’s compactness and quantum cohomology. In particular, [KM] and [RT] derived a recursive

formula for the number Nd of rational degree-d plane curves passing through (3d−1) points in general

position. In [I] and [P], a simple relation between the number N1,d of fixed-j-invariant elliptic degree-d

plane curves passing through (3d−1) points and the number Nd is obtained. The approaches in the

two papers are drastically different. In [P], the number N1,d is computed by a beautiful degeneration

argument. In [I], the number N1,d is compared to the corresponding symplectic invariant as defined

in [RT]. Like the methods of [KM] and [RT] in the genus-zero case, the approach of [I] applies to all

projective spaces.

The subject of this paper is the number N2,d of genus-two degree-d plane curves that have a fixed

complex structure on the normalization and pass through (3d−2) points in general position. Using

a degeneration argument similar to [P], [KQR] express N2,d in terms of the numbers Nd′ with d′≤d.

Recently the author extended the approach of [I] to obtain formulas for the genus-two numbers in P2

and P3. However, the formulas for N2,d in [KQR] and [Z] are not equivalent. The relation between the

two is

NZ
2,d = 6

(

N
KQR
2,d + Td

)

,

where Td is the number of degree-d tacnodal rational plane curves passing through (3d−2) points.

The formulas in [Z] satisfy all the required classical checks that the author is aware of. In particular,

NZ
2,4 is the same as the corresponding number for three points and seven lines in P

3. The author then

explored the details of the argument [KQR] and found three errors, one of which is significant. They

are described briefly in the paragraph following the table and in more detail in Section 3. Once these

errors are corrected, the formula of [Z] is recovered:

Theorem 1.1.

N2,d = 3(d2 − 1)Nd +
1

2

∑

d1+d2=d

(

d2
1d

2
2 + 28 − 16

9d1d2 − 1

3d− 2

)

(

3d− 2

3d1 − 1

)

d1d2Nd1Nd2.
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The table below gives the numbers N2,d for small values of d, computed directly from Theorem 1.1.

The first three values have long been known to be zero. We use N1 = N2 = 1, N3 = 12, N4 = 620,

N5 =87, 304, N6 =26, 312, 976, and N7 =14, 616, 808, 192.

d 1 2 3 4 5 6 7

N2,d 0 0 0 14,400 6,350,400 3,931,128,000 3,718,909,209,600

The first step in the proof of Theorem 1.1 via the recipe of [KQR] is Lemma 2.1, which allows one

to reduce the computation to a very degenerate genus-two curve. The relevant intersection number is

then computed by Propositions 3.1-3.4. Propositions 3.1 and 3.3 are proved in [KQR]. Proposition 3.4

is implied by Remark 3.12 in [KQR]. However, this remark is stated without a proof and contradicts

Proposition 3.2. This is the significant error in [KQR]. A minor error is the statement about boundary

relations at the beginning of the proof of Lemma 2.18. A posteriori, it turns out that this statement is in

fact correct, at least in the relevant cases, but it does not follow from the argument given. The remain-

ing error is dividing by an extra factor of six when computing contributions to the intersection number.

Since our goal is to correct the computation in [KQR], we attempt to follow their notation as closely

as possible. The outline of this paper is as follows. We first review the notation and setup in [KQR].

In Section 3, four propositions that imply Theorem 1.1 are stated. The last two sections prove the two

propositions not proved in [KQR].

The author would like to thank T. Mrowka for many discussions and encouragement. He is also grateful

to A. J. de Jong, J. Starr, and R. Vakil for their help with algebraic geometry. In particular, it was

A. J. de Jong’s idea to approach Corollary 5.2 via the family of curves of Lemma 5.1. Finally, the

author thanks R. Pandharipande for explaining details of his argument in [P] and Z. Qin for careful

consideration of the issues with [KQR] raised by the author.

2. Review of Notation and Setup

Denote by M2 the Deligne-Mumford moduli space of stable genus-two curves. If d≥3, let

M2(d) ≡ M2,3d−2

(

P
2, d`

)

be Kontsevich’s moduli space of stable maps from (3d−2)-pointed genus-two curves to P2 of degree d,

where `∈H2(P
2; Z) is the homology class of a line. Let π : M2(d)−→M2 be the forgetful map. Denote

by W2(d) ⊂ M2(d) the subset of stable maps with irreducible domains and by W 2(d) the closure of

W2(d) in M2(d).

Every element of M2(d) can be written as
[

µ : (D, p1, . . . , p3d−2)
]

, where D is a prestable genus-two

curve, µ : D−→P2 is a (holomorphic) map, and p1, . . . , p3d−2 ∈D are the marked points. There are

natural evaluation maps

ei : M2(d) −→ P
2, ei

([

µ : (D, p1, . . . , p3d−2)
])

= µ(pi), i = 1, . . . , 3d− 2.

Let Li = e∗i
(

OP2(1)
)

and

Z =
[

W 2(d)
]

∩ c21(L1) ∩ . . . ∩ c
2
1(L3d−2) ∈ H6

(

W 2(d)
)

.
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If q1, . . . , q3d−2 are points in P
2 in general position, then

{

e1×. . .×e3d−2

}

−1
(q1×. . .×q3d−2) is a rep-

resentative for Z; see [KQR] for details.

Lemma 2.1. For every [C]∈M2,

N2,d = [π−1(C)] · Z,

where [π−1(C)] · Z is the intersection pairing of π−1([C]) and Z in W 2(d).

This is a special case of Lemma 2.5 in [KQR]. In particular, if C0 consists of two rational components

identified at 3 pairs of points, i.e.

C0 =

R1

R2

then N2,d = [π−1(C0)] · Z. The space π−1(C0) ⊂ M2(d) can be written as the disjoint union
⊔

WT ,

where WT is the space of stable maps
[

µ : (D, p1, . . . , p3d−2)
]

, such that the domain D is the union of

R1, R2, and trees T1, . . . , Ts of P1 in a way encoded by T . The stable reduction of D must be C0. See

Figure 1 below for some examples.

In order to compute [π−1(C0)]·Z, [KQR] consider the intersection of Z with every nonempty spaceWT .

It is fairly easy to show that Z ∩WT is empty for all but a small number of trees T , independent of d.

If
[

µ : (D, p1, . . . , p3d−2)
]

∈Z ∩WT , the map µ : D−→P2 has degree d and passes through 3d−2 points

in P2 in general position. Thus, if D1, . . . , Dm are the irreducible components of D to which µ restricts

non-trivially, m=1 or m=2. Then D can have at most two components, other than R1, R2, on which

the map µ is constant.

The complete list of possibilities for D, up to equivalence, is given in Figure 1. Denote by Cij the

curve as in the ith row and jth column of Figure 1. Similarly, denote by Wij be the space of stable

maps with domain Cij and a distribution of the degree d between the components of Cij such that

the image of some stable map in Wij passes through (3d−2) points. We clarify this statement in the

relevant cases:

(1) if
[

µ : (D, p1, . . . , p3d−2)
]

lies in W13, W32, W41, W43, or W5j , the degree of µ|Di is di 6=0, and the

restriction of µ to all other components is constant;

(2) if
[

µ : (D, p1, . . . , p3d−2)
]

lies in W24, W31, or W42, the degree of µ|D1 is d1 6=0, µ|Ri is constant,

and in the case of W42 the restriction of µ to the vertical component (in the diagram) is constant.

Furthermore, for stability reasons, every component of Cij , on which µ is constant and which does not

contain three singular point of Cij , must contain one of the marked points pi.

3. Computation of the Intersection Number

Proposition 3.1. The contribution to [π−1(C0)] · Z from W11 is

3(d− 1)(d− 2)(d− 3)

d
Nd +

1

2

∑

d1+d2=d

(

d2
1d

2
2 − 6d1d2 − 4 + 18

d1d2

d

)

(

3d− 2

3d1 − 1

)

d1d2Nd1Nd2 .



4 ALEKSEY ZINGER

R1

R2

R1

R2

D1 R1

R2

D1 R1

R2

D1

R1

R2

D2
D1

R1

R2

D1

D2

R1

R2

D1 R1

R2

D1

R1

R2

D1
D1

R1

R2

R1

R2

D1
D2

R1

R2

D1

D2

R1

R2

D1

D2

R1

R2

D1 D1

R1

R2

R1

R2

D2
D1

R1

R2

D2

D1

R1

R2

D2

D1 D1 D2

R1

R2

D1

R1

R2
D2

Figure 1

This proposition is essentially proved in [KQR]; see equation (2.9) and Lemmas 2.12, 2.16, and 3.2

in [KQR]. The above number is six times the number given by Theorem 1.1 of [KQR]. It is easy to

see that the authors divide by six an extra time. For example, in Lemma 2.12, one should take ordered

triplets of nodes, i.e.
(

d1d2

3

)

should be replaced by

d1d2(d1d2 − 1)(d1d2 − 2),

since they are dividing by the order of Aut(C0). Similarly, the number in Lemma 2.16 should be

replaced by six times itself.

Proposition 3.2. The contribution to [π−1(C0)] · Z from W13 is

6(3d2 − 12d+ 9)nd

d
+ 3

∑

d1+d2=d

(

d1d2 + 4 − 9
d1d2

d

)

(

3d− 2

3d1 − 1

)

d1d2Nd1Nd2 .

We prove this proposition in Section 5. What we show is that W 2(d) ∩W13 is the space of all stable

maps
[

µ : (D, p1, . . . , p3d−2)
]

such that µ(D) is a tacnodal curve in P2, and µ maps the two nodes of

D to the same tacnode of µ(D). The number of Proposition 3.2 is 6Td. Note that the number Td is

well-known; see equation (1.2) in [DH] and Subsection 3.2 in [V1].

Proposition 3.3. If (i, j)∈
{

(1, 2), (1, 4), (2, 1), (2, 2), (2, 3), (3, 3), (3, 4), (4, 4)
}

, Z ∩Wij =∅. Thus,

Wij does not contribute to [π−1(C0)] · Z.

Most of this proposition is proved by Lemmas 2.18 and 3.7 of [KQR]. The cases (i, j) = (3, 3) and

(i, j)=(3, 4) can be deduced from the proofs of these two lemmas. The modification required is similar



COMPLETION OF KATZ-QIN-RUAN’S ENUMERATION OF GENUS-TWO PLANE CURVES 5

to the extension of the main part of the proof of Lemma 1 in [P] to cases of multiple blowups; see also

the proof of Lemma 4.4 below. Note that since Lemma 3.7 of [KQR] does not apply to the remaining

possibilities for (i, j), neither does Lemma 2.18 of [KQR].

Proposition 3.4. If (i, j)∈
{

(2, 4), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3), (5, 1), (5, 2), (5, 3), (5, 4)
}

,

Z ∩Wij =∅. Thus, Wij does not contribute to [π−1(C0)] · Z.

We prove this proposition in the next section. The number in Theorem 1.1 is the sum of the numbers

in Propositions 3.1 and 3.2. However, one has to make use of Kontsevich’s recursion to obtain the

formula in Theorem 1.1:

Nd =
1

6(d− 1)

∑

d1+d2=d

(

d1d2 − 2
(d1 − d2)

2

3d− 2

)

(

3d− 2

3d1 − 1

)

d1d2Nd1Nd2 .

4. Proof of Proposition 3.4

4.1. The Semi-Standard Cases. We prove Proposition 3.4 by exhibiting conditions that sta-

ble maps in W 2(d) ∩ Wij must satisfy. This approach is analogous to methods in [P] and [KQR],

but we make no use of the spaces X and Y of these two papers. It should be possible to describe

the space W 2(d) ∩ π−1(C0)⊂M2(d) explicitly by using arguments as in this section to obtain neces-

sary conditions for an element of π−1(C0) to be in W 2(d) and by applying methods similar to the next

section to show that these conditions are sufficient. However, much less is needed to prove Theorem 1.1.

Suppose
[

µ : (D, p1, . . . , p3d−2)
]

∈W 2(g) ∩Wij . Then by definition of stable-map convergence, there

exist

(T1) a one-parameter family of curves η̃ : F̃ −→ ∆ such that ∆ is a neighborhood of 0 in C, F̃ is a

smooth space, η̃−1(0)=D, and Ct≡ η̃−1(t) is a smooth genus-two curve for all t∈∆∗≡∆−{0};

(T2) a map µ̃ : F̃ −→P2 such that µ̃|η−1(0)=µ.

In many cases, F̃ can be obtained by a sequence of blowups from another smooth bundle η : F −→∆

of curves. This observation is used often in the proofs of the lemmas that follow.

Lemma 4.1. If
[

µ : (D, p1, . . . , p3d−2)
]

∈W 2(d)∩W24 and the degree of µ|D1 is d, µ
(

D
)

has a cusp

at the image of the node of D1.

Proof. (1) Let η̃ : F̃ −→∆ be a family as in (T1) above with central fiber C̃0 =D, and µ̃ : F̃ −→P2

a map as in (T2). Then there exists another family η : F −→∆ as in (T1) such that the central fiber

is C13 and F̃ is the blowup of F at a smooth point p∈D1 ⊂ C13.

(2) Let ψ ∈ H0
(

C13;ωC13

)

be an element such that ψ|D1 6= 0. From the point of view of complex

geometry, H0
(

C13;ωC13

)

is the space harmonic (1, 0)-forms on the three components of C13, which

have simple poles at the singular points with residues that add up to zero at each node. Thus, such an

element exists. Let (t, w) be coordinates near p∈F such that w is the vertical coordinate, i.e. dη
∣

∣

∂
∂w

=0.

Then ψ extends to a family of elements ψt∈H0
(

Ct;ωCt

)

such that

(4.1) ψt

∣

∣

w
= a

(

1 + o(1(t,w))
)

dw,

for some a∈C∗.

(3) On a neighborhood of D∗

1⊂D=C24, the complement of the node in D1, we have local coordinates
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(t, z)−→
(

t, w= tz, [1, z]
)

. Note that in these coordinates, (4.1) becomes

(4.2) ψt

∣

∣

z
= at

(

1 + o(1t)
)

dz.

Let L1 and L2 be any two lines in general position in P2. In particular, we assume that they miss the

image under µ of the node of D1. Then for all t∈∆, sufficiently small,

(4.3) µ−1
t (Li) =

{

z
(i)
1 (t), . . . , z

(i)
d (t)

}

⊂ Ct and z
(i)
j (t) = z

(i)
j (0) + o(1t),

where µt = µ̃|Ct. Since
∑

z
(1)
j (t) and

∑

z
(2)
j (t) are linearly equivalent divisors in Ct,

(4.4)

j=d
∑

j=1

∫ z
(2)
j

(t)

z
(1)
j

(t)

ψt = 0 ∀t ∈ ∆∗,

where the line integrals are taken inside of the coordinate chart. Plugging (4.2) and (4.3) into (4.4)

gives

(4.5) at

j=d
∑

j=1

(

z
(2)
j (0) − z

(1)
j (0) + o(1t)

)

= 0 ∀t∈∆∗.

Dividing this equation by at and then taking the limit as t−→0, we conclude that

(4.6)

j=d
∑

j=1

z
(1)
j (0) =

j=d
∑

j=1

z
(2)
j (0).

Condition (4.6) can be explicitly interpreted as follows. Let [u, v] be homogeneous coordinates on D1

such that z= v
u
. Then a map D1−→P2 of degree-d corresponds to three homogeneous polynomials

pi =

j=d
∑

j=0

piju
jvd−j.

Since equality (4.6) holds for a dense subset of lines in P2, there exists K=K(µ)∈P1 such that

c0p0,d−1 + c1p1,d−1 + c2p2,d−1

c0p0,d + c1p1,d + c2p2,d

= K ∀(c0, c1, c2)∈C
3−{0} =⇒

(p0,d−1, p1,d−1, p2,d−1) = K(p0,d, p1,d, p2,d).(4.7)

Equation (4.7) imposes two linearly independent conditions on the map µ|D1 if µ ∈ W 2(d) ∩ W24.

Geometrically, they mean that µ
(

D
)

has a cusp at the image of the node of D1. �

Corollary 4.2. If
[

µ : (D, p1, . . . , p3d−2)
]

∈Z ∩W24, the degree of µ|D1 is less than d.

Proof. Suppose the degree of µ|D1 is d. Then by Lemma 4.1, µ(D1) has a cusp at the image of

the node of D1. Since the points q1, . . . , q3d−2 are in general position, µ(D1) has one simple cusp and
(

d−1
2

)

−1 simple nodes. Let F̃ and µ̃ be as in the proof of Lemma 4.1. Then µ̃(Ct) converges to µ(D1).

By Lemma 2.4.1 or Example 3.2.2 in [V2], D1 must have an elliptic tail, i.e. the map µ̃ : F̃ −→ P2

cannot exist. In the given case, this can also be seen directly as follows. The image under µt of the

intersection of Ct with the coordinate chart described in (3) of the proof of Lemma 4.1 has
(

d−1
2

)

−1

simple nodes, close to the simple nodes of µ(D1). The complement of the coordinate chart in Ct is a

genus two curve with a small coordinate neighborhood removed. Thus, it contributes at least 2 to the

arithmetic genus of µ(Ct). This means that the arithmetic genus of µ(Ct) is at least
(

d−1
2

)

+1, instead

of
(

d−1
2

)

. �
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Lemma 4.3. The image of every element
[

µ : (D, p1, . . . , p3d−2)
]

∈W 2(d)∩W43 has a cusp at µ(pi)

for some i=1, . . . , 3d−2. The same is true for every element of W 2(d) ∩W42 such that the degree of

µ|D1 is d. Thus, Z ∩W43 =∅, while for every element
[

µ : (D, p1, . . . , p3d−2)
]

∈Z ∩W42, the degree of

µ|D1 is less than d.

Proof. (1) The proof of the first statement is nearly the same as the proof of Lemma 4.1. The only

difference is that the central fiber of F will be C32.

(2) The family F̃ of the second claim of this lemma is obtained from F̃ of Lemma 4.1 by blowing up

a smooth point of the exceptional divisor D1⊂C24. Thus, nearly the same argument as in Lemma 4.1

applies if the degree of µ|D1 is d; see [P] for an extension in an analogous situation. �

Lemma 4.4. If (i, j)∈
{

(5, 2), (5, 4)
}

, the image of every element of W 2(d)∩Wij is a two-component

rational cuspidal curve. The same is true for all
[

µ : (D, p1, . . . , p3d−2)
]

∈W 2(d) ∩W42, such that the

degree of µ|D1 is less than d. Thus, Z ∩Wij =∅ in all three cases.

Proof. (1) We first consider the case
[

µ : (D, p1, . . . , p3d−2)
]

∈W 2(d) ∩W42 and the degree of µ|D1

is d1<d. The case d1 =d is considered in Lemma 4.3. The family F̃ −→∆ corresponding to this case

can be obtained as follows. We start with a family F−→∆ as in (2) of the proof of Lemma 4.1, blow

it up at a smooth point p∈D1⊂C13, and then blow up the resulting space at a smooth point p1 of the

new exceptional divisor E≡D1⊂C24. Denote the last exceptional divisor by E1. We use coordinates

(t, z) near E∗ as before and coordinates (t, z1)−→
(

t, z = p1+tz1, [1, z1]
)

near E∗

1 . Then,

ψt

∣

∣

z
= at

(

1 + o(1t)
)

dz, ψt

∣

∣

z1
= at2

(

1 + o(1t)
)

dz1;

µ−1
t (Li) =

{

z
(i)
1,1(t), . . . , z

(i)
1,d1

(t), z
(i)
d1+1(t), . . . , z

(i)
d (t)

}

⊂ Ct, with

z
(i)
1,j(t) = z

(i)
1,j(0) + o(1t), z

(i)
j (t) = z

(i)
j (0) + o(1t);

j=d1
∑

j=1

∫ z
(2)
1,j

(t)

z
(1)
1,j

(t)

ψt +

j=d
∑

j=d1+1

∫ z
(2)
j

(t)

z
(1)
j

(t)

ψt = 0 ∀t∈∆∗.

Each line integral is taken inside the corresponding coordinate chart. Proceeding as in the proof of

Lemma 4.1, we obtain

at2
j=d1
∑

j=1

(

z
(1)
1,j (0) − z

(2)
1,j (0) + o(1t)

)

+ at

j=d
∑

j=d1+1

(

z
(2)
j (0) − z

(1)
j (0) + o(1t)

)

= 0 ∀t∈∆∗

=⇒

j=d
∑

j=d1+1

z
(1)
j (0) =

j=d
∑

j=d1+1

z
(2)
j (0).

As before, the last identity implies that µ|E maps z=∞∈E to a cusp of µ(E).

(2) The argument in the case of W54 is the same, except we replace the family F of Lemma 4.1 with the

family F of (1) of Lemma 4.3. Finally, the case of W52 simply involves an extra blowup at a smooth

point as compared to the case of W42. �

Lemma 4.5. If (i, j)∈
{

(4, 1), (5, 1)
}

, the image of every element of W 2(d)∩Wij is a two-component

rational curve that has a tacnode. Thus, Z ∩Wij =∅.

Proof. (1) The family F̃ corresponding to the case of W41 is obtained by blowing up the family F

of Lemma 4.1 at two smooth points, p1 and p2, of D1⊂C13. On a neighborhood of D∗

i ⊂C41, we use
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local coordinates (t, zi)−→
(

t, pi+tzi, [1, zi]
)

. Then,

ψt

∣

∣

zi
= ait

(

1 + o(1t)
)

dzi;

µ−1
t (Li) =

{

z
(i)
1,1(t), . . . , z

(i)
1,d1

(t), z
(i)
2,d1+1(t), . . . , z

(i)
2,d(t)

}

⊂ Ct, z
(i)
ι,j (t) = z

(i)
ι,j (0) + o(1t);

j=d1
∑

j=1

∫ z
(2)
1,j

(t)

z
(1)
1,j

(t)

ψt +

j=d
∑

j=d1+1

∫ z
(2)
2,j

(t)

z
(1)
2,j

(t)

ψt = 0 ∀t∈∆∗.

for some a1, a2∈C∗, which depend on D, but not on µ|Di. Proceeding as before, we obtain

a1t

j=d1
∑

j=1

(

z
(1)
1,j (0) − z

(2)
1,j (0) + o(1t)

)

+ a2t

j=d
∑

j=d1+1

(

z
(2)
2,j (0) − z

(1)
2,j (0) + o(1t)

)

= 0 ∀t∈∆∗ =⇒

a1

j=d1
∑

j=1

z
(1)
1,j (0) + a2

j=d
∑

j=d1+1

z
(1)
2,j (0) = a1

j=d1
∑

j=1

z
(2)
1,j (0) + a2

j=d
∑

j=d1+1

z
(2)
2,j (0).(4.8)

Let p
(1)
i and p

(2)
i be the homogeneous polynomials corresponding to µ|D1 and µ|D2, respectively.

Since (4.8) holds for a dense subset of lines, there exist K=K(µ)∈C such that

(4.9) a1

c0p
(1)
0,d1−1 + c1p

(1)
1,d1−1 + c2p

(1)
2,d1−1

c0p
(1)
0,d1

+ c1p
(1)
1,d1

+ c2p
(1)
2,d1

+ a2

c0p
(2)
0,d2−1 + c1p

(2)
1,d2−1 + c2p

(2)
2,d2−1

c0p
(2)
0,d2

+ c1p
(2)
1,d2

+ c2p
(2)
2,d2

= K,

for all (c0, c1, c2)∈C
3−{0}. Since µ maps the nodes of D1 and D2 to the same point,

(

p
(1)
0,d1

, p
(1)
1,d1

, p
(1)
2,d1

)

= κ
(

p
(2)
0,d2

, p
(2)
1,d2

, p
(2)
2,d2

)

for some κ∈C. Using this equation, it is easy to see that condition (4.9) is equivalent to saying that µ

maps the singular points of D1 and D2 into a tacnode of its image. Thus, the image of very element

of W 2(d) ∩W41 is a two-component curve with a tacnode.

(2) Nearly the same argument applies to W51. In this case, an extra blowup is required, and we will

have a1 =a2 =a. �

Lemma 4.6. The image of every element of W 2(d) ∩W53 is a two-component rational curve such

that both components have a cusp at one of the nodes of the image curve. Thus, Z ∩W53 =∅.

Proof. The proof is a minor modification of the proof of Lemma 4.1. The central fiber of F in this

case is C32. We can then choose ψ∈H0
(

C32;ωC32

)

such that the restriction of ψ to the right vertical

component (in the diagram) is zero. In terms of coordinates (t, w1) and (t, w2) near the smooth points

p1 and p2 of the two vertical components, we will have

ψt

∣

∣

w1
= a

(

1 + o(1(t,w))
)

dw1 and ψt

∣

∣

w2
= o(1t)dw2,

for some a∈C∗. Proceeding as above, we then conclude that µ maps the node of D1⊂C53 to a cusp

of µ(D1). The same argument applies to µ|D2. �

4.2. The Remaining Cases. The arguments in the previous subsection look very much like the

arguments in [P] and [KQR]. However, some differences appear in this subsection.

Lemma 4.7. If
[

µ : (D, p1, . . . , p3d−2)
]

∈W 2(d) ∩W13, the image of µ is a tacnodal rational curve

and µ maps the nodes of D to a tacnode of µ(D).
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Proof. (1) We use coordinates (t, w) near D∗

1 ⊂C13 such that the two nodes of D1 correspond to

w=0 and w=∞. Let ψt∈H0
(

Ct;ωCt

)

be such that

ψt

∣

∣

w
=

(

1 + o(1t)
)dw

w
.

Proceeding as above, we obtain

µ−1
t (Li) =

{

w
(i)
1 (t), . . . , w

(i)
d (t)

}

⊂ Ct, w
(i)
j (t) = w

(i)
j (0) + o(1t);

j=d
∑

j=1

∫ w
(2)
j

(t)

w
(1)
j

(t)

ψt = 0 ∈ C
/

2πiZ ∀t∈∆∗;

j=d
∏

j=1

w
(1)
j (0) =

j=d
∏

j=1

w
(2)
j (0) ≡ K;(4.10)

(

p0,0, p1,0, p2,0

)

= K
(

p0,d, p1,d, p2,d

)

.(4.11)

for some K =K(µ) ∈C. Condition (4.11) on the coefficients of the homogeneous polynomials corre-

sponding to µ|D1 follows from the fact that (4.10) holds for a dense subset of lines in P2. However,

(4.11) by itself tells us nothing new about µ|D1, since we already know that µ maps the nodes of D1

to the same point.

(2) We instead consider the limit of the left-hand side of (4.10) as L1 approaches the line tangent to

the branch w= 0 of µ(D). If the node µ(0) of µ(D) is simple, two of the numbers w
(1)
j (0) tend to 0

and one to ∞, all at comparable rates. Thus, we must have K = 0. By the same argument, K =∞.

This means

p0,0 = p1,0 = p2,0 = p0,d = p1,d = p2,d = 0.

If [u, v] are homogeneous coordinates on E(1) with w = v
u
, it follows that uv divides all three homo-

geneous polynomials p0, p1, p2, i.e. µ|D has degree at most d−2, not d, contrary to the assumption.

Thus, µ(0)=µ(∞) has to be a tacnode of µ(D) if
[

µ : (D, p1, . . . , p3d−2)
]

∈W 2(d) ∩W13. �

Lemma 4.8. The image of every element
[

µ : (D, p1, . . . , p3d−2)
]

∈W 2(d) ∩W32 has a tacnode at

µ(pi) for some i=1, . . . , 3d−2. If
[

µ : (D, p1, . . . , p3d−2)
]

∈W 2(d) ∩W24 and the degree of µ|D1 is less

than d, then µ(D) is a two-component rational tacnodal curve. Thus, Z ∩Wij =∅ in both cases.

Proof. Since the proof of Lemma 4.7 carries over to the case of W32 with no change, the first claim

is clear. For the second claim, we use coordinates (t, w) and (t, z) as in the proofs of Lemmas 4.1

and 4.7. Then,

ψt

∣

∣

w
=

(

1 + o(1t)
)dw

w
, ψt

∣

∣

z
= o(1t);

µ−1
t (Li) =

{

z
(i)
1 (t), . . . , z

(i)
d1

(t), w
(i)
d1+1(t), . . . , w

(i)
d (t)

}

⊂ Ct, with

z
(i)
j (t) = z

(i)
j (0) + o(1t), w

(i)
j (t) = w

(i)
j (0) + o(1t);

j=d1
∑

j=1

∫ z
(2)
j

(t)

z
(1)
j

(t)

ψt +

j=d
∑

j=d1+1

∫ w
(2)
j

(t)

w
(1)
j

(t)

ψt = 0 ∈ C
/

2πiZ ∀t∈∆∗;

j=d
∏

j=d1+1

w
(1)
j (0) =

j=d
∏

j=d1+1

w
(2)
j (0).
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The last identity implies that µ|D2 has a tacnode. The remaining claim of the lemma follows from the

first two and Corollary 4.2. �

Lemma 4.9. If
[

µ : (D, p1, . . . , p3d−2)
]

∈W 2(d) ∩W31 and the degree of µ|D1 is d, µ(D) has a

tacnode at µ(pi) for some i=1, . . . , 3d−2. If the degree of µ|D1 is less than d, µ(D) is a two-component

tacnodal rational curve. Thus, Z ∩W31 =∅.

Proof. The proof of Lemma 4.7 applies to the first case with no change. For the second case, we use

coordinate (t, w1)=(t, w) and (t, w2) analogous to (t, w), such that w1 =∞ and w2 =∞ are identified

in C31. Since the residues of ψ ∈H0
(

C̃0;ωC̃0

)

at w1 =∞ and w2 =∞ add up to zero, ψ|D2 =− dw2

w2
.

Thus, proceeding as in the proof of Lemma 4.7, we obtain

j=d1
∏

j=1

w
(1)
1,j (0) ·

(

j=d
∏

j=d1+1

w
(1)
2,j (0)

)

−1

=

j=d1
∏

j=1

w
(2)
1,j (0) ·

(

j=d
∏

j=d1+1

w
(2)
2,j (0)

)

−1

≡ K;

c0p
(1)
0,0 + c1p

(1)
1,0 + c2p

(1)
2,0

c0p
(1)
0,d1

+ c1p
(1)
1,d1

+ c2p
(1)
2,d1

·
c0p

(2)
0,d2

+ c1p
(2)
1,d2

+ c2p
(2)
2,d2

c0p
(2)
0,0 + c1p

(2)
1,0 + c2p

(2)
2,0

= K ∀(c0, c1, c2)∈C
3−{0},(4.12)

for some K∈C. Since µ
(

w2 =∞
)

= µ
(

w1 =∞
)

,

(

p
(1)
0,d1

, p
(1)
1,d1

, p
(1)
2,d1

)

= κ
(

p
(2)
0,d2

, p
(2)
1,d2

, p
(2)
2,d2

)

for some κ∈C∗. Thus, as a condition on µ, (4.12) is equivalent to

(

p
(1)
0,0, p

(1)
1,0, p

(1)
2,0

)

= K
(

p
(2)
0,0, p

(2)
1,0, p

(2)
2,0

)

for some K∈C. Suppose µ
(

w2 =∞
)

= µ
(

w1 =0
)

is not a tacnode of µ(D). Then as in (2) of the proof

of Lemma 4.7, we conclude that

p
(1)
0,0 = p

(1)
1,0 = p

(1)
2,0 = p

(2)
0,0 = p

(2)
1,0 = p

(2)
2,0.

This means µ|D1 and µ|D2 have degrees at most d1 − 1 and d2 − 1, respectively, contrary to the

assumption. �

5. Proof of Proposition 3.2

By Lemma 4.7, if
[

µ : (D, p1, . . . , p3d−2)
]

∈Z ∩W13, µ maps the nodes of D into the tacnode of µ(D).

We now prove the converse and determine the multiplicity with which the number Td enters into

[π−1(C0)] · Z.

Lemma 5.1. Suppose C′

0 is a tacnodal rational curve and η : W−→B is a local deformation space

for C0. Let q1, . . . , q3d−2 be points in general position in P2 and f : C′

0 −→ P2 be a map of degree d

passing through the (3d−2) points. Then there exists a map f̃ : W−→P2, perhaps after shrinking B,

such that f̃ |C′

0 =f and f̃
∣

∣η−1(t) passes through the (3d−2) points.

Proof. Since Td =0 for d≤ 3, we can assume d≥ 3. Then H1
(

C′

0; f
∗OP2(1)

)

=0. Thus, there is no

obstruction to extending f to a neighborhood of C′

0 in W . �
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Corollary 5.2. Suppose
[

µ : (D, p1, . . . , p3d−2)
]

∈W13, µ(pi) = qi for all i= 1, . . . , 3d−2, and µ

maps the nodes of D1 to the tacnode of µ(D). Then
[

µ : (D, p1, . . . , p3d−2)
]

∈W 2(d).

Proof. We apply Lemma 5.1 to the normalization f : C′

0−→µ(D) of µ(D) at the simple nodes. Let

Ct be a family of rational curves identified at two pairs of points, i.e.

Ct =

As the nodes of Ct come together, Ct approachesC′

0 in B. For all t 6=0 sufficiently small, let ft : Ct−→P2

be the maps provided by Lemma 5.1. Then ft(Ct) converges to f(C′

0). Furthermore, Ct converges to

C0 in M2. Thus, if

lim
t−→0

[

ft : (Ct, f
−1
t (q1), . . . , f

−1
t (q3d−2))

]

=
[

µ′ : (D′, p′1, . . . , p
′

3d−2)
]

∈ M2(d),

D′ must be one of the curves Cij of Figure 1, and µ′(D′) is a tacnodal rational curve. By Proposi-

tions 3.3 and 3.4, we conclude that
[

µ : (D, p1, . . . , p3d−2)
]

=
[

µ′ : (D′, p′1, . . . , p
′

3d−2)
]

∈ M2(d). �

Lemma 5.3. The contribution of W13 to [π−1(C0)] · Z is 6Td.

Proof. Suppose
[

µ : (D, p1, . . . , p3d−2)
]

∈Z ∩W13. Given a fixed complex structure j on Σ such that

(Σ, j) is very close to [C0] in M2, we need to determine the number of maps µj : Σ−→P2 close to µ. By

Corollary 5.2, there exists a family of curves η̃ : F̃ −→∆ and of maps µ̃ : F̃ −→P2 restricting to µ on the

central fiber D. There are six automorphisms of C0 that preserve its components. Corresponding to

these automorphisms and (F̃ , η̃), we obtain six maps µj : Σ−→P2. None of these maps are equivalent,

since we did not switch the two components of C0. �
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