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Abstract

We describe in detail a gluing construction for pseudoholomorphic maps in symplectic geom-
etry, including in the presence of an obstruction bundle. The main motivation is to try to
compare the symplectic and enumerative invariants of algebraic manifolds. These descriptions
can also be used to enumerate rational curves with high-order degeneracies of local nature in
projective spaces.
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1 Introduction

1.1 Background and Motivation

Suppose (%, j) is a nonsingular Riemann surface of genus g > 2 and (V, J,w) is a Kahler manifold
of complex dimension n. If A€ Hy(V;Z), denote by Hx A(V') the set of simple (J, j)-holomorphic
maps u from ¥ to V such that u,[3]=A\. Let p=(u1,...,un) be an N-tuple of proper oriented
submanifolds of V' such that

I=N
codim p = Z codim 1y = 2((c1(V, J),\) —n(g — 1) + N). (1.1)
=1

For many Kahler manifolds (V, J,w) and choice of constraints u, the cardinality of the set

HE,)\(N) = {(E’yla v 7yN7u) UEHE,)\(V); yleza U(yl)eﬂl VI = 17’ .- 7N} (12)

is finite and depends only on the homology classes of p1,. .., pux. The cardinality [Hx z(u)| of the
set Hx A(p) is then an enumerative invariant of the complex manifold (V,J). Such numbers for
algebraic manifolds (V,J), e.g. the complex projective spaces P", have been of great interest in
algebraic geometry for a long time.

If (V,w,J) is a semipositive symplectic manifold, the symplectic invariant of (V,w),

RT AGu) =RTgAGu1, - 1)

of [RT], is a well-defined integer. Due to the two composition laws of [RT], this symplectic in-
variant is often more readily computable than the enumerative invariant |Hyx z(u)]. In fact, all
such symplectic invariants of P are easily computable. It is also shown in Section 10 of [RT] that
the appropriately defined genus-zero enumerative invariants of P™ agree with the corresponding
symplectic invariants. On the other hand, even for P? and for genus one, the two invariants are no
longer equal. In [I], the difference

RTL)\(IU‘I; M2, ... 7IU’N) - ‘sz)\(ﬂ)|



is computed for genus-one surfaces ¥ and all projective spaces using an obstruction-bundle ap-
proach, first introduced by [T] in a very different setting. In [Z2], the difference

RTo (1) — [Hea(p)]

is computed for genus-two surfaces ¥ for P? and P? using a similar approach. Both differences are
linear combinations of genus-zero enumerative invariants.

The purpose of this paper is to describe in detail a gluing construction for pseudoholomorphic
maps which is suitable for analyzing relationships between symplectic and enumerative invariants
of Kahler, or more generally almost Kahler, manifolds. In particular, this paper supplies the most
technical portion of the justification needed for the main analytic setups in [I] and [Z2]. The ex-
plicit nature of the gluing construction can yield useful estimates for obstructions to smoothing
pseudoholomorphic maps from singular domains and for the behavior of derivatives of pseudoholo-
morphic maps under gluing; see Subsection 4.1 and Theorem 2.8 in [Z2]. Such estimates are used
in an essential way in [I] and [Z2].

The power series expansions of Theorem 2.8 and Proposition 4.4 in [Z2], and their analogues in
other genera, are useful in both enumerative geometry and Gromov-Witten theory. For example,
Theorem 2.8 of [Z2] is used in [Z3] to describe a method for solving a large class of enumerative
problems involving rational curves in P". On the other hand, a genus-one analogue of Proposi-
tion 4.4 in [Z2] is used in [Z4] to describe the "main component” Mﬁﬂk(v, A) of the moduli space
M 1(V, \) of genus-one stable maps into V. This main component is a closed subset of My (V, )
and contains the subspace M(f’k(V, A) of My (V,\) consisting of stable J-holomorphic maps with

smooth domains. If J is sufficiently regular, ﬂ?7k(V, M) is the closure of M?, (V,\) and carries a
fundamental class.

The author is grateful to T. Mrowka for pointing out the paper [I], encouraging the author to work
out all of the analytic issues arising in [I], and sharing some of his expertise in applications of global
analysis over countless hours of conversations. The author would also like to thank G. Tian, for
first introducing him to Gromov’s symplectic invariants and helping him understand [LT], and the
referee, for corrections and suggestions on the original version of this paper.

1.2 Summary

In this subsection, we first recall the definition of Gromov-Witten fixed-complex structure invari-
ants for a semi-positive almost Kahler manifold (V,J,w). We then outline the rest of the paper
and roughly describe the statements of the two main theorems.

If ¥ and V are as in the previous subsection, we denote by
my, Ty uXV — X,V

the two projection maps. Let
AT Y@ TV — SxV

be the bundle of (J, j)-antilinear homomorphisms from 73;T'% to 7wy, TV . If
v eT(ExV; A ni T*ES@n) TV),



we denote by My, \ the set of all smooth maps u from ¥ to P" such that
uL[E] = A and oul, = V|zu)y) Vz€EX.
If 1 is an N-tuple of constraints as above, put

ME,V,)\(:“) = {(E’yh 7yNau) UEME,y,A? yleza u(yl)elul VZ = 17 7N}

If (V,w,J) is semipositive, for generic choices of v and p, My, 5 is a smooth finite-dimensional
oriented manifold, and My, y(p) is a zero-dimensional finite submanifold of My, x x YN whose
signed cardinality depends only the homology classes of p1,...,un; see Section 1 of [RT]. The
symplectic invariant RTy \(; i) is the signed cardinality of the set My, z(1).

If |vs]|co — 0 and (3;y,5ui) € My, A (1), then a subsequence of {(X;y,,u;)}72, must converge in
the Gromov topology to one of the following:
(1) an element of Hx x(x);
(2) (71;y;u), where Y1 is a bubble tree of $?’s attached to ¥ with marked points 1, ..., yy, and
u: ¥ —V is a holomorphic map such that u(y;) €y for Il =1,..., N, and

(2a) u|y; is simple and the tree contains at least one S?;

(2b) u|y is multiply-covered;

(2c) uly is constant and the tree contains at least one S2.
This convergence statement says that for all ¢ sufficiently small, every element of My, 4, \(p) lies
near one of the spaces described by (1)-(2¢). In many practical applications it is easy to show that
there is a bijection between the elements of Hx \(1) and the nearby elements of My 4, A(1); see
Proposition 3.30. This is the case for all projective spaces, provided A is a sufficiently high multiple
of the line. In [I] and [Z2], Cases (2a) and (2b) do not occur, but they may have to be considered
when dealing with higher-dimensional projective spaces or higher genera. If the signed cardinality
of My, 4, () is RTy x(; pe) for all ¢ >0 sufficiently small, the number of elements of My, 1, »(14) that
lie near the spaces described by (2) is thus exactly

CRy (1) = RTg (1) — [Hs A (w)]-

The goal of this paper is to describe CRg4 (1) in terms of the spaces of holomorphic maps them-
selves, which can be viewed as an enumerative object, rather than a symplectic one. We do need
to assume that certain spaces of holomorphic maps are smooth, but they do not need to have the
expected dimension.

While there is a very good understanding of what constitutes a stable map, there is little in a way
of commonly accepted notation for stable maps and various spaces of stable maps. In Section 2,
we recall the definition of bubble or stable maps as well as set up analytically convenient notation.
Our notation for bubble maps evolved from that of D. McDuff’s lectures at Harvard. In Subsec-
tion 2.4, we restate the definition of the Gromov topology on the set of all bubble maps in our
notation. In Subsection 2.5, we define various spaces My and U7 of bubble maps and bundles of
gluing parameters F'7T over My and F7T over Ur.

As is typical in symplectic geometry, our gluing construction has two steps: pregluing and pertur-
bation. The pregluing step is usually carried out in the target space V. In this paper, we work with
the domains to construct an approximately holomorphic map. Indeed, given a pseudoholomorphic



map b= (2, up) in M7 (or Ur) and a gluing parameter ve F,7 (or ve F,T) for b, we construct a
Riemann surface ¥, and a nearly holomorphic map

Qo 2y — Xp;
see Subsection 2.2. We then take the approximately holomorphic map corresponding to v to be
b(v) = (Zv,uv = uboqu).

This explicit construction at the pregluing step leads to the estimates of Theorem 2.8 and Propo-
sition 4.4 in [Z2].

For the second step of a typical gluing construction, one needs to define a family of spaces f+(v) of
admissible perturbations of b(v) and sometimes a family of obstruction bundles I'”*(v), which to-
gether will be called an obstruction bundle setup. The former space should be a maximal subspace
of all perturbations I'(v) of b(v) on which a certain operator D,, is fiberwise uniformly invertible,
i.e. the norm of its inverse may depend on b, but not on v & Fy7. The obstruction bundle F(l’l(v)
should be the complement of the image of D, on I'y(v) in the target space of D, and should
be isomorphic to the cokernel I' gl(b) of a certain operator Dj. It may appear there are obvious
choices for I'; (v) and T'!(v), i.e. the high eigenspaces of DD, and the low eigenspaces of D, Dy
These spaces, however, are not an option for an obstruction bundle setup. The usual difficulty
with the second step of gluing constructions in symplectic geometry is that the operator D} D,
has eigenvalues that tend to zero as the gluing parameter tends to zero, but then disappear as the
gluing parameter hits zero. This is not really dealt with in [I], but there are now several standard
approaches to this problem. We use the modified Sobolev norms of [LT], redefined in Subsection 3.3
in the notation of Section 2, and describe the requirements for an obstruction bundle setup in Sub-
section 3.5.

The main goal of Section 3 is to describe the number of elements of My, 4, \ () lying near the stable
maps of type (2) in terms of objects intrinsic to the space of such maps. Given a sufficiently regular
stratum S(u) C M7 of stable maps of type (2), Theorem 3.29 describes the number of elements of
My 12 (1) lying near S(1) as the number of zeros of a map between two vector bundles over S(u).
The target vector bundle is the obstruction, or cokernel, bundle T" %1 The domain vector bundle
is the direct sum of the bundle F7 of gluing parameters with the normal bundle of & in M.
In Section 4 of [Z2], we use convenient choices of an obstruction bundle setup to approximate all
such bundle maps by much simpler polynomial bundle maps. The latter maps involve derivatives
of rational maps into P".

We also give a local description of spaces of stable rational maps into V' under certain regularity
assumptions, i.e. in the unobstructed cases. By Theorem 3.33, the normal bundle of a stratum Uz
in such a space is F7 . This is still the case if generic constraints u are imposed on the stable maps.
This is a known fact in symplectic, as well algebraic, geometry. However, the explicit nature of the
identification maps that appear in the statement of Theorem 3.33 is used to obtain the estimates
of Theorem 2.8 in [Z2] for the behavior of derivatives of pseudoholomorphic maps.

Section 4 contains proofs of continuity, injectivity, and surjectivity of the gluing maps. These are
usually omitted in the literature, but in the given case one has to choose the obstruction bundle
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Figure 1: A Linearly Ordered Tree and A Rooted Tree

setup carefully to ensure that these properties of the gluing map actually hold. In particular, Sec-
tion 4 contains what [LT] may mean by “asymptotic analysis near the nodes,” which they omit.
The appendix deals with even more technical details of the analysis.

We note that the gluing construction described in this paper deals only with attaching rational
bubble components to a smooth principal component. However, it can be generalized to allow
singular principle components.

1.3 Fundamental Notation

In this subsection, we collect the most frequently used combinatorial and analytic notation.

Definition 1.1 (1) A finite partially ordered set I is a linearly ordered set if for all iy,i9,hel
such that 11,19 <h, either i1 <ig or io <ip.

(2) A linearly ordered set I is a rooted tree if I has a unique minimal element, i.e. there ezists
0l such that 0<h for all hel.

(3) If I and I' are linearly ordered sets, bijection ¢: I — I’ is an isomorphism of linearly ordered
sets if for all hyie€l, i<h if and only if (i) <o(h).

A linearly ordered set can be represented by an oriented graph. In Figure 1, the dots denote the
elements of I. The arrows specify the partial ordering of the linearly ordered set I. By definition,
there is at most one outgoing edge at each vertex. A linearly ordered set I is a rooted tree if and
only if its graph is connected. The minimal element, or root, 0 of a rooted tree I is the unique
vertex of the graph associated to I that has no outgoing edges.

If I is a linearly ordered set, we denote the subset of the non-minimal elements of I by I,ie.
I= {hEI: 1< h for some Z'EI}.

This is the collection of the vertices of the graph corresponding to I that have an outgoing edge.
For every hel, the set {i€I:i<h} has a unique maximal element ¢, i.e.

Lt < h and 1<y, foralliel s.t. i<h.

The vertex ¢y, is the endpoint of the unique edge leaving h. For reasons clarified in Subsection 2.1,
t: I — I will be called the attaching map of I. It is clear from Definition 1.1 that I has a unique

splitting
I=||IL
keK
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such that I, C I is a rooted tree and k is a minimal element of I. The rooted trees Iy are the
connected components of the graph corresponding to I. The attaching map of I restricts to the
attaching map of each I, which will still be denoted by ¢.

Let I be a rooted tree. We denote the unique minimal element of I by 07, or simply by 0 if there
is no ambiguity. If I*, I,, and I* are rooted trees, we will write I* , I, and Ix for I* I*, and I*
respectively; here * denotes any string of symbols. If 1€ 1, let

DI ={hel:h>i}, D, =D;IU/{i}.

The subset D;I of I consists of all vertices of I that are "upstream” from i. Every rooted tree I
has a number of subsets that are rooted trees; the subsets D;I are one example. If H is a subset
of I, the set

I =Liel:i¢hVhe H}

is also a rooted tree. If i€ I, denote I%) by 1) If H is a subset of f, let
={iel:i}hVheH}, I(H)=HU{0}.
If hel, denote I1h} by I™.

If My and M, are two sets, let M;U M, be the disjoint union of M; and M. Finally, if N is a
nonnegative integer, let [N]={1,... , N}.

We now introduce some analytic notation. Let §: R— [0, 1] be a smooth function such that

0, ift<1;
t)y=< " - and "(t) >0 if te(1,2). 1.3
m>{LﬁQZ g() (1,2) (1.3)

If r>0, let 8, € C*°(R;R) be given by §,.(t) = ﬁ(r_%t). Note that

1

supp(6,) = [r7,2r7], ||Blllco < Cpr™2, and [|B]lco < Cor". (1.4)

Throughout the paper, 8 and 3, will refer to these smooth cutoff functions.

Let gn,qs: C— S? CR? be the stereographic projections mapping the origin in C to the north
and south poles, respectively. Explicitly,

2z 1—|z?
14227 1+]22

2z —1—|—|z|2)

av(z) = ( TR TP

) € CxR, qs(z)= ( (1.5)

Denote the south pole of S2, i.e. the point (0,0, —1) €R?, by co. We identify C with S?—{occ} via
the map qy. If 2 €52 —{oo}, we define the corresponding inverse exponential map

¢p: S?—{o0} — C by bz =2—1=qN (2) — g5 (7). (1.6)

Note that this map is a biholomorphism. If g is a Riemannian metric on Riemann surface (X, j)
of positive genus, € X and v € T;X, we write exp, , v € X for the exponential of v defined with



respect to the Levi-Civita connection of g. Let inj,z denote the corresponding injectivity radius
at x and d, the distance function. If z €3, we define the corresponding inverse exponential map

bga: {ZEZ: dg(z, 2) <injgx} — T, by eXpy , Pgu? = 2, |Pgazlge <injyz.  (1.7)

Note that if g is flat on a neighborhood U of x in X, then ¢4 .|r is holomorphic.

Let gy be the Kahler metric of (V, J,w). Denote the corresponding Levi-Civita connection, expo-
nential map, and distance function by VV, expy and dy, respectively. For every A€ Ha(V;Z), let
|A|=(w,A). The number |A| is the gy-energy of any element of Hy y; see Chapter 1 in [MS]. By
rescaling w, it can be assumed that [A|>1, whenever A\#0 and Hg2 y #0. If g is any Kahler metric
on (V,J), denote the corresponding Levi-Civita connection, exponential map, distance function,
injectivity radius, and the parallel transport along the geodesic for X €TV by VY, exp,, dg, inj,,
and II, x, respectively. If g€V and 6 €R, let

Bg(qﬂé) = {q’EV: dg(q,q’)§5}.

In our construction, we allow g vary in a smooth family. Without causing any additional difficulty
in the gluing construction, consideration of such families simplifies computations in specific cases
such as in [Z2]. If (S, 7) is a smooth Riemann surface and v € C*(S; V), put

D(u) =T(S;u*TV), Fl(u) =T(S;T*SQu*TV);
PMW%:N&AMTT®MTW,6u:%wu+Jmmoﬂermw)

We denote by Dy and D, the linearizations of O-operator with respect to the metrics gy and g
on V, respectively. Since both metrics are Kahler, Dy and D, commute with J; see [Z1].

It should be mentioned that it is not essential for the main gluing construction described in this
paper that (V J, g) is Kahler or even symplectic. If (V, J, g) is not Kahler, we would need to choose
an orientation on certain spaces of holomorphic maps and take the induced orientation on the
cokernel bundle; see Subsection 3.2. Dropping the Kahler assumption would have almost no effect
on the analysis, but would slightly complicate the notation.

2 Spaces of Bubble Maps

2.1 Bubble Trees

Let S be either the Riemann sphere S or a smooth Riemann surface ¥ of genus at least 2. Allowing
the genus-one case would lead to somewhat more complicated notation, but would have no effect
on the analysis done in Section 3. We put

o S—{oo}, if §=52%
s, if =Y.

Definition 2.1 A bubble tree based on S is a tuple T=(S,I;x), where
(a) I is a rooted tree and z: I — SUS? is a map;

(b) 2, €S* if 1, =0 and x), € S*>—{occ} otherwise;

(c) if hi#ha and th, =thy, Thy F#Th,-



Given a bubble tree T as above, let X1 be the nodal complex curve

Sr= (({0}><5) Nl ({h}><52))/~, where (B, 00)~ (tn,zp) Vhel.
hel

In other words, the algebraically irreducible components of ¥+ are indexed by the set I. The point

(h,00) on the component
E'ﬁh = {h} X 52

is attached to the point (i, xp) on the component X ,,, where
ET,O = {0} xS,

We will call the component ¥+ 5 corresponding to the root 0 of I the principal component of

T or X7. For each i € f, Y1, will be called the ith bubble component of T or X+ or simply a
bubble component. Let me and X7 denote the open subsets of smooth points of Yt ; and X,
respectively, i.e.

- {zm —{(i,00)} = {(i,zp): =i}, ifiel;

BTN S = {0, 21): en=0Y, if § =0;

* *
oy ==
el

The complement of X% in ¥+ is the set of the singular points or nodes of Y.
If iel and hef, we put
TO = (8,19;2);0)  and  T'=(S,I"z];).

These tuples are again bubble trees based on S. The complex curve Y+ is obtained from Xt by
dropping all bubble components descendent from the ith bubble component. The curve ¥+ is ob-
tained by dropping the Ath bubble component along with all bubble components descendent from it.

If S=52 and he f, we denote the inverse exponential map ¢, defined in (1.6) by ¢ p. If z€ X1,
put

|oT Rz, ifi=tp and z#£o0;
= ' 2.1
rTalz) {100, otherwise. 21)
If >0, let Bt p(0)={z€X1:r74(2)<d}. We set
rT = min <|q§1(:ph)|,min {rrn(u,z): l;«éh}). (2.2)
hel

The positive number r1 measures the separation of the nodes of X1 pairwise and from the point
(0,00) of the principal component Y+ - This point will be a special marked point.

If S=Y and hel is such that Lh el , we again let ¢ j denote the inverse exponential map ¢, of
(1.6) and define r1 5, and BT ;,(6) as above. If g is a Riemannian metric on X, ¢, =0, and z€ X1,
put

dg(wp,2), it i=0;
) o 2.3
T,g,h( ) {1007 otherwise. 2



We denote by ¢ 45, the inverse exponential map ¢g ,, of (1.7) and by Bt 4 ,(d) the ball By(zp,d).
We set

rTg = min (mln {rrgn(u,z): l#h}, m;é% (lgg" (n)], min{rr p(u, ) l;éh})). (2.4)

tp=0

The positive number r+¢ measures the separation of the nodes of 1. We say ¢ is a T-admissible
Riemannian metric on X if there exists § >0 such that for all he I with ¢, =0, the metric g is flat
on BT g 4(6).

2.2 The Basic Gluing Construction

In this subsection, we describe a gluing construction on bubble trees, which is the basis of all the
other gluing constructions in this paper. Lemma 2.2 plays a very important role in the next section
and in the explicit computations of [Z2].

Let T=(S,I;z) be a bubble tree. If hel, put

(0) C, if 7, € 5% (0) (0)
£ = Y =P FxY. 2.5
T {Tth, if 7, €%, T hT (2:5)

hel
If S=52, for any 6 >0, put

0 0
PO = {U:(T,vf): v e PO Jo] = 3 Jon| < 5},
hel

1
Let 67 €(0,1) be such that 807 <ry. If S=X and g¢ is an admissible metric on X, put

0 0
FO = Lo=(T o) 0, e FO Joly = 3 funly + 3 lonl <3},
in=0 in#0

where |vp|g = |vplga,- Let d1g € (0,1) be such that 8(579)% < r1g and the metric g is flat on

Bg(ach,4(5-rg)%) for all hel with ¢, =0.

For each v e F#OB;T if =52 and ve F#O%Tg if S=X, we will construct a bubble tree T(v) and a

smooth map
Qi Y1) — LT

The Riemann surface Y1, is obtained from Y1 by replacing the attaching node of the bubble
Y1 by a thin neck whenever v, #0. The map ¢, simply pinches all these necks. Alternatively,
the map ¢, can be described as a stretching of small neighborhoods of the points (¢4, ) in X1,
around the bubbles X j.

First, for every hel and vy, € F#O;L with
lun| €(0,0) if 2, €S5% and |vyl,€(0,8) if z,€X,
we define local stretching maps

H 2 . .
th(xhyvh): ET(%) — ET(h) if :L‘hES and qg,fh(x}uvh) : Z-I—(Lh) — ET(h) if :L‘hEZ.

10



These maps will stretch a small neighborhood of the point (¢4, z3) in X ,, around the bubble X j,
which is attached to Xr,) at (¢4, 2p). If xp €82, let

1
Ph,(zp,vn) * BT,h(ai) I CU{OO}

be the map given by

Pranon () = (1= B @lorae) (57 (26)
We note that 5
1 T hZ 1
= : Vze BT VR|2/2). 2.7
(ph,(u’vh,vh)(z)) Uh 7h(| 2/ ) @7
Define gy, (4 v,): 270 — Xn) by
. 1
(ha qS(ph,(zh,vh)(z)))’ if TT,h(z)§|Uh|2;
_ . 1 1
h(ann) () = § (875 (B (167 02D (67 02)))5 if on|2 <77 n(2) <2Jvn|7; (2.8)
z, otherwise.

This map wraps the ball B—r,h(|vh|%) around the sphere X1 5. It stretches the ball B—r,h(|vh|%/2)
by the factor of 1/vy, as can be seen from (2.7). The map Qh,(zp,vp) 18 sSOOth everywhere and is a

diffeomorphism, outside of the circle r p(2) = \vh|% in ¥1,,.

If xj, €3, similarly to the above, let pgp (2,0, B—r,g,h(éé) — CU{oo} be given by

oo (2) = (1= B, Gl nzls)) (). (29)

Note that the ratio vy /¢t 412 is well-defined as an extended complex number, since 17, ¥ is one-
dimensional and vy, #0. Define qg 4 (2, 0,): 270 — X by

. 1
(h7q3(pg,h,(rh,vh)(z)))7 if TT79JL(Z)S |vh‘2;
_ . 1 1
Ay (enn)(2) = 3 (ths 0y 0 (Bonly 10T.00210) (8T g.02))), i [0n]2 <r7 g n(2) <2Jup|2;  (2.10)
Z, otherwise.

Similarly to the case zj € S2, g.h,(xn,vp,) 18 sSmooth and is a diffeomorphism, except on the circle

1
rT,gn(2)=|valg in X7,

If $= 92, for every h€ I and v € F#Ozs, we now define a bubble tree Tj(v) and a smooth map

Qu,ht X7, (v) — Zm- Choose an ordering of I consistent with its partial ordering. If h=0, we
take Ip,(v) = {0}, Tp(v)= (S, I (v);), and gy, = Idg. Suppose h#0 and

Tho1(v) = (S, Ih-1(v); 21,(v))
with I, _1(v)CI. If v =0, put

(th=11(v), zp—1,(V)), if L€ Ih_1(v);
q;}h (th,n), otherwise.

In(v) = i1 (v) U{hY,  (tni(v), zpa(v)) = {

11



Let qvvh|ZTh,1(v) =@y h—1 and gy p(h, 2)=(h,z). If v, #0, let

Iy (v) = In—1(v), (Lh,l(v)axh,l(v)) = (Lh—l,l(v)vxh—l,l(v))'

We take q, 5 = Th,(xp,0p) ©Qv,h—1- Inductively this procedure defines a bubble tree T (v) = Tp«(v)
based on S and a smooth map

Qv ={qu,h*: 2"I'(v) — X,
where h* is the largest element of /. This map is a diffeomorphism outside of |I—1I(v)| disjoint
circles. The resulting bubble tree and map are independent of the choice of the extension of the
partial ordering. While the domains of the maps ¢, do depend on such a choice, whenever we
make use of the maps ¢, below, the result will also be independent of the choice. If S= 23, for

every hel and veF#OZM, W (v

larly to the above, but replacing gs (2 v,) PY g.h,(zp,0,) Whenever up, =0. We let Tg(v)=Tgn(v)
and qg,, =qg,0,n+- As before, gq ., is smooth and a diffeomorphism outside of |I—I(v)| disjoint circles.

we define bubble tree T, p,(v) and maps qg,.p: T, ) — r(n simi-

If S=52 and v, #0, put

_ 1 1
ALy =yt ({2 €870, lonl® <rra() <2lonl?} )

_ 1 (2.11)
A;h = q;}h ({ZEETM: §\vh\§ <rtn(z)< \vh|§}>.
Note that Af’h C X7 (v),iz (v), Where
ip(v) =min{i€l:i<hand vy #0 if i<h’'<h} =max {i€I(v): i<h}.
If S=% and v, #0, we similarly define
Afun =t ({2650 nld <rrgn(2) <2013 ) -

1 1 1
- -1
A on = Qg0 ({ZEZT,Lh : §|vh|92 <rr,gn(2) <|uplg }),
where |vp,|, and 77 4 denote |vy| and r1 4 if el

Lemma 2.2 If S = S?, the map q, is holomorphic outside of the annuli Af’h with vy # 0.
For such h,

Hth,(rh,vh) ||CO(qU’Lh (Af,h)) S 07
Up,
ThZ

a -1 o _1 —

8(qv ° qv’Lh) ‘Z = —2on| 2 ((Z5 )dqs|ph,(mh,vh)z ° 85‘2\%\7%451;12 ° d¢T’h‘Z VZE€qu, (Av,h)’
where the norm is computed with respect to the standard metric on S?, and B is a viewed as a
function on C via the standard norm on C. If S =X, the map qq, is holomorphic outside of the
annuli A;tv p with vy, #0. For such h,

qug,h,(rh,vh)HCO(quu’Lh(Ai h)) S Cg Zf Lh:o; quh,(rh,vh)”Co(qg,v,bh(A;u,h)) S O Zf Lh#o;

9,v,

5 -1 _ —1( Y ) _
A(dg,0 © dg,) |, = —2lvn| 2 (th dasl,, . 00B8l,, 4, odoTal, Vi€aguu(Ay,).
where we regard 3 as a function on T, ¥ via the metric g and denote ¢g 11, by OT 1 if o, =0.
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Proof: The first statement in each of the two cases is immediate from the construction. The
estimates on the differential of gy, (5, ,) and qg p,(z,.v,) follow from (1.4). Suppose S =1, =0,
vp#0,and z€A ;. Since gy, =4g,0., o0 A/, ;, and gg is anti-holomorphic, from (2.9) and (2.10)
we obtain

© apgyhv(xhvvh) |Z

1
= —2fuply 2 (L) dgs| 0 9|
g OT g,n% Pg,h(zp,vp)?

dag,|

z

1 o ddT g.nl,-
- 797
20vnlg 2GT 9,02 #
. . . _1 _ — . .
The other cases are proved similarly, since g, © gy ., = Gh,(zy,0,) OB qgvvybh(Ag,v,h) and a similar
statement holds in the case S =52.

2.3 Curves with Marked Points
Definition 2.3 (1) If M is a finite set, a curve with M-marked points based on S is a tuple

C= (S7M7I;:1:7 (.77y))7 where

(a) Tc= (S,I;x) is a bubble tree based on S, and j: M —1 and y: M — SUS? are maps;
(b) (jl,yl)EZfrcm and y; £ oo for all le M ;
(c) for all ly,lo € M with Iy #ly and ji, = ji,, Y1, Vi, -

(2) The curve C is stable if

[{h:m=a}| + [{l: i=1}| > 2
foralliel if S=% and allicl if S=52.

Via the construction in Subsection 2.1, such a tuple C corresponds to a complex curve ¥¢ =X,
with marked points {(j;,y;) biear. For each i€ I, we denote by ¥¢ ; and Eé,i the surfaces X1, ; and
Z*Tc ;» respectively.

0) ?%C and F(O)

denote the spaces F}E o

With notation as above, for every h € I , let F}EOC), and Fc(
respectively. If S=52, put

re¢ = min (TTC,%}\? (‘qglyﬂ,min{r-rah(jl,yl): hef},min{\gz&;llyh\: h;«él,jh:jl})>. (2.13)

This positive number measures the minimum pairwise separation between all special points of X¢,
including the point (0, 00). Let d¢c €(0,1) be such that

1
16(|I| + |M|)og < re.
If v=(C,v;) with v; € FC(O) and |v| <d¢, we now construct a curve C(v) with M-marked points as

follows. Let
T(v) = (S, I(U);ac(v)) and g2 Y7() — ¢

be the bubble tree and the smooth map defined in Subsection 2.2. Then we take

C(v) = (8, M, I(v);2(v), (j(v), y(v))),

13



where (j;(v), y1(v)) € ¥1(v),j,(v) is defined by

o (1(v), yi(v)) = (i, y1)-

Similarly, if S=3 and g is an admissible Riemannian metric on X, put

rcg = min (TTcg7 ml% (mi%{TTc,g,h(jl7 yl)}a min{‘(ﬁg_,glﬂyh‘g: h#lajh :O})a
n= Lh=

(2.14)
min (|5 yi|, min{rr,.n Qe vi)}, ming|ey, ynl: h#L jn ij})> :
21#0 th7#0

Let écg e (0,1) be such that 16(\I\+\M|)(5cg)% <rcg and g is flat in Bg(mh,8(5cg)%) for all he I

with ¢, =0. If ve FC(O) and |v|y <dcg, we construct the curve Cy(v) with M-marked points in the
same way as above, but replacing ¢, and T(v) by g4, and T 4(v).

Definition 2.4 An isomorphism of curves with M-marked points
C= (S, M, I;zx, (j,y)) and C = (S, M, I 2, (j’,y'))
s a tuple of maps,
¢o: I — 1, ¢5:5—S, ¢14:5 — 8> forhel, where

(a) ¢o is an isomorphism of the linearly ordered sets I and I' and ¢o(j;)=7] for all 1€ M;
(b) ¢1, is a biholomorphic map for all i€l and qu 18 the identity map if S=X;

(b) ¢1,i(00)=00 for all i€l z'fS:S2 and for alliel if S=3;

(d) ¢1,, (mh):xiﬁo(h) for hel and ¢15,(yi) =1y, for all L€ M.

Such a set of maps corresponds to a continuous map
¢: Xe — Xy

that maps the {th marked point (j;,y;) on X¢ to the Ith marked point (jj,y;) on X¢ and is bi-
holomorphic on each component of Y¢. If S =52, ¢ also takes the special marked point (O, 00)
on Y, 5 to the special marked point (@, 00) on X, 5. Note that if C is stable, C has no nontrivial
auton{orphisms. 7

Let [C] denote the equivalence class of C in the set of all curves based on S with marked points.
Denote by M& M the set of all equivalence classes of stable curves based on S with M-marked
points. If S =52 Mg s can be identified with the moduli space Mm Mm|+1 of all stable rational
curves with |M|+1 marked points, or more canonically with the space HQ MU0} of all stable

rational curves with the marked points labeled by the set M U{O} If S=% has genus bigger than
two and is generic, ﬂg M is the closed subset of ﬂg, a consisting of all stable curves of genus ¢
with M-marked points that have a fixed complex structure on the principal component. If S has
genus two, ﬂg, M is a double cover of the corresponding set for g=2, since any smooth genus-two
curve has a holomorphic automorphism of order two; see [GH, p254]. The reason we require that
qﬁl’@:I dy, is that the symplectic invariant of [RT] disregards the automorphisms of 3.

14



2.4 Bubble Maps

Definition 2.5 (1) A V-valued bubble map is a tuple b= (S, M, I;x,(y, y),u), where
(a) I is a linearly ordered set, which is a rooted tree if S=X;
(b) u: I — C>®(S; VIUC™®(S%, V) is a map;
(c) if I = || Iy is the splitting of I into rooted trees, then M = || My for some subsets My
keK keK

of M such that Cp, = (S, Mk,Ik;:L‘|fk, (j,y)|Mk) 18 an My -marked curve based on S;

(d) up € C*(S;V) ifheI—1I, u, e C®(S%V) if hel is a smooth map, and uy(c0) =u,, (1)
for all hel; R

(e) for allicl if S=% and i€l if S=52,

{hel: =i} + |[{leM: ji=i}| < 2= uu[S?] £ 0 € Ho(V;Z).
(2) The bubble map b is simple if I is a rooted tree; b is J-holomorphic if Oyu; =0 for all i€ 1.
With notation as in Definition 2.5, every bubble map b corresponds to a continuous map

Up: 2p = |_| Ye, —V,
keK

which is smooth on the components of ¥¢, . If i € I}, the restriction of wu;, to
Ybi = Xy

is of course u;. If hefk, we put

Similarly, let

0 0 * * * x
FO=@FY, =St o D=5 C S
keK keK

If b is simple, denote by T, the bubble tree T¢, for the unique element k€ K.
Definition 2.6 An isomorphism of V-valued bubble maps
b= (S,M,I;x,(j,y),u) and b = (S,M,I’;x’,(j’,y'),u')
s a tuple of maps
po: I — I, ¢1,:8 — S foricl—1I, ¢1;:8*— S* foriel, where

(a) ¢o is an isomorphism of the linearly ordered sets I and I' with ¢o(ji)=17; for all le M;
(b) ¢1,; is a biholomorphic map for all i€l and is the identity map if S =3 and igf;

(¢c) ¢1,i(00)=00 for all i€l if SA:S2 and for all i€l if S=%;

(d) ¢1,, (mh):xiﬁo(h) for all hel and ¢15,(y;) =y, for all le M;

(e) uiﬁo(i) o¢1;=wu; foralliel.
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Such a set of maps corresponds to a continuous map
¢: X — Yy

that maps the marked points of b to the marked points of ¥/, intertwines the maps uy: Xy — V'
and uy : Xy — V, and is biholomorphic on each component 3 ; of 3. If § =52, ¢ also takes the

special marked point (0, 00) on ¥y to the special marked point (0,00) on X, 4.

Let Gy denote the group of automorphisms of the bubble map b. This group is necessarily finite
by the stability condition (e) of Definition 2.5. If Ae Hy(V;Z), let

C_’(O;M)(S; V) = {b: (S, M, I;z, (g, y),u) is V-valued bubble map: Zui*[Zbﬂ-] = )\}/ ~;
i€l
C’()\M (S;V) {b (S {0};,(0,y), uo) is V-valued bubble map: ug, [ ]:A}/ ~,
where the equivalence relation is given by isomorphisms of V-valued bubble maps. If p=puys is an
M-tuple of submanifolds of V| let
C()\M S :u {b [SaM’I;xv(jay)’u]ECY(%(\);M)(S;V):ujz(yl)EMl VZEM}’
Conn(Si ) = {b=[S,M,{0};,(0,y), ug] ECRAn(S: V) ug(yn) € vieM}.

A topology on C_’E)f_M)(S; V) and its subsets C(O)?M)(S; V), C_’E)f_M)(S; 1), C(Of,M)(S; ) is defined
below.

Definition 2.7 Suppose
b*:(SvM)I*ax*)(]*7:[/*))”*) and bk:(S)lekaxkv(]kayk))uk)

be simple bubble maps. If S =52, the sequence {by} converges to b* if for all k sufficiently large
one can choose

(i) M-marked curves Cy,= (S, M, I*; 2, (j*,y*)), and

(ii) elements (vy) ;. EFC(S) with 16|vg| <rék,
such that with v, = (Ck, (vk)f*) ,

(a) klim )., =y, for all hel, and klim |uk| = 0;
(b) C(Uk) = (S) Mv Ik’axkv (]kay(vk’)));

i go G yeg) = U yi) YIEM, and T sup dy (up- (g, (), up (2)) = 0.

k—so0 ZEEC(Uk)

If S =%, convergence is defined in the same way, but |vy| and C(vy) are replaced by |vg|, and
Cqy(vi), respectively, for a Ty«-admissible metric g on X.

This notion of convergence is independent of the choice of an admissible metric on X. Definition 2.7
induces a topology on the space C(O)‘j_ M)(S ; V'), which will be referred to as the Gromov topology.

Remark: 1t is often appropriate to strengthen the last condition in (b) above to Lﬁ’—convergence,

for p> 2, with additional conditions on the behavior near the nodes. However, this is not necessary
for the purposes of [I] and [Z2], for example.
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2.5 Strata of Bubble Maps

In this subsection, we introduce the notion of a bubble type. We then define various spaces of
holomorphic bubble maps indexed by bubble types and vector bundles over them.

Definition 2.8 (1) A bubble type is a tuple T = (S, M, I;j, A) such that

(a) I is a linearly ordered set, and j: M —1I and \: [ — Ho(V;7Z) are maps;

(b) for alliel if S=% and all i€l if S=8%, \i#0 if |[{h: v =i}|+|{l: i=i}] < 2.
(2) Bubble type T is simple if I is a rooted tree; T is basic if I=0.
(8) Two bubble types T = (S, M, I;5, A) and T' = (S, M, I’;j’,A’) are equivalent if there exists an
isomorphism of linearly ordered sets ¢o: I — I such that ¢o(j;) =7, for allle M and )‘:bo(i) =\
for alliel.
(4) If T*= (S, M,I*;j*,g*) and T = (S,M, I;j,A) are two bubble types, T*<T if ICI*,

ji=max{icl:i<ji} VIEM and X\ = > A Viel
i=max{i’'€l:i/<h}

(5) If T = (S, M, I;j,A) is a bubble type, a T-bubble map is a bubble map b:(S7 M, I;z, (g, y),u)
such that wi[Xp ;| =N; € Ho(V;Z) for all iel.

The splitting of I into rooted trees I, induces a splitting of 7 into simple bubble types
Ti = (Sy Mk)LW]kaAk)v

where ji and ), are the restrictions of j and A to M}, and I, respectively. Similarly, each 7-bubble
map b corresponds to a K-tuple of bubble maps bx = (bg)rek, where by is a Ti-bubble map.

We denote the equivalence class of the bubble type 7 by [7] and the group of automorphisms of 7°
that fix all minimal elements of I by A(7"). This group acts naturally on the set of all 7-bubble
maps. The partial ordering on the set of bubble types induces a partial ordering on the set of their
equivalence classes. If b and o’ are 7- and 7’-bubble maps, respectively, such that [b] = [0'], then
[T]=[T']. Furthermore, if {by} is a sequence of 7-bubble maps, b* is 7*-bubble map, and [by]
converges to [b*] with respect to the Gromov topology, then [T7*]<[T].

Let 7= (S, M, I;5, A) be a bubble type. We denote by (7) the basic bubble type such that (7)>7.

It can be described explicitly as follows. Let I = | | I be the splitting of I into rooted trees and
keK

M = | | My, the corresponding splitting of M; see Definition 2.5. It can be assumed that K =1 —I
keK
and k is the unique minimum element of I;. For every k€ K and [ € M, let

Ne=> N di=k

i€l

Then (T)=(S,M,K;j', X).

Suppose 7 = (S, M,I;7, A) is a simple bubble type. If H is a subset of I , we define bubble type
T(H)= (S, M, HU{0}; ', X') by

ji=max{ic HU{0}:i<j} and X= > X with i = max {i*€ HUO:i*<i}.

i3 <h<i
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Then 7 (H) is again a bubble type. The bubble type 7 (H) is the bubble type obtained by glu-
ing 7-bubble maps with the parameter v; such that v, =0 if and only if h € H; see the next section.

Given a bubble type 7 =(S, M, I;j,A), let d(T): I — R be given by

&i(T) = |Ni| + [{leM: ji=i}|+ > du(T) Viel. (2.15)

Lhzi

Since [ is a linearly ordered set, the numbers d;(7) are uniquely defined by (2.15). If
b= (S, M, I;z,(j,y),u)

is a 7-bubble map, b is 7 -balanced if for all i€ ]
(B1) [elduiogn*Pz+ X dn(T)zn + X2 v =0;

Lp=1 Ji=1

(B2) [y du; 0 an[28(2]) + 5 dn(T)B(anl) + X2 Bllul) = L.
Lhp=1 Ji1=1
The integrals above are computed with respect to the metric gy on V. Recall that we consider C

to be a subset of S? via the map ¢y. Thus, z;, and y; can be viewed as complex numbers, as done
above. If S =52 and b is as above, b is completely T -balanced (or cb) if (B1) and (B2) hold for
all iel.

Denote by H7 the set of all holomorphic 7-bubble maps. Let

PSLY) = {ge PSLy: g(oc)=00},  Gr =[] PSLY.
hel

The group G7 acts on Hy by reparametrizations. In other words, if
b:(S,M,I;ZL',(j,y),U)EHT and g:gfeg'fv

then gb = (S, M, I;gx,(j,9y), (gu)) is defined by

Gunzh, if th € gy if jiel; gi i, ifiel;
(92)n = . . gy = e (gu)i = R
Th, if v &1 w, itaél; U, ifigl,
where for any map f: S2—V and g€ PSLs, we define
g-f:8*—V by {g-f}z)=[lg'2)
Let M(TO) C 'H7 denote the subset of 7-balanced holomorphic maps and
Gr=]]s" cor,
hel

Since every element of G7 is a map on I, A(7) acts naturally on G7. The semi-direct product
A(T)xGr acts on Mg(—)) and all the stabilizers are finite. Denote the quotient by M7, and let



If A(T)={1}, corresponding to the quotient My = Mg(—))/GT, we obtain |I| line (orbi)-bundles
{L, T — Mg: hel},
that carry natural norms:
I[b, cn]| = |enl if be/\/lgq) and ¢, €eC.

If A(T)+#{1}, the fiber products and connect sums of the above line bundles taken over each orbit

of A(T) are well-defined. Let FfEO)T—>Mg(—J) be the bundle with the fiber F}E?b) at bEM(TO), ie.

where m,(b) = zp,

O _ Mg(—))x(C, if z), € S
h Ty, if 7, €Y,

with notation as above. The action of G7 on M(TO) lifts to an action on each bundle F; }EO)T by

. -1 . 5
g-(b,up) = (9 bagb_high vh), ?f Lhe{,
(g-b,gh Uh), if v, & 1.

Here and in the rest of the paper, we identify S' with the unit complex numbers in the usual way.
Let F37 be the line orbi-bundle over M7 given by

BT =FT/Gr.

This bundle has a natural norm unless ¢, =0 and S=3. In such a case, any metric g on ¥ induces
a norm on F,7T. Let

0 0 0
FOT=PF"7, F'T=rF"7|; FT=@AT, F[%])T:F(O)T\[b}.

hel hel

Note that if 7* <7, there is a natural splitting
(A(T")xGr+) = A(T) x (G xG),

with G determined by 7 and 7*. Thus, G acts on Mg(—)z and the line bundles F}EO) T*, while G~
acts on ./\/lg(-)) and F}EO)’T.

It §=92, let
Br = {b:(S,M, Iz, (j,y),u) EHr:bis cb; uy (00)=wui,(00) Wl,igel—f}.

Denote by Ug)) C M7 the quotient Br/(A(T)xG7). The group

Gr = H St

iel—1
acts on Z/{(TO ) and M as follows. If

0] = [(S*, M, I;2,(j,y),u)] € Mz and g=(g:);c; ;jEGF,
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define g[b] = [(5?, M, I; gz, (4, gy), gu)] by
Th, ithEf; Yl if j €1, Uj, ifief;
(gz)n = . L (gy)h = L (gu)i= p o 43
Gunxh, if o &1, gy, it i &1, gi ~ug, ifigl.

As in the previous paragraph, all stabilizers are finite. Furthermore, this Gr«-action on My

naturally lifts to an action on /\/lgg) and along with the Gr-action on Mgg) induces an action of

G‘TEG*TXGT on ./\/lg(—)) as well as on F}EO)T by
(g* g) . (b Uh) _ ((g*vg) 'b7thg}:1Uh)7 if LhEI:;
((9%,9) - b, g gy ton), if en &1.
Note that G%, =G’ whenever 7' <7 . Let
ur=uYjcy,  UY = Jul, dr=J ur.
TI<T TI<T
With respect to the Gromov topology, the space ovl/{7(9 ) is Hausdorff and compact; see [RT]. Fur-

thermore, G acts continuously on UY(P,) as can be easily seen from Definition 2.7. If follows that
Ur is also Hausdorff and compact in the quotient topology. Denote by {LZ-T —sUr:iel-1 } the

line orbi-bundles corresponding to the quotient Uy = Hg) ) /G%. Let

AT = (BT, )/Gr —tr. FayT = ATl FT=@HAHT. FyT =FT]y
hel

The line bundles F3,7 have natural norms, defined as in the previous paragraph.

If 7=(S,M,I;j,\) is a bubble type and b= (S, M, I;x, (j,y),u) is a T-bubble map, for any [ € M,
let ev;: H7 — V be the map given by

evi((S, M, I;z, (j,y),w) = uj, ().

This map descends to the quotients defined above and induces continuous maps on the spaces M,
Hﬁﬁ), and Ur. If p=ppr is an M-tuple of submanifolds in V, put

Hr(p) = {beHr:evi(b)em VieM}.
Define spaces M(TO) (), M (), Mz (i), etc. similarly. If S= 52, we define another evaluation map,
ev: Br — V by eV((S2, M, I;z, (]73/)7“)) = UO(OO),

where 0 is any minimal element of I. This map induces continuous maps on the spaces L_{7(—0 ) and Ur.
If p=p;; is an M-tuple of constraints, let

Ur(p) = {beUr:evi(b)em YIeM N M, ev(b)ep Ve M—M}

and define Ug) ) (), etc. similarly.
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3 The Gluing Construction and the Obstruction Bundle

3.1 Summary and Notation

We now present a gluing construction on the spaces M7 () such that Hyz is a smooth manifold
with the tangent bundle isomorphic to the kernel of the linearization of the d-operator, as defined
below. The space H7 is well-known to be smooth if the linearization of the J-operator is surjec-
tive; see Chapter 3 in [MS]. However, surjectivity of the linearization is not a necessary condition;
see [Z2] for examples. In fact, there are two main cases of primary interest to us. The first is when
T= (52, M, I; j, \) and the linearization of the d-operator is indeed surjective. In this case, we give
an analytic description of a neighborhood of Uz (1) in Uiy (1) for a generic set of constraints y. The
second case is when 7 = (E, M, I;j,\) and the cokernels of the linearization of the d-operator form
a vector bundle over H7, which will be the analogue of Taubes’s obstruction bundle of [T] in the
gluing construction below. Using the same analysis as in the first case, we describe any sufficiently
nice element of C’E’;M)(Z; p) lying near M (u), where A=3" A;. The elements of My, 4, \ (1) lying
near M7 (u) will correspond to the zero set of a certain section of the obstruction bundle.

For our gluing construction, we fix a smooth family {gy;: be M7} of Kahler metrics on (V,J).
We assume that this family is (A(7)x G )-invariant if =% and (A(7)xG7)-invariant if S=S2.
foeMr, XY €TV, and u: (D, j) — V is a smooth map from a one-dimensional complex
manifold, let

expy g X = expg, ¢ X, VP=VP IxY =1, xY, Dyy = Dy,u;
see Subsection 1.3 for more details. If S=3, we also choose a smooth family

{972 2= () (4., 20y ThED; Tn, FTny i h1Fho}

of Riemannian metrics on ¥ such that each metric g7 , is flat on a neighborhood of z;, in ¥ for all
hel with ¢, =0. Existence of such a family of metrics is shown in [FO]. If

b= (Z,M,I;m, (j,y),u) eHr,

let g, 5 denote the metric g7 () on X. If iel, we write gv,; for the standard metric on S2.

{h:Lh:()}
Similarly, if S=52, for all i€ I, we write gv,; for the standard metric on S2.

If b= (S, M, I;z, (g, y),u) eHr, let
T'(b) = P T(w); T(b) =T(wp) = {&€T'(H): En(00) =&, (x1) VhET;

iel

T'(b) =T"(w) = PT (w);  T0) =T (u) =PI (w).

i€l i€l
Define Dy: T'(b) —>I‘071(b) by
(LE{IL'::L%ﬂufi Viel.

We denote the kernel of the operator D, on I'(b) by I'_(b). If £ € D(u;) or £ € I (w;), let ||| on
and ||€||p.2 denote the C*- and L?norms of ¢ computed with respect to the metrics gy, on V and
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Gbi on Sy, If E=&,€T(b) or £€TL(), put
1€ls.cr =D Mills.cns  NEllo2 =D &llo2.
icl el
Let mp—: I'(b) — T'_(b) be the (L?,b)-orthogonal projection map.

The space P, T of perturbations of a bubble map b is the collection of tuples o= ({;;wj_,,), Where

C, ifleM &%, ,=5%

ceT(w) Viel, wyeFO Vhel, w e
Gielus) =T ClI,E, ifleM & Ny, =5

If o is sufficiently small, we define exp, o= (S, M, I;x(0), (j,y(a)),ug) by

Thp+wp, if ¥y, =S5% Y +wy, if 3, =5%
rp(0) = yi(o) =

XPg, oz, Wh it Xy i, =2; eXPg, oy Wi if 3y 5, =%

and ug; =expy,, & If 2 €3, let |v[y =|v]g, ;o For consistency, if v€C, let [v|,=][v|. Along with
the (L2,b)-norm on the vector fields defined above, we obtain an inner-product on the space of
tuples o as above.

In order to get a good description of the spaces ./\/lg(—)) as submanifolds of H7, we describe an action

of an open subset of 0 in (C@R@R)I on bubble maps and distinguished elements agf )i) €PyT that
correspond to this action. If

(C,T’,Q):(C,T’,Q)IA S (CXRXR)I

and b is a bubble map as above, we define
(¢,r,0)-b= (S, M, I;(c,r,0)x, (7, (c,r,80)y), (c, T,H)u)
by setting
((e,r,0)x), = €n (147,)(@n+cy,), ((e;r,0)y), = € (147;) (wi+cz,),
((c, T,H)u)z.(qN(z)) = uz-(qN((1+ri)_le_wiz—cz-)).

If (¢,r,0) is sufficiently small, (¢,r,6) - b is again a bubble map, i.e. the maps into V still agree
at the nodes, and the nodes and the marked points are still all distinct. In fact, the values of the
maps at the nodes or the marked points do not change, i.e.

((Ca T, Q)U) Lh(((c’ T 9)$)h) :ubh(‘rh)v ((C> T, H)u)h(oo) :uh(oo),
and ((Ca r, O)U)jl(((Q Tae)y)l) :ujl(yl)'
Furthermore, if be Hr, (c,r,0)-beH7. If b is of type T, the above describes the action of a neigh-
borhood of the identity in G7 on the space of stable maps of type 7. The action by C corresponds

to the translations of C, by the first R-component to dilations about the origin, and by the last
R-component to rotations about the origin. If S=52 and (¢, r,0) € ((CX]RXR)I is sufficiently small,
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we define (¢, 7, 0) - b similarly.

If ue C°(S% V), define £, ..., €Y e T(u) by:

0 0
€ (2) = —dwoay)| 5= EP(an() = ~d(uoav)| 5
0 0 0
(3) - _ I R “
el lan(2)) = —dlwoan)| (77 +15) = —rdtwo )| 7.
0 0 0
(4) _ R “
§0(an(2) = dwoqu)| (t5-—s5) = —d(uoqn)| =
where we write z=s+it € C and r =+/s2+1t2. These vector fields extend smoothly by zero over
the south pole. For any z € S?—{cc}, let wg(cl), - ,fwg(f‘) €C be given by

w(l) - 1, wg(c2) = i) w:(CS) =, w:(c4) = iz

If b is a bubble map as above, k=1,....4, i*€l if S=X and i* €I if S=52, let
(k) _ ((c(R) (k)
Tbyix) = ((E(b,i*))l’ (w(b,i*))fuM)
be given by

(K) i g =" w® w5

g(k)* o Us =t w(k)* _ Tp h=1, w(k)* _ vy JI=S

G870, i O o, A GO o, i
The tuples agl]f)i*) correspond to the infinitesimal action of Gz on the space of stable maps of type 7.

Finally, if X is any space, F'— X a normed vector bundle, and §: X — R is any function, let
Fs = {(b,’U)EF: |U|b<5(b)}

Similarly, if 2 is a subset of F, let Q5=F5N Q. If v=(b,v) € F, denote by b, the image of v under
the bundle projection map, i.e. b in this case.

3.2 The Basic Setup

In this subsection, we describe our assumptions on the smooth structure of H7 and state some of
their implications.

Definition 3.1 Bubble type T =(S%, M, I;5,)) is (V,.J)-regular if for all
b: (S,M,I;.T, (.77y)7u) S HT7

(a) Dy, T(u;) — T (u;) is onto for all i€ I;
(b) ker Dy o, — Ty, (00)V, §—&(00), is onto for all i€ .

Definition 3.2 Simple bubble type T =(S, M, I;j,\) is (V,J)-semiregular if
(a) the space H(S,@,{()};,AO) is a complex manifold, and there exist 5,06COO(H(S’M@};’AO);R*) and

for each b=(S,0,{0}; L Ug) € H(S7@’{@};7AO) a map
hr ot 1§ €ker Dy, [[€llg, 00 <(b)} — T(ug)
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such that

1h 56 (g o S COMIENS, o g 64(€) = Bz 56 El,, co SCONE=E ], co-

for all §,&" €ker Dy, with |||, co, 1€ ]l4,.c0 < (D) and the map

HgV7
Hr o {§€ker Dy, p: [I€lgy,c0 < 5(5)} —>H(S,@,{()};,,\O)7 f—>eXng,u() (§+h7,0;b(£))7

s an orientation-preserving diffeomorphism onto an open neighborhood of b in H(S,@, (0}:0)" Fur-
thermore, the family of maps {H g, bEH(s’M@};’AO)} is smooth.
(b) for all b= (S, M, I;x, (j,y),u) ceHr

(b-i) Dypu,, : T(up) —T%(up,) is onto for all hel;

(b-ii) ker Dy o), — Ty, (00)V > € —&(00), is onto for all hel.

Remarks: (1) All conditions in both definitions above are independent of the choice of metric on V.
(2) Condition (a) of Definition 3.2 says that H g 5. o) is a smooth manifold modeled on ker D
for bEH(S7@’{@};7AO), as would be the case if Dy: I'(up) — T'%1(up) were surjective.

(3) The conditions of Definitions 3.1 and 3.2 insure that H7 is a smooth manifold; see Proposi-
tion 3.3 below. However, (b) of Definition 3.1 and (b-ii) of Definition 3.2 are somewhat stronger
than necessary to show that H is smooth. They allow us to obtain the second part of (1) in
Proposition 3.3, which is used in the proof of surjectivity of the gluing map; see Subsection 4.3.
These two conditions hold for all complex homogeneous manifolds; see Section 10 in [RT].

Note that if 7 is semiregular, the homotopy invariance of the index implies that the vector spaces
%' (b) = cokerDy, ~ ker Dj C T%'(b), b e Hr,

form a vector bundle over H7. Here D; denotes the formal adjoint of D with respect to a metric
g on S; it is a J-linear operator. The space ker D; is independent of a conformal choice of the met-

ric g. The bundle I'! — H7 will be called the T-cokernel bundle. It is (A(T)x G7)-equivariant,
and thus descends to a bundle I'! — M7, which will be the analogue of Taubes’s obstruction in
our gluing setting.

Let T= (S, M,I;j,A) be a bubble type. If b= (S, M, I;z, (4, y),u) €Hr, put
KyT = {J:(ﬁ,wfuM)EPbT: &icker(Dy,,) Viel; (o, agf)h)>:() Vhel, kel4];
En(00) =&, (1) +duy, |, wr, Vhef}.

IfO':(f,’wfuM) € KT, let

lolly,cr = N€llo,cr + D lwnls+ > lwls.

hei lent
We take the default norm on K7 to be given by || - ||, co. If b is as above,
V= (S,MILz, (j,y)u),

and 6>0, we say d(b,V') <9 if there exists o € P,T such that exp, o =0" and [|o][, co <0.
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Proposition 3.3 (1) If T=(S,M,I;j, ) is a reqular or semiregular bubble type, Hr is a complex
manifold and there exist e, C’TECOO(Mg(—));RJF) with the following property. If b* € Hr and

= (S, M, Iz, (j,y),u) is s.t.  d(b*,b) < er(b*) and Ou; = 0 Viel,
there exist & €T (u;) for i€l such

H&Hgv,co < CT(b*) ZdV (U’Lh (ZL‘h),uh(OO)) and b = (S7 M, I;x, (]a y)vu/) € Hr,
hel

where u% =uy and u;=exp,,, .. & ifi€l.

(2) The space ./\/lgg) is a smooth oriented manifold on which the group G acts smoothly. The maps

ev:./\/lg(—)) — V, eV(S,M,I;ﬂJ’, (]ay)vu) :Uo(OO),
eVlZMr(Z(-J) —>‘/, eVl(S7M7I;‘T7 (j,y),U) :ujz(yl)7

are smooth. In particular, w; — ||du;||y co defines a continuous function on M(TO).
(3) There exist o, C’TEC’“’(M%Q);]RJF) and smooth maps

hrp = hg},)b b hgg,)b Ko Tsr ) — T'(D) @ (Co R)’,
such that Hth HbCO < CT(b)HUHiCo’
|\h7 (o) = hrp(o Hb co < O7(0) (llolly,co + [lo'ly,c0) llo—=a"[ls,co,
and each map
Hég)b {( H)E]Cb']:gT(b XR |9|<7T} —>M’(T)7
HY)(b,0,0) = (hF)(0),8) - expy (a+h5,(0)),

)

is orientation-preserving diffeomorphism onto an open neighborhood of b in M(TO .

Proof: (1) Let T, = (214, {l: ji=i}+{h: t,=1i},{0};0,\;). By (a) of Definition 3.1, and (a) and
(b-i) of Definition 3.2, Hz; is a complex manifold for all i€ . Let

Al = {(QaQ)jE H(VxV): thV}.
I

The submanifold A{/ is the ] -product of the diagonal in V' x V. Since V is oriented, so is the normal

bundle of A{;. Claim (1) of the proposition follows by applying the Implicit Function Theorem,
(b) of Definition 3.1 and (b-ii) of Definition 3.2 to the smooth map

ev;: HHT — H VxV), evh((S, M, I;x, (j,y),u)) = (uh(oo),uLh(a;h)).

el
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Note that HT—ev (AI )
(2) For any uEC’OO(S27V), define TueC, ¥®yeR, and TueCxR by

Uy = (\I/u gt / |du o qn|*z / |du o qn|?8(|2]) — —)

where the integrals are computed using the metric gy. For i* € Tif S=Y and i*elif S= 52, we
define maps

\I/TJ*:H'HTZ.—NCXR by
i€l
U i (S M, I;z,(7,9), (lllul*—kZdh xh+z yl,\II( uz*—i-Zdh B(|xn|) —l—Zﬁ yl|>

Lp=1* Ji1=* Lp=1* Ji1=*

These maps W7 ;+ are smooth, since the smooth structure on all Hyz; is described similarly to (a)
of Definition 3.2. Furthermore, if bEM(TO), i*el, and k*=1,2,3, since U7 i(b)=0 for all i and /&
does not change sign, by Lemma 3.4,

=0, if it
v o) § A0, =it =k
=0, if kAK #3,

where k=1,2,3. By (b) of Definition 3.1 and (b-ii) of Definition 3.2, it follows that the map

[[Hr — (CxR) H (VxV), b— ((7.(0)),cpev;(b)).

el

is transversal to the submanifold {0} x A{;. The preimage of this submanifold is precisely the
space Mg(—)). Thus, Mgg) is a smooth oriented manifold by the Implicit Function Theorem.

Lemma 3.4 For any k€ [4] and u€ C>®(S?; V), £€¥)(00)=0. Furthermore,
\if((c, r0)-u) = (1+1")(ilu + c||du||%) V(e,7)eCxR; (3.1)

V(00 )| _ = [ ldwoan) P8 (D) 52)

T

where (c,r) - u is defined as in Section 3.1. Finally, DU&(L@ =0 if Ou=0.
Proof: The first and last statements are immediate. We use the change of variables
— (14+r) 2 —¢
to prove (3.1):
_ 2
/ !d cr) oqN)‘ z = /(C(l—H“) 2‘d(uoqN)‘(1+T)7lz_c

_ (1+r)/c (w0 gx)[*(z4+¢) = (1) (Fu + el dul3).
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Similarly,
& [l woa) Pg=b| _, = 45 [ latwo am)s(are)
= [latuoa) (=Dl

r=

The lemma is now proved, since the action by the #-component does not change 0.

If 7=(S?,M,1I;j,)\) is a regular bubble type, with notation as above, let

KT = {o= (Er,wy, ;) €T : <O‘,O‘fb70)>:0 Vkeld], &, (00)=¢&;(00) Vil,igel—f}.

By (b) of Definition 3.1 and the same argument as in the proof of Proposition 3.3, we can construct

smooth maps hg}?bx hg??b : I@b%(b) —T"(b) x (CxR)! such that each map

HE) : {(b.0,0) €Ky Ty xR« 6] <} — Br.,
0 2
Hy)(0,0) = (h7}(0).0) - expy (7-+1ip)(0),

is orientation-preserving diffeomorphism onto an open neighborhood of b in B.

3.3 Construction of Nearly Holomorphic Bubble Maps
Let 7= (S, M, I;j,\) be a simple bubble type. In this subsection, for all be Mg(—)) and v=(b,v})

with v; € Fb(O)T sufficiently small, we construct a bubble map b(v) with domain ¥,,, where ¥,, is as
in Subsection 2.2. The map uy(,) will be just the composite u; o g,. We then define a Riemannian
metric g, ; and a nonnegative function p,; on each component X, ; of X,. The metrics will be
such that the C%-norm of the differential of ¢, is bounded independently of v ;- The nonnegative
functions are used to modify the Sobolev norms, in such a way that the norm of the inverse of the
operator Dy, on certain subspaces of I'(b(v)) is bounded independently of v;.

By Proposition 3.3, /\/lgg) is a smooth manifold. If S=52, let 67 € C"X’(Mg(—));]RJF) be an A(T)xGr-
invariant function such that d7(b) <rr, for all be Mg(—)). If S=%, let 5TEC°°(MgQ);R+) be an
A(T)x Gr-invariant function such that for all

b= (3, M,I;z,(j,y),u) € MY,

(A1) 467 is smaller than the function ¢ of Lemma 5.1;
(A2) 467(b)< ¢, 9p.0-
In both cases, it can be assumed that d7 does not exceed %.

If H is a subset of ] , put

FIT = {v=(b,v;) e FOT : v, =0if and if he H },
FAT ={v=[b,v;]€FT:v,=0if and if he H}.
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For any v = (b,v;) € FOT, let |v| denote |v|y, if S = . From now on, we assume that
de COO(MgQ);RJF) is an A(7T)xGr-invariant function if =¥ and an A(7)xGr-invariant function
if =252 such that 852 <o7. If

v = (by,v;) = ((S, M, I;z,(j,y),u),v;) € FOT5,
let q,: ¥, — %, be the smooth map defined in Subsection 2.2 for
v=(C,v;) = ((S$, M, I;z,(j,y)),v;),
using the metric g, 5 on X if S =X. Let u, =up, 0g, and b(v)= (C(v), uy).

We now define a Riemannian metric g, ; on ¥,,; for each i€ I(v) CI. Along the way, we construct
a metric g, ; on X, ; for each i € I. Suppose ¢ € I and for all h € I such that 1, =i, we have
constructed a metric g, 5 on ¥, ;. For each h €I such that 1, =14 and vy #0, let g, ;5 denote the

metric on By, p (25 (bv)%) which is the pullback of the metric g, by the map

<¢bu,h) ¢, 0 i 2pESE
z—qn| —=], where ¢y, p = )
Up, ¢Tbv,gb7hv if zp €.

This metric is conformal with the original metric g3, ; on ¥, ;, because the maps ¢y, j, are holomor-
phic on the set {r,;, < d7(b)} and the metric g, j, is conformal with the standard metric on C. Thus,
there exists a smooth positive function A, ;5 such that g, :)\%Jﬁgbwi. Let A, ; €C™ (%, :; RT)
be given by

. . 1
Noi(2) = Avih(2) + Bl (16,10 (2)) (L= Ain(2)), if up=i and 7y, 4 (2) <2Joh|2;
v 1, if 7y, 4 (2) > 2Jvp|2 VheT.

Since I is a rooted tree, this procedure defines metrics g, ; for each i€ I(v).

In addition, we define a smooth nonnegative function p,; on X, ; for each i € I(v). As in the
previous paragraph, along the way we define a function p,,; for each i€ 1. Suppose €I and for all
hel such that tp, =1, we have constructed a smooth function p, , on X, . For hel with L =1
and z€3,, ; with |z|,=rp, n(2) < 267(by), put

Uh

O e B - (B e

if vy, #0, where g3, is defined as in Section 2.3, using the metric G, .o on X if S=2. If v, =0 and
z is as above, let

oy, |2 ~ .
punlana,) + B(LPIN L (122 + 128) = o)}, if [2ln <67 (b0
|vn |

|2|n
v,i = 1-
pui() = |2l + 6 (5 7y ) {1 - 112}
If |z, >207(by) for all he I with ¢, =1 and v; #0 if 0 >0, set p, i(2)=1. Otherwise, let

poi(2) = lag' (2)]° + B(o7 (bo)las " (2)){1 — lag " ()" }.
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This construction defines nonnegative functions p, ; on ¥, ; for all i€ I(v).

We finally define norms on the spaces I'(u,,) and I''(u,). If ;€T (u, ), put

1

1 p—2 1
-y 2
2l = ([ )"+ ([ s )" (33)

where |7;| and the integrals are computed with respect to the metric g, ; on X, ; and gy, on V.
Denote by [|7;]],, co.; the CO-norm of 7; with respect to these metrics. If n=n,) €T (uy), let

[nllvp = Z 117|335 [l o,co = Z 17 llv,co.s-

iel(v) i€l (v)

Similarly, for any & €I'(u,,;), put

1 _p=2 1
20eilgs = ([ 167)" + ([ o0 167)%5 Mellopas = 16 + V6 30)
Ev,i Ev,i

where we again use the metrics g,; on ¥, ; and gy, on V as in (3.3). Denote by |||, co.; the
C%norm of & with respect to the metric gy, on V. If §=Erw) €T (uy), let

||5||U,p: Z ||£i||v,p;i’ ||5||v,p,1 = Z ||§i||v,p,1;i’ ||£||U,CO = Z ||5z||uc i

i€l(v) 1€l(v) i€l(v)

_p—2

Note that even though the functions Pv;" have poles at the singular points of 3, all smooth

one-forms and vector fields have finite norms defined by (3.3) and (3.4), respectively, since T <1.

We denote by LY(v) the completion of I'(u,) with respect to the (v, p,1)-norm and by L?(v) the
completion of I'%!(u,,) with respect to the (v, p)-norm. Finally, let

Dy: T(uy) — T (u,)

denote the linearization of the d-operator at u, with respect to the metric gvp, on V.

Lemma 3.5 If 7T is a simple bubble type and p>2, there exist J, CECOO(MgQ);RJF) such that for
allve FOT;,

(1) |lduy]lv,co < Cbo) and [[Ouyllv,p < C(by)|v]7;

(2) [ Dvtllvp < C(bo)[Ellvpa for all §€T (uy);

(3) llEllv,co < Cbo)l[Ellopa for all £ €T (uy);

(4) llgllo.p.r < C00) (I Doéllop+I€lop) for all EET (uy).

Proof: If h€ I—1I(v) and S = S?, let AF, be the annulus as in Subsection 2.2. If S =3, let

AjE denote AgjE b By definition of the norms, ¢, is an isometry outside of such annuli, and by
Lemma 2.2 the &’0 -norm of dg, is bounded on such annuli independently of v;. Thus, the first part
of (1) follows from (2) of Proposition 3.3. Since p, > |vp| on A, p, the second part of (1) follows
from Lemma 2.2. Statement (2) of the lemma is immediate from the definition of the norms. The
last two claims are proved in the appendix; see Propositions 5.7 and 5.11. In fact, the C°-norm

of ¢ is bounded by the usual L{-norm of &.
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3.4 Scale of Variations

In Subsection 3.6, we consider perturbations of the bubble maps {b(v)} in directions “away” from
the space of such bubble maps. More precisely, we look at replacing u, by expy, ,, § with £ lying
in a certain subspace of L}(v) complementary to “the tangent space” of the space of maps {b(v)}.
If 7 is regular, one obvious candidate for such a subspace is the (L2, v)-orthogonal complement
of the kernel of D,,. While the construction in Subsection 3.6 would go through, we would run
into significant difficulty showing injectivity and surjectivity of the gluing map; see Subsections 4.2
and 4.5. In this subsection, we start by describing a choice of the complementary subspace which
will work for the purposes of Subsections 3.6, 4.2, and 4.5. We then describe norms on the tangent
spaces to F'7 and the properties of our setup that are sufficient to show injectivity and surjectivity
of the gluing map.

Suppose v= ((S, M, I;x, (j,y),u),v) e FOT5, where 7 is a simple bubble type as before. For any
€€l (by), define R,& € LY (v) by
{Ru&}(2) = &(qu(2))-

Note that R,& is smooth outside of the |/ —1(v)| circles mapped by ¢, to the nodes of ¥,, and is
continuous everywhere, since I'(b,,) is the set of smooth vector fields on the components of ¥ that
agree at the nodes. It follows that R,¢ is indeed of class LY. Let I'_(v) be the image of ker(D,)
under the map R,,. This space models the “tangent bundle” to the space of maps {b(v)}. Denote by
[, (v) its (L?, gy)-orthogonal complement in L¥(v). Let m, — and 7, 4 be the (L?, g, )-orthogonal
projections onto I'_(v) and I'} (v), respectively.

With Hc I and ve FET;, let

TUFHT = {w:(f,quM,Gf,Tf_H)i (S,wfuM)EK:bUT; Gh,’l"hER};
T FPT = {(&,wi 0575 5) ETFH T w, =0 Vhe HY.

Given w as above, put

Izl = 11€lp,,co + > lwnle, + D lwils, + D 10a1+ Y Iral.

hel leM hel hel—H

If 67 and H(TO’)bU are as in Proposition 3.3 and ||w|| <d7(b,), put
b = (S, M, I; 2(w), (j, y(@)), u(@)) = HY) (¢, w;,,:0;) € MY
w I P ’ ’ ’ by s Y TuM VT T
if S2.
(14 ) {“h’ PERERT e,

Ay 1oy, pan(@)Ohs i THE; V(@) = (be, (V(@))}).
0) lf hEH,

vn(w) =

Then v(w) € F s if ||w| < 6(b,) for some 6 € COO(M(T());R+) sufficiently small. If H = (),

T,FHAT =T,FHT models the tangent space of [v] in FHT. If H # (), the bundle F7T and the
construction in the previous subsection lift to a bundle # FT over

ME E/\/lgg)/{ngGT:ghzl Vge H}.
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Then T, FT models the tangent space of [v] in  F7. On the other hand, T, F¥7 models the
tangent space of [v] in the restriction of  FT to the subspace

{['=(S,M, L2, (4,9 ),u)] e M : 2, =, YVhe H}.

The reason for defining subspaces T, FH T is that if o} #x, for some h'€ H, b(v) and b(v') do not

have the same singular points for all v € F, b(H)’T and veF, b(,H)’T . Since the perturbation construction
of Subsection 3.6 does not change the singular points of b(v) and b(v'), the resulting bubble maps
b(v) and b(v') will necessarily be different.

We now define norms on T, F¥ 7T, which make the estimates in Lemma 3.6 dependent only on b,,.
If hel—H, let

’LU;L = qbbv,hQU(w),Lh (q;’]:h (Lhaxh)) € F fsb) if Quv(w),ep, (qaih(bhvxh)) € Ebvth
In such a case, let |||, = w;%wh . Otherwise, put ||w|l,n=1. Let |@w|,=|lw|[+ > [@|vr-

hel—H

In order to simplify notation, we replace v(w) by w whenever there is no ambiguity. If |||, is
sufficiently small, define (, €T"(u,) by

€XDPb,,,ue (oo = Ug, HCWHbU,CO < inj gvp, -

Similarly, [ € M, define w;(w) € T},(,,)% by

v,ji(v)
XPgy,ui(v) wi(w) = yi (v(w)), jwi(@)| = Jwi(@)]g, < njy, ()9

If we TEMT and €€ (uy), let Rpé €T (ug) be the vector field given by

ng(z) = Hbv,Cw(z)g(Z)'

Note that since b(v) and b(w) have the same singular points whenever w € TEMT, T, . does
indeed map T'(uy) to ['(ug). If €T (u,), we define Rpn €' (uy) similarly. Let Sy denote the
inverse of R.

Lemma 3.6 There exist 5,CECM(M$);R+) such that for all ve F Ty and weT,F1T;,
(1) C(bo) H@llo < ¢ llopa + Z lwi(@)lg, < C(bo)llw@|lo;

) 5z = lew < COINII, 152 = oo < CGlIllo and [|52 ~1|co < COlIll;
(3) ||Swdus — duUHup < (bv)HwHU and ||SzOus — 8uvHv’p < C(by) V|7 || ]|w;
(4) |Swv =, < C Hwnv;

(5) || S Do R —D |
for all £€T(uy).

bo)llwllol€llvps and ||Some,+ Rot—my 8|, , 1 < Cbu)ll@lollE]lvp.1

'L)p_

Proof: The first statement of (2) is clear. Proofs of (1), the last two claims of (2), (3), and the last
claim of (5) are direct, though lengthy, computations, all of the same nature. The statement of (4)
is immediate from (1). The first claim of (5) follows from (2) and basic Riemannian geometry
estimates as in [Z1].
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Remark: The second claim in (5) above is proved by choosing an orthonormal basis {{,;} for the

kernel of Dy for b lying near b, in M(TO), so that each &, ; varies smoothly with b. Then the claim

follows immediately from an estimate on Sz Ry(w)8b,,,i — Ruv&p,i, since the projection maps can be
expressed in terms of inner-products with &, ;. Note that if we had defined I'_(v) to be the kernel
of D, in the case 7 is regular, this claim, if true, would have been much harder to prove because
of the presence of small eigenvalues of D} D,,; see Subsection 3.6 for more details.

If ve FOT;, (Z,,9,) can be viewed as a connected sum of the surfaces {(X7;,gp,.)} with very

thin necks. If w € K, 7 C T, F'T is as above and |wy| > Q‘Uh‘%, the maps u, : ¥ — V and
Uy : ¥ —V are very far apart in the C%-norm even if ||| is small. However, we can still compare
the two maps and the various objects of Lemma 3.6, appropriately defined, on the corresponding
direct summands. If the gluing map of Subsection 3.6 is defined only on F( 75, and not on F'Tj,
we need to be able to do such comparisons in order to adjust the gluing map in the presence of
constraints p; see Subsection 3.8.

In order to state an analogue of Lemma 3.6 with ||w]|,, for we T FHT replaced by |w| for
w € Ky, T CTF'T,

for each @ € Ky, Z53), with 0 sufficiently small, we construct a smooth map e : (X0, 9v) — (X 9),
)

which is almost an isometry. The map will depend only on the elements wy EFb(%. The structure

of the construction is similar to the construction of the map ¢, in Subsection 2.2. For each h € I
with ¢, =0, let pp o By, 4 (467 (by)) — £ be the (holomorphic) (9p, 6> 9., o)-isometry provided by
Lemma 5.1. Define gj, : ¥ — X by

() = ¢b_vl,h{¢bv,hﬁh,w(z)+552T(bv)(Tbv,h(z))(¢bv,h(2)—¢bv,hﬁh,w(z))}, if 7y, n(2) <267 (by):
~ , if 7y, 1 (2) > 267 (by).

If hel and tn #0, we similarly define Th(wpwn) " 2, — 2y, DY

dh,=(2) = ¢b_vl,h{¢bv,h(z) + wp, — 56%(bv)(rbv7h(z))wh}’ i rs,n(2) <207 (b);
h,w . if T'bu,h(z) > 207 (by).

Let q_ g=1ds. If hel and (e, - 2 — 2 has been constructed, let

(j h(z) _ {q‘z;,lz,h (ﬁh,w(z) (QW,Lh (Cj‘w,l,h (Z))))7 if Tbu’h,h (QW,Lh(Z)) < 257'(1)1});
“ Gwouy, (%), if rp, .0 (quh(z)) >267(by).

Going through all of I, we obtain a map ¢ : ¥ — X, which shifts the connect-summands of (X, g,,)
to the connect-summands of (3, g ). The important properties of such maps ¢, as summarized
below.

Lemma 3.7 There exist 0, CGC’OO(M%(—));R) and a smooth family of maps

{qNW: Y—3| wEICbU’Z;(bU)CTUEE@)T, UGFI)(?)’Z}(I,U)}, such that
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*

b, outside of the annuli

(1) go=1Ids and gy =q%ode on ¥j ;=%

Ay = QN;Ithw o ({ZG va,l,h: 5T(bu) Srb,h(z) < 25T(bu)}) >

which contaz’n no marked points of b(v) or b(w).
(2) |E=t= — 'gw < C(b)|lw—a'|| for all w, @' € Ky, Tsp,)-

These maps ¢, allow us to compare operators on vector fields and one-forms on (X,,u,) and
(¥, uw) whenever ||w|| is sufficiently small. Define ¢/, €T'(u,) by

€XPb,, 10 Cq,z = U O (s HdebU,CO <inj gp,-
For £ €T (uy), let R_E€T (uy) be given by
{RLEH(2) = bo,CL (g—l(z))5(~_l(z))-
Similarly, for any n€T%!(u,), let R._neT%! (uy) be given by

77}‘ I, e G2l 077‘~*1(z ° 9" |z

Denote by S., the inverse of R_. Similarly to Lemma 3.6, we have

Lemma 3.8 There exist 5,CECM(M$);R+) such that for allve FOT; and wEICbUTCTUF@’Z:;,
(1) C(bo) M@l < ¢Gllopa +ZZ]\4|wl(w)|gu < C(by)lw;
€

(2) ||S% dus — duUHw) < C(by)||w| and ||Sk,0ue — 5UUHv,p < C’(bu)|v|%||w||;

(3) |5y =vl., HWH'

(4) | D= Rz, 5 vaH o)l llEllop and ||Spme,+RE = o€, SCGu)I@l[IE]lvpa
for all £€T(uy).

3.5 Obstruction Bundle Setup

In the next subsection, we look for solution of the equation 5eprv7uv &=tv with £ lying in a fixed
complement of I'_(v). If ¢ is sufficiently small, we are able to solve this equation up to an element
of a vector bundle of the same rank as the dimension of I'_(b,), called obstruction bundle. This
element is the obstruction to solving the equation. There are choices to be made for this obstruc-
tion bundle as well as for the subspace complementary to I'_(v). We describe in this subsection
what conditions these choices must satisfy for the gluing construction to work properly.

If b* = (S, M, I;x*, (7, y*),u*) E./\/lg(—)) and b= (S, M, I;x, (j,y),ul) =Hr p+(0,0) for some o€ T
and 0 €R! | let & =&+ 1 €17(b) be given by

eXPpyr gy Eb,bi = Ui €5 bi]| co < Inj gvipe-

Let Hb*,b = Hb* RITRE
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Definition 3.9 Suppose b* = (S, M, I, m*,(j,y*),u*), by = (S, M, I, mk,(j,yk),uk) € /\/lgg), and
v = (bg, ) EFOT are such that the sequences {by} and {|vg|y, } converge to b* E/\/lgg) and 0€R,
respectively.
(a) The sequence {kaLp(uvk)} CY- converges to & eI’(b*) if

(a-1) the sequence {Hb* (& o qvk } CO-converges to £ on compact subsets of Ypes

(a-it) there exists C>0 such that 1€k | v, p1 <C' for all k.
(b) The sequence of subspaces {Vj, CT(uy, )} C%-converges to subspace V* CT'(b*) if there exists a
sequence of bases {{&“ ;:JIVCVk} such that

(b-1) for each i fized, the sequence {y;} C-converges to some &evr;

(b-1i) the set {&} has cardinality N and is a basis for V*.

Lemma 3.10 If the sequence {v} C FOT converges to b* EM%Q) and the sequences {& € LY (vy)}
and {& € LY (vg)} converge to £ €T (b*) and £* €T’ (b*), respectively,

khm (€ G hugz = ((€7,€7))or 2.

Proof: If vy — b*, the metrics GV, ON V and b, i on YT CO-converge to gvy and gy 4,
respectively. On the other hand, by (a-ii) of Definition 3.9 and (2) of Lemma 3.5, there exists C' >0
such that

€51l 005 1k llop.c0 < C VE.
Thus, the claim follows from (a-i) of Definition 3.9.

Definition 3.11 Suppose Q is an open subset of FOT such that b(v) is defined for allveQ. An
(A(T) x G1)-invariant smooth complex subbundle T_ — Q of the Banach bundle LY — Q is a
tangent-space model over € if
(a) for every sequence {vi} C ) converging to b* EM%Q), a subsequence of {T'_(uvy)} CO-converges
to a subspace V* CT'(b) such that m, _: V*—T_(b*) is an isomorphism;
(b) if T2 LE(v) — T _(v) is the (L?,v)-orthogonal projection, there exist §,C € COO(M(O) RT)
such that for all ve Qs and all fEF(uv)

(0-1) ||SeTr, - Reo€ — Tu,—E][,, 5 < C0)|@]lvl€llvp,1 for all weT, FO Ty,

(b-ii) || ST~ RipE = 7w, &, o < C o) @ [|€llup1 for all w €Ky, T C T F DTy,

One example of a tangent-space model is {T'_(v): v€ F®7T5}. In such a case, the limit V* in (a) of
Definition 3.11 is I'_(b*) and thus depends only on b*, and not on the sequence {vy}. However, for
computational reasons, it is sometimes advantageous to work with other choices. With the choices
in [Z2], the limit V* in (a) of Definition 3.11 usually depends on the sequence.

The following lemma collects some of the implications of (a) of Definition 3.11. Condition (b) is
needed in Subsections 4.2 and 4.5. For any tangent space model over Q2 and v €2, we denote the
(L2, v)—ort}logonal complement of I'_(v) by I'y (v). Write Fi’l(v) for the image of I'y (v) under the
operator D,,.

Lemma 3.12 Let T — Q be a tangent-space model. Then there exist C,6 € COO(MgQ);R) such
that for all ve Qs

(10) [|Ello.p1 < C00)[Ellu,2 for all E€T_(v);
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(16) |Tv,~Ello.p1 < C(bo)[[€llvp1 for all E€T (uy);

(20) I2(v) = T_(v) & L4 (v);
(2b) if T_ and 74 are the projection maps corresponding to the above decomposition,

170, 48llopr < CO)Elopr  VEET ().

Proof: (1) Suppose there exists a sequence {vy € Q} converging to b* € Mg(—)) and a sequence

{& €T _(vg)} such that ||&g|v, p,1 =1, while |[£]|,, 2 — 0. Since ||&klv,p,1 =1, by (2) of Lemma 3.16
and (a) of Definition 3.11, a subsequence of {£,} C%-converges to some nonzero ¢* €I'(b*). However,
since [|€x|v,,2—0, [|€*|lp* 2=0 by Lemma 3.10. This is a contradiction, and thus (1a) holds. Claim
(1b) is an immediate consequence of (1a) and (2) of Lemma 3.16.

(2) Claim (2a) is equivalent to saying that no nonzero element of I'_ (v) is orthogonal to T'_ (v). So,
suppose vy — b* E/\/lgg) and {€, €T_(uvy)} is such that & is orthogonal to I'_ (v) and ||&x]|v, p1 = 1.
Since &, €T (vg) and [|€|lv,p1 = 1, by (a) of Definition 3.11, a subsequence of {&} converges to
some nonzero £* €I'(b*). By Lemma 3.10, £* is orthogonal to I'_(v). However, this contradicts the
second part of (a) of Definition 3.11.

(3) Due to (1b), Claim (2b) is equivalent to saying that there exist C,6 € C*°(Mr;R) such that

[€llop1 < Cbu)|[T0,~Ellopy  Yoes and el (v).

Suppose there exists a sequence {v } C {2 converging to some b* € Mg(—)) and a sequence {§; €T'_(vg)}

such that ||y, &k llu,.2 — 0, while [|€k v, p.1=1. By Definition 3.11, a subsequence of {T'_(vy)}
converges to a subspace V C I'(h). On the other hand, a subsequence of {{;} C%-converges to a
nonzero element £* €I'_(b*), which must be orthogonal to V' by Lemma 3.10. This contradicts the
second part of (1) of Definition 3.11.

Definition 3.13 Suppose Q is an open subset of FOT such that b(v) is defined for allveQ. An
(A(T)xG7)-invariant smooth complex subbundle ' (v) — Q of the Banach bundle LP — Q with

the same rank as T —>M(TO) is an obstruction bundle if

(a) there exists CEC”(M%Q);R) such that
1
nllop < COlInllz and  [|Dynllua < Clb)lolr  YoeQ, neT (v);

(b) if 7r211_ . LP(v) — TP (v) is the (L2, v)-orthogonal projection, there exists 6 € COO(M(T());R+)
such that for all v€Qs and all neT%(uy),
(b-i) ||SwmeyReon = my ], o < Cbo)|@ul|Ellop for all w €T, FO Ty, );

v,2 —

(-i1) || St R — 0L,y < CO @]l for all @Ky, TCTFO Ty, .

w,— 'L),2 -

Such an obstruction bundle is related to the cokernel bundle I'”! —>/\/lgg). However, if | #(), the
low eigenspaces of D,, D} are too large to form an obstruction bundle; see Remark below. Examples
of bundles that satisfy Definition 3.13 can be found in [Z2]. Given such an obstruction bundle, we
denote by w?}:i the (L?,v)-orthogonal projection onto Fg)r’l(v), the (L?,v)-orthogonal complement
of T%!(v). The following lemma is clear from (a) of Definition 3.13.

Lemma 3.14 If %' —Q is an obstruction bundle, there exists CeC®(Mr;R) such that

I inllop < COnlloy — VoeQ nel™ (uy).

v
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Definition 3.15 If T is a semiregular bubble type, an obstruction bundle setup for (V,J,T) is a
tuple (5,F_,Fg1,R), where

(a) 5EC°°(M59);R+) is (A(T)x G1)-invariant and b(v) is defined for all ve FOT;;

(b) f_—>F(®)7Zg and T —; FOT5 are a tangent-space model and an obstruction bundle, respec-
tively;

(¢) R: w* T —T%! is a smooth oriented (A(T)*G7)-equivariant bundle isomorphism over FOT;,
where : FOT; —>/\/ng) 1s the bundle projection map.

For the rest of the paper, we fix such an obstruction bundle setup. However, whenever we refer to
§€C®(Mz;R"), we will mean any function smaller than the function § in Definition 3.15. The
following lemma states some of the consequences of our setup that are crucial for the construction
of the next subsection. If 7 is a regular bubble type, we take I'_(v) and T'%'(v) to be T'_(v)
and {0}, respectively, and define the other bundles and the projection maps in the same way.

Lemma 3.16 If T is a simple bubble type, there exist 6,C € COO(M(T());R+) such that for any
ve FOVT; if T is reqular and any ve FOT; if T is semiregular,

(1) [€llop1 < C) | Doéllvp for all €T (v) and all €T (v);

(2) |75 0oy < COI? [nllup for all nelS! (v);

(3) 772’71: fi’l(v) — Fi’l(v) is an isomorphism with the norm of the inverse bounded by C(b,).

Proof: (1) The first statement of the lemma is proved in the appendix; see Proposition 5.13. It
is consequence of (2) and (4) of Lemma 3.5 and of (a) of Definition 3.11. The second claim is
immediate from (a) of Definition 3.13 and the first claim.
(2) Let W be the (L2, g,)-orthogonal complement of ngi(fggl(v)) in F(J)r’l(v). The second claim
implies that

LP(v) = (T2 (v) @ W) & T3 (v). (3.5)

Since ffgl(u) is the image of T'y(v) under D,, with respect to the decompositions (3.5) and
L) =T_(v) ®T(v),

(=)
Dy = ‘ Dt o
Dy Dy
Since DS is an isomorphism by (1) of the lemma,
ind D, = ind DS = dimT_(v) — (dim %" (v) + dim W) (36)
= (dimT_(b,) — dimT%"(b,)) + dim W = ind Dy, — dim W. '
On the other hand, by the Index Theorem, with n=dim¢ V/,
ind D, =2( Y (Vo ), Ai(v) —n(g(Er.) — 1) =n(|i(v) - 1))
hel(v) (3 7)
- 2( 3" (e (Vi) \) = n(g(S) — 1)) = ind Dy,
hel(v)

By equations (3.6) and (3.7), W ={0}, and the last claim of the lemma follows from the second one.
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Remark: 1t is essential for claim (1) of Lemma 3.16 that p > 2. The operator D; D, has at least
|7](dim V) eigenvalues that tend to 0 as |v] — 0. The corresponding eigenfunctions converge to
vector fields on the components of ¥ that do not agree at the nodes. If 7 is semiregular, the oper-
ator Dy, has cokernel F(fl(b). In such a case, the number of low eigenvalues of D} D,,, including 0,

is (dim T%'(b)) 4 |1](dim V).

Let ﬁg:i: F(J)r’l(v) —>f9;1(v) denote the inverse of wg:i: fi’l(v) —>Fi’l(v). We extend ﬁg”i to all
of LP(v) by taking it to be ﬁv’jr o wgi If nef%l(v), let P,neT((v) be the unique element such
that D, P,n =n. We extend P, to all of LP(v) by taking it to be P, o ﬁgi From Lemma 3.16, we
immediately obtain

Corollary 3.17 If T is a simple bubble type, there exist §,C € C"X’(M(TO);]RJF) such that for all
ve FOT; if T is regular and ve FOT; if T is semiregular,
0,1
(1) 1705 nllop < CO)nllup for all neTO (v);
(2) [1Ponllopa < C0u)|nllvp for all neT® (v).
3.6 The Gluing Map

In this subsection, we look for small vector fields € €T +(v) such that expy, . ¢ is holomorphic if 7
is regular and lies in My, 4, » if 7 is semiregular. In Subsection 4.5, we show that all holomorphic
maps if 7 is regular and all maps in My 4, A X YM if T is semiregular that lie near M7 with respect
to the Gromov topology can be obtained in this way.

If £€T(uy), define exp, €: ¥, —V and 9,6 €I'%!(u,) by
{exp, €}(2) = expy, 0, (5 €(2),  {0u€}]: =10, () 0 Ofexp, £}, -
If S=% and ve(S; AW i T*S @7 TV), let v, ¢ €79 (u,) be given by

Vuel: = Hb_ul,s(z) O V|(z {exp, £}2)-

Then, B B
a{eXpU f}() = tV|(.7{epr ) < 0u€ = vy e (3.8)

Write B B
8U£ = Ouy, + Dy& + Ny§ and VU,£|Z = V‘(z,uv(z)) + Lu,vé“z- (39)

Then the second equation in (3.8) is equivalent to
D€ + Ny € = tv — Ouy, (3.10)

and by Proposition 2.11 in [Z1] and (1) of Lemma 3.5, there exist Cj, 5EC°°(M(T());R+) such that
for any ve FOT; and &, & el (uy),

||Nv,t1/£1 - NU,tz/£2||v,p < Cé(bv)(nglnv,lhl + ||£2||v7p71 + t) ||£1—§2||U,p,1' (3'11)

If 7 is semiregular, the term v will be fixed, and we will be looking for solutions of (3.10) with
t >0 very small for v e FOT;. If T is regular, we will consider (3.10) with t=0 and v € FOT;.
In both cases, we will consider only solutions £ of (3.10) that lie in the subspace I';.(v) of LY (v),
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since the subspace I'_(v) corresponds to moving along the image of the pregluing map v— b(v).
Vector field £ = P,n with nEFS)r’l(v) solves equation (3.10) if and only if

0+ ok Now Pon = w0} (v — du,) (3.12)
and 7ot (tu — Quy, — 7?2’7177 - Nm,,PUn) =0. (3.13)

UV, —

Denote the map 7 —>7T2:},_Nv,typv77 by N,

vt

C’g, deC>® (M(TO) :R1) such that for any ve F(O7; if T is regular and ve FO) 75 if T is semiregular,

By Corollary 3.17 and equation (3.11), there exist

[V, ty771 qur,tu772||v,p < é(bv)(HUle,p + ||772||v,p + t)||771—772||v,p (3.14)
for all 11,70 EFS)F’I( ) such that [|91]lvp, [|n2]lvp <6(b).

Lemma 3.18 There exist € 56000(/\/1(0) R*) such that for alve FOT; and t=0 if T is reqular,
ve FOTs and t€[0;0(by)] if T is semiregular, and aEF Y(v) with lat||lwp <€(by), the equation

N tyn

has a unique solution 1y in Fi’l(v) such that ||na||v,p < 2€(by). Furthermore, such a solution satisfies
170 l[v.p < 2[latllo,p-

Proof: Put e(b)=(6C5(b))~", where Cj is as in (3.14). Define
Vo (1€ () 1nllup < 2lofup} — T3 (v)
by U, (n) = a—N, 7. By equation (3.14),
1a(llvp < lalop + Cao) (nllop + ) Inllop < 2HaHu,p,
1%a(m) = Ya(m2)llop < Cabo)(Imllup + [72llop + O)llm = 2llop < 6||771_772||v,p
It follows that ¥, is a contracting operator, and thus has a unique fixed point 7,, i.e.
o+ Ny, twlla =, and [nallop < 2lletlfop-

The uniqueness claim follows immediately by taking the difference of the corresponding equations.

Corollary 3.19 If T is a simple bubble type, there exist §,¢,C € COO(M(O) R™) such that for all
ve FOT; and t=0 if T is regular and ve FOTs and t €[0;6(b,)] if T is semiregular, there exists a
unique Ny, €T (V) such that n,p satisfies equation (5.12) and ||yt llvp < €(by). Furthermore,

1
an,tu”v,p < O(bv)(t + |’U‘P).

Proof: This corollary follows from Lemmas 3.18 and 3.5.

We now put &, 1 = Py1y, and ﬁv,t,, =exp, v, Replacing u, in b(v) by @, 4, we obtain a new
bubble map that will be called by, (v). If 7 is regular (and thus ¢t =0), we will write @, and b(v)
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for w0 and bo (v), respectively. We can assume that the functions d, ¢ and C' of Corollary 3.19 are
(A(T)x Gr)-invariant if S=5? and (A(7)x Gr)-invariant if S=3. For 7 regular, we have thus
constructed a gluing map

&g)) : F(O)’Z:; — M<7>, v — b(v).

Since this map is (A(’Z') MGT)—invariant, as can be seen from the construction, 7y§9 ) induces a map

on the quotient )
Y1 FT§ —>./\/l<7—>. (3.15)

By the smooth dependence of solutions of (3.12), the restrictions

A FUDT — MY,

are smooth. However, continuity of 47 on all of F'Zs is not immediate. In the next section, we
show the map 97 is a homeomorphism onto a neighborhood of M7 in M.

If 7 is semiregular and ¢ >0, we have constructed a map

?g)) : F(@)%L‘*l(—t,t) - C(o)iM)(Zﬂ V)7

RIZ28
which again is (A(7)x G7)-invariant and thus descends to a map

A F'T5). ) — Can(Z5 V). (3.16)

“1(=t,)/(A(T)xG1
The map U, () lies in My, 4, » if and only if equation (3.13) is satisfied, i.e.

Rv¢T,tu(U) =tv— éuv - ﬁg:inv,tu - Nv,tl/Pvnv,tV =0¢ F%l(v)’ (317)
since 1,4, satisfies equation (3.12).

3.7 An Implicit Function Theorem

In this subsection, we prove a refined version of the Implicit Function Theorem. It will be used
in the rest of this section to modify the gluing maps of Subsection 3.6 for the spaces Mz (u),
uT(:“)a etc.

Let S be a smooth oriented manifold, and NS, N*, and F oriented Riemannian vector bundles
over S. We denote by b, (b,7), (b, o), and (b, v) general elements of S, NS, N*, and F, respectively.
If Q is any subset of F' and § >0, let

Q) = {(b,A,v)ENS ® F: (b,v)€Q; |7, |v]<4}.
Let U be an open neighborhood of S in NS®N*@OF and h: U — R a smooth map such that
h(b,7,0,v) = h(b,7,0,0), hls =0, and d(h: N}J'—R")p0): N} — RF

is an orientation-preserving isomorphism for all b € S. Let U be a subset of U such that U is
the fiber product along S of an open neighborhood of § in NS®N* and an open subset Q of F.

39



Suppose ds >0, C € C*®°(S;RT), and hy: U —RF is a family of smooth functions with ¢ € [0, ds]
such that

= ohy  Oh 1 . -
[P a_at ~ Folorion < C)(jo]» +t) Vte(0,ds), (b, 0,0)€U,

where % denotes the differential of h along the fibers of N'*.
Lemma 3.20 Let B be an open ball about 0€R®. If f: B—R" is a smooth function and

k|Df|. — Dflo| < |(Dflo)~*|”"

Vze B,
then f is injective on B.

Proof: Let f; denote the ith component of f. By the Mean Value Theorem, for all z,y € B, there
exists z;(z,y) € B such that

|fi(x) = fi@)] = | D filss |z — yl-

Adding up these equations over all 7, we obtain

i=k i=k
S | fi@) = £iw)| =D [Dfilo|lx -yl - ksup |Df|. — Dflo|lz — y|
i=1 i=1 z

> (I(flo) ™| = ksup DI = Dflo] )&~ yl.
zeB

Lemma 3.21 For every precompact subset K of S, there exists € >0 such that for all t€(0,¢) and
(b,7,v) €Qe)|k, the map

{(b,o)eN": o] <€} — hy(b, 7T, 0,v)

is defined and injective, and its differential defines an orientation-preserving isomorphism between
N/' and R*.

Proof: The map above is defined as long as
{(b,7,0,0)ENS BN/ & F:be K, (b,ii,v) €Qe),|o|<e} C U.

Since K is precompact, existence of 6 >0 such that the last inclusion holds is trivial. The other
two statements follow from the third property of h and the second property of h; (see above);

Lemma 3.20 is needed to prove the injectivity. Note that the variation of % over K can be
bounded from the variation % and the second property of h;.

Lemma 3.22 For every precompact subset K of S and € >0 sufficiently small, there exists § >0
such that for all t€(0,9) and (b,7,v)€Q(0)|x, the image of the map

{(b,0)eN*: |o| <€} —> hy(b, 7, 0,v)

contains 0 € R,
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Proof: We assume € >0 does not exceed the number provided by Lemma 3.21. Then by precom-
pactness of K and the proof of Lemma 3.21,

1
e = min {|h(b,7,0,v)|: (b,7,v) €EQ|K, (b,0) N, \0\256} > 0. (3.18)
Since for each (b,7,v) € Q(€)|xk, the image of the map
{(b,0)eN*: |o| < e} — h(b,7i,0,v)

contains a neighborhood of 0 in R and Ay is continuous, the claim follows from the first property
of h; along with equation (3.18).

Corollary 3.23 For every precompact open subset K of S, there exist §,C >0 with the following
property. For all t€(0,0), there exists a smooth section

¢r € D(Q(0)| g3 T NH),
where 7 : Q)| x — K is the bundle projection map, such that
0k — ' (0), (b1, 0) — (b7, 10,75, 0), ),
is an orientation-preserving diffeomorphism. Furthermore,
e (b, 7, 0)| < Clo]» +t+ 7)) V(b 7, v) Q) k.

Finally, if G is a group that acts on the space S and bundles NS, N*, and F, and preserves h,
he, Q, and K, then p; is G-equivariant.

Proof: With € as provided by Lemma 3.21, let 6 >0 be as provided by Lemma 3.22. Then,

F;: {(b,ﬁ,a,v): (b,7,v)€Q(9)|x, \0\<e} — Q(é)ka,
Ey(b,it,0,v) = (b, @, v, hy (b, 77,v)),

is a diffeomorphism onto an open subset W of the target space. The inverse of F; must have

the form
Ft_l(b7 ﬁ‘7 v, &) = (ba ﬁ‘7 ¢t(b7 ﬁ7 v, &)7 'U)

for some smooth function ¢;. By Lemma 3.22, Q(0)|x x{0} C W. Thus,
thF(Q(5)|K;7T*N“), (b, 7, v) = ¢ (b, 71, v,0),
is a well-defined section, and by definition of ¢,
Q0)[x — b (0), (b7, v) — (0,7, 1 (b, 7T, 0),0),

is a diffeomorphism. It is orientation-preserving by Lemma 3.21. The estimate on ¢; follows from
the three properties of h, the first property of h;, and the proof of Lemma 3.20. The final statement
of the lemma is clear, since our construction commutes with the G-action.
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3.8 The Orientation of My, (1) and the Gluing Map

At this point, our treatments of regular and semiregular cases diverge. In this subsection, we assume
that 7= (X, [N],I;j,A) is a semiregular bubble type and p is an N-tuple of constraints in general
position as defined below. Let A=) \; as before. We recall how each element of My, \(p) is
assigned a sign and then specialize to the elements l~)t,, (v) € Mx 12 (1). We conclude this subsection
with Theorem 3.29 that describes the elements of My 4, A (1) lying near the space Mz ().

Definition 3.24 (1) Section veI'% (ExV; Ag:}ﬂgT*Z(@ﬂT/TV) is A-regular if for allt€(0,1) and
WE Ms 4,5, the operator (Dy,,—VVv): T(u) —T%(u) is surjective.
(2) If v is A-regular, N-tuple p of oriented submanifolds of V is v-regular if for all t€(0,1),

@ Tu()(yl)v:'[m deV[N} ‘b + @ Tu@(yz)/‘l v b:(Za [N]7 {0}7 ) (an)7uﬁ) EME,tV,)\(N)a
1€[N] le[N]

where deV[N”b: ker (DV;%—V,VU) 69@ Z—>@T ) Vs devl‘ (f,w[N) &(y) +du0| w;.
l€[N] l€[N]

(8) If T is a (V,J)-semiregular bubble type, tuple p of oriented submanifolds of V is T-regular if

D T, @)V = Im devin|, + D TV 0=, [N, I;z, (j,y), w) € Hr ();

I[N] le[N]
where dev N]‘b KyT — @ sy (1) Vi devl‘ (ﬁj,wluw) =&,(y) +du]l| wy.
l€[N]

(4) If T is a (V,J)-semiregular bubble type, S C M is a smooth submanifold, and S C M(O) '
the preimage of S under the quotient projection map, N-tuple i of oriented submanifolds of V s
S-regular if

S _a 0
@ Tu].l (yl)V = deV[N} ‘b(’CbT N TbS @ Tu (yz i bES(,u) =SSN M(T)(,u)
l€[N] 1€[N]

Note that all four definitions above are independent of the choice of metrics on V. Throughout
this subsection, we assume that v is A-regular, 7 is semiregular, and pu is v- and 7 -regular.

The space M 4,5 consists of the maps u: ¥ —V such that du|, =tv(z,u(z)) for all z€X. Thus,
the tangent space at u can be described as

TuMs 1\ = {£6F(E; w*TV): Dyy&—tLy, & = 0},
where L, & is defined by
oV
{Lvué}(z) = vg(z)’/‘(zm(z))’

The operator Dy, —tL,, is independent of the choice of the connection along My ;, » and by
assumption has no cokernel if t€(0,1). An orientation on My 4,  is determined by an orientation
of the bundle AfROp TMs 4 n over My 4, \, which is the determinant line bundle of the elliptic
operator Dy —tL,,. Since L,, has order zero, the operator Dy, —tL,, is homotopic through
elliptic operators to the operator Dy,. Thus, AfROp T Ms 41, is homotopic to

det (DV,u) = (Aﬁgp(ker DV,u)) ® (Aﬁgp(coker DV,u));
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see [LM]. Since Dy, commutes with J, ker Dy, and coker Dy, are both complex vector spaces
and thus have natural orientations, which induce an orientation on the determinant line bundle
of Dy, and via a homotopy of operators on the determinant bundle of Dy, —tL, . It follows that
Ms Ax2N is naturally oriented. If 41 is a v-regular tuple of submanifold of V' of total codimension

codim p = dim My 4,y x 2V = ind Dy, + 2|N|
= 2({ea(V, ), X) + (dime V) (1 = g(%)) + V),

the differential of the map

CVIN]: ME,tu,)\ XZN B H v, (Zv [N]7 {O}a ) (Oyy)vu()) - (ué(yl))le[]\[}v
lE[N]

i.e. deviy) as defined in (2) of Definition 3.24, induces an isomorphism between TMx 4, \eTEN
and the normal bundle of i in VY at each point of Ms . a(1t). Here we identify the N-tuple p

with the submanifold
H w C H V=V
lE[N] lE[N]

Since the normal bundle of u is oriented, the evaluation map also induces an orientation on
T/\/lgt,,,)\@TZN along Msx 4, a(1t). Each element b € My 4, z(p) is assigned a plus sign or is
positively oriented if the two orientations agree, and a minus sign otherwise.

For any ve FOT such that ¢, is defined, let Ly D(uy) — % (u,) be given by
_ b
L8} (2) = Vel sy
Denote by Fg’}r(’u) the image of I'} (v) under the map D, —tL,,,,.

Lemma 3.25 For any compact subset K of M(TO), there exist 9, C' >0 such that for all ve F(@)’ZZ;|K
and t€(0,9),
(1) llEllvp,1 < CllDug = tLy&llvp for all §€T 4 (v);
(2) LP(v) = Tyy (v) T2 (v);
(3) if D,y and L, are the (—,—)-components of D, and Ly, with respect to the decompositions
LA(v) = T4 (v) ®@T_(v) and LP(v) = T} (v) BT (v), then

Ty~ ker { Dy — Ly, LY (v) — LP(v)} — ker {Dy 7 —tL, - ,: T_(v) —>F(1’1(U)}

v,u,t*

s an orientation-preserving isomorphism, provided one of the two operators is surjective.

Proof: (1) The first claim is immediate from (1) of Lemma 3.16 and (2) of Lemma 3.5. The second
is obtained by the same argument as in the proof of (3) of Lemma 3.16.

(2) By construction, 7, _ is an isomorphism of the two kernels of the lemma. In particular,
Dy, —tL,, is surjective if and only if D ;" —¢L,, ,, is. Define

O LX) @eT" (v) — LP(v) and U,:T_(v) &I (v) — I (v) by
D (&,n) = Dol + 1ty +n and Wo(&,n) =7(Dy; +tL, )&+
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The first map is surjective for all 7€[0, 1] by (2) of the lemma, while the surjectivity of the second
map is immediate from the definition. Furthermore, the maps

¢r:ker & — T'_(v), ¢-(&n) = my,-&, and  Yriker W —T'_(v), ¥-(§n) =¢,

are isomorphisms such that

Yio1(E,0) = mp & if o1(&m) = vi(€ ), n=1"s Yy dod = Ty do.

It follows that 7, _ is an orientation-preserving map between the two kernels of the lemma.

If K is a precompact open subset of M7 and &> 0 is such that by, (v) is defined for all ve F @’Z:;\ K
and t € (0,9), let M(K,8) and My, (K, §) denote the images of F?Tg|rc under the maps y7 and 47 4,
respectively. Both maps are continuous and injective; see Subsection 4.2. The smooth structure of
FT induces smooth structures on M(K,§) and My, (K, ), with the tangent bundles described by

,_d

Ty M(K.0) = {Co=7Cra|, g wETLFT} & P Ty S

lE[N]

3 o d -
T yMulE0) = {Go= Gl WETUFT} & l?;] Tyw)%s

where T, F'T denotes T, F*T; see Subsection 3.4. It is easy to see that w — ¢L is nearly complex
linear and m,  is almost the identity on the first component of Ty, ) M(K,d); both error terms

are bounded by C|v|. Furthermore, by (1) of Lemma 3.6 and Corollary 4.7, @ — (. also nearly
computes with the complex structures and Hbvygv,tuﬂvy_l_‘[l;}fv ., is almost the identity on the first

’

~ 1
component of TEtV(v)Mty(K ,0); in the given case, the error terms are bounded by C (t+]|v|?).

Thus, the orientations of M(K, ) and My, (K, §) induced by the natural orientation of F7T agree
with the orientations induced from the natural orientation on I' _(v) @ @ T, ()% via the maps
l€[N]

Ty,— @ td and 771,7_11;}75””@2'6[, respectively.
By the construction in Subsection 3.6,
Uty My (K, 8) — T v — g, — Oty € TOM (i n),
determines a section of the bundle IIT™" over My, (K, d), given by
% (B (v)) = Ty, e, ,, T (V).

Note that the zero set of this section is precisely the space (Msx; 4, AxZN ) ﬁMtV(K ,0). A lineariza-
tion of this section is given by

5+ _ 0,1 1 A
Ve (tv — Oy ) = Hbvévvwnm_vgu’_n_l AL (tv — Oty 1)

by ;fu,tu w

= _Hbvyfv,tu (D”Lj,t_ - tL,'__)7;,t) 7TU7_H;L)1,§U,tV<1/ﬂ7
where ﬂgzi c LP(v) = F(_)F’}t(v) & %' (v) — %! (v) is the projection map.

,—
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Corollary 3.26 For any compact subset K of MT , there exists 6 >0 such that for all t € (0,96),
the orientation of (Myx 4, ) X >N Mtu(K 0) as the zero set of the section Uy, agrees with its
natural orientation.

Proof: Suppose by, (v) € (Ms 2 x BV) N My, (K, §). Since we can use any connection in i, o TV
to define the natural orientation on Tg, ,, My 1,1, We can write

{Da,,, = tLyg, . 1§ =y, ¢,,,{ Dy — Ly}, " oS VEET (ny).

Thus, by Lemma 3.25, 7, _ o Hb_vlgu ., @ td induces an orientation-preserving isomorphism

Tbtu( )MEty)\@@ )= — ker(Dyy =L, )@ @ ()5

le[N] le[N]

with the natural orientations on the two spaces. By the preceding paragraph, the same is true for
the zero set of 9y,.

If p is an N-tuple of constraints as above, let

M(K, 6; ) = {b(v) e M(K,0): evini(b(v)) € p},
M (K, 6 p) = {bw(v) € My, (K, ) evin (b (v) € i}
Then M(K, §; 1) and My, (K, 8; 1) are smooth manifolds. In fact, the smoothness of M (K, ; u1) is

immediate from the smoothness of F'7T|x, (), which is a consequence of T-regularity of u, while
the smoothness of My, (K, 8; ;1) follows from Lemma 3.28 below. Furthermore, since y is v-regular,
the section zpt,, is transversal to zero in IIT%! over MtV(K d; ). By Corollary 3.26, the sign of
bu (V) € M (1t ) defined at the beginning of this subsection is its sign as an element of the zero
set of the section 1y, of ar! over Mtu(K 0; ).

If b= (2, [N], I, (7. ), u) e MP (1), let
KyT = {(f,wfu[m) €T = §5, (1) + dug, |y, w €Ty, (y)u VIE[N]}.

Denote by M7 the (L?,b)-orthogonal complement of K}'7 in K7. Note that by (3) of Defini-

tion 3.24,
@ Tu]l )V = deV[N ./\f T @ Tujl ()
I€[N] lE[N]

We denote by N**T the bundle over Mg(—)) (p) with fibers M}'T and by N#T — M (p) its quotient
by the natural Gr-action.

Suppose § C M is a smooth oriented submanifold such that 4 is S-regular. Denote by Sc M(TO) the
preimage of S under the quotient projection map. Let NS — S and /'S — S be the normal bun-

dles. Choose an (A(’T )MGT)—equivariant orientation-preserving identification (;35: NSs —>Mg(—)) of
neighborhoods of S in N'S and /\/lgg). Let ®s: WX[SF(O)T—>F(O)T be an (A(7)xGr)-equivariant
vector-bundle isomorphism covering gz~55 such that ®g is the identity on S. Let

¢s: NSs — Mg and Os:7mygFT — FT
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be the maps induced by gz~55 and g, respectively. Put
S(p)=SnMz(u), S)=8nMP(u).

Since p is S-regular, we can choose an (.A(T)KGT)—equivariant orientation-preserving identification
(bg . N'UI,ZZS|S~(M) —>S~ Let

@g: W}/MT(NS@ F(O)T) — NSe FOT

be a (A(’T )I><G7)—equivariant splitting-preserving vector-bundle isomorphism covering gzgg such that
% is the identity on S(u1). Denote by

O N'slsy — S and @ mhus WS@® FT) — NS® FT
the maps induced by gzgg and @g, respectively.

Definition 3.27 With notation as above and in Subsection 3.4, tuple (s, @g) 1s a regularization
of S(u) if for all be S(u), TE NSy, and o € NJ'T5yy, there exists w(ii, o) E’Cés(b ﬁ)’T such that

b5 (b, 03 71,v) = {Ds(b,71;0)} (@(71,0))  VveFROT.

Note that if u is S-regular, S(u) admits a normalization. In fact, we can start with any choice of
ds and <I>f§ N @8 in the preceding paragraph, and then choose @g . pg S0 that the triple
TN BT

satisfies the requirements of the definition. In applications of Theorem 3.29 in [Z2], the exact choice
of @g does not matter, but that of &5 does play a role.

"
TA BT

For the purposes of Theorem 3.29, we assume that s and @g also encode the lifts of ¢s and gzbg
to the bundles 77]"\/81“(1’1 — &S and Wj‘\/HTF(i’l —&(u), respectively. Put

FOS=NSaFOT,  FOS={(bii,0)e FOS:ve F"T};
FS=NSoFT, F'S={[bvcFOS: bvecFT}.
Lemma 3.28 For any (A(7)x Gr)-invariant precompact open subset K of S(u), there exist an

open neighborhood Uk of K in ./\/lgg) and §,C' > 0 with the following property. If t € (0,0), there
exists a smooth (A(T)x Gt )-equivariant section

#5.4 € D(FOSs| 3750 NT),
such that Hgﬁ‘éty(v)ﬂbmco < C(t—|—|v|%) for allve FOSs|x and

F®S6|K B Mtl/(UKa 5; M)) [bv ﬁ) U] - ’?T,ty ((i)s (‘i’f;@g,w (ba ﬁy U))) )

18 an orientation-preserving diffeomorphism.
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Proof: Since 1 is a regular value of evy)|s and K is precompact, there exists § >0 such that the map
{(0.7,0,0)e FOSGNIT| o |il], |lolly,co <8} — FOT,
(b,7,v,0) — @Ség(b, o7, v),

is an (A(T) MGT)—equivariant orientation-preserving diffeomorphism onto its image. Thus, if § >0
is sufficiently small, there exists C'>0 such that, with notation as in Definition 3.27,

C Ho—dllpco < ||lw(fi, o) — w(f, o - N -
| loc H (7 2) ( )Hb’co VbeS(p), neNSs, o,0' eNI'T.
< Cllo—a|lp,c0

Then by Corollary 4.11 and definition of S in Subsection 3.4,

‘dV (&Ség‘(bv 0; ﬁ)v &T,tu (éség(bv o; ﬁ) U))) —dy (ﬁgsi)g(ba OJ; ﬁ)7 ’S/T,ty (i)si)g(bv OJ; ﬁv U))) ‘
1

<C(t+op)|o=d'lheo ¥V EE(0,6), beS(n), TENSs, 0,0’ eNIT,ve V.

On a neighborhood of ev(y)(b) € 1, we can identify the normal bundle of y in VN gy-isometrically
with the trivial hermitian bundle of the same rank. Let m denote the projection onto the fiber.
Since p is S-regular,

lo = o’ [lp,c0 < Clmevin (dsPa(b, o3i1)) — mevin) (dsPls(b, 0’5 )|
VbeS(u), 7eNySs, U,U,E./\?ZLT
Thus, we can apply Corollary 3.23 to
h =moevy o ds o@g and  hy = T 0 eV[N] © VT tw oésoi)g.

We obtain §, e >0 and for each t€(0,0) a section %w with the claimed bound such that the map

F(®)55|K — {(b,ﬁ,v,a): llollp,co <e,eV[N]’y7—,tl,(<I>g(§>g(b, 7 a,v))) E,u},

(b7 7_7:,'1)) (b7 7_7:,'1), ¢g7t1j(bﬂﬁ7v))7
is an orientation-preserving diffeomorphism. Since

{b,7,v,0]: [b,7, 0] € F'Ss, ||o]lpc0 < €} — M (Uk, d),
) ﬁ\7 g, 'U] - &T,tl/ (q)S (@g(ba ﬁa g, 'U)) )7
is orientation-preserving by the discussion above and our assumptions on QNSS, the claim follows.

Above o o
U = s (®5({(b.75,0) ENSONT i il co <6, ol co <c}) ).

Theorem 3.29 Suppose A\€ Ho(V;2), T = (Z, [N], I; 7, A) is a (V, J)-semiregular bubble type, with

Y>> A=A\ and cokernel bundle F(fl—>/\/l7, and (f_,F(fl,R) is an obstruction bundle setup. Let
el
S C M be a smooth oriented submanifold,

vel (SxV; AT Sy TV)
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a A-reqular section, p a v-, T -, and S-regular N-tuple of submanifolds of V' of total codimension
codim p = 2({c1(V, J),A) + (dime V) (1 — g(S)) + |NJ),

and (Ps, ) is regularization of S(u). Then for every precompact open subset K of S(u), there
exist a neighborhood Uy of K in C(of\’_N)(E; w) and 6,¢e,C >0 with the following property. For every
te(0,€), there exist a section

goff;’ty € I‘(F@S(;|K;7r}SN“T), with Hsog,tu(U)Hbv,co < C(t + |’U|%),

and a sign-preserving bijection between My, 1, () NUk and the zero set of the section 1/}2‘ 4, de-
fined by

Ve, ED(FOSs| i misTHY), @i, (V)i 0, (1)) = Vs (P4, (1))
Vs v EF(FQS(g‘SnUK;?T}SF(l’I), s (v;vs(v) = 70 (Ps(v));

wT,tV S F(FQ% ‘MTQUK ; W}Trg’l)’ RUQ;[)T,ty( ) = 7T (tVU t _a(ubv 0%) _Dugv,tu - ﬁU,tV)?

for some vy ¢, ot el%(u,) and o, tv €f+(v), dependent smoothly on v, such that

e = vl < C+117). vl < CUFRI). Jsll,, < O+ 10f5).

Furthermore, if z€ ¥ and (By, (uy(2),C0),J, gvp,) is isometric to a ball in C", then 7, 4, (2) = 0.

Remark: In specific applications, the main goal would be to express the number of zeros of wg 4 D
terms of the cohomology ring of a closure of S7(u). One of the significant intermediate steps is to
extract the leading-order terms from the section ng o I Ag=0, the estimate on v,,; given above

easily leads to a sufficiently good estimate on wgzl_l/v,t; see [I] and [Z2]. In such a case, one can also
extract the ﬁrst order term from 770 ! ~ Ou,,, which suffices for the computation in [I]. A power-series
expansion for 7T L du, is glven 111 [Z2] where terms of up to third degree are used. With the choice

of metrics in [ZZ], the term 7Tv7_77v7t,, vanishes. The remaining term is shown to be secondary for a
good choice of the obstruction bundle setup.

Proof of Theorem 3.29: Let d,¢ > 0 be as in Lemma 3.28 and its proof. We take gog ., to be
the section descendent from the G'r-equivariant section gbg .- Denote by Uy, the open set Ux of
Lemma 3.28. By Corollary 4.22, there exists a neighborhood Uk of K in C'()\ N)(E; w) such that

Ms (1) NUg is contained in ./\/ltl,(UK,cS w). The nelghborhood Uk can always be chosen to
contain all the zeros of the section zpt,, of the bundle HF ! over Ms w2 (1)NUk. By Corollary 3.26,
Ms A(u)NUk is precisely the oriented zero set of the section vy,. Since the map

F®85|K — MtV(U}(W 67 N)a v — /S/T,tl/ (@S@g (¢g7ty(v)) ) )

is an orientation-preserving diffeomorphism by Lemma 3.28, it induces a sign-preserving bijection
between the zero set of wtl, on ./\/ltl,(UK, d; 1), and the zero set of the section

(7,00 PsPlals ) Ut € T (FOSs] 15 (7.1 Pleipls ,, ) IITY).
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By equation (3.17), under the canonical identification
(Frwny ) IS =T — MU, 9),
the section (’yq—,ty'ygl)*i)t,, corresponds to the section 1y, given by
Vi (b(U)) = tv|y, — Ouy, — ﬁg:i%,tu — Nyt Pt
= 10" (tlu, — Ouw — T oty — Noww Potow) (3.19)
= Ty (V6,0 — Ot = Ty o — NoPono)-

The second equality above is automatic, since vy, (b(v)) € I'%'(v); the third follows from the
definition of N, 4, in Subsection 3.6. The bounds on the terms Vb boans Moty NoPoly 1 also follow
from Subsection 3.6. By definition of I'%! in Subsection 3.4 and equation (3.19), under the canonical

identification
IO = mp IO — FIT;

(]
UK

the section 71y, corresponds to the section 17 4, described in the statement of the theorem.

The next proposition describes a special case of the above theorem. It is obtained by fixing a
metric g on Y and going through the construction analogous to that in Subsection 3.6 and then
modification for constraints as above. The sign statement below follows from the fact that the
(L?, g, gv)-projection ker(Dy,y, —7tL,,,) — ker Dy, is an isomorphism for all 7 € [0,1], ¢ suffi-
ciently small, and b€ My, 4, \+ (1) sufficiently close to K.

Proposition 3.30 Suppose N\e Hy(V;7Z), T = (Z, [N], {0};O,A) is a (V, J)-reqular bubble type,
vel (SxV; AT Sy TV)
is any section, and p is a T -reqular N-tuple of submanifolds of V' of total codimension
codim p = 2({c1(V, J), A) + (dime V)(1 — g(S)) + |N]).

Then Mr(p) is a discrete set and for every finite subset K of S(u), there exist a neighborhood
Uk of K in CE’;\’_N)(E;M), e >0, and for each t € (0,€) a sign-preserving bijection between K and
Ms (1) NUk .

3.9 Gluing Maps for Spaces Z;{éo) (1) and Orientations

We now consider the case 7 = (52, M, I;4,)\) is a regular bubble type. However, most of the
analysis in this subsection applies to any regular bubble type 7. Let u be a generic M-tuple of

submanifolds in V', as defined below. If = || Ij is the decomposition of I into rooted trees and
keK
{7} are the corresponding simple types derived from 7, the product gluing map,

) ke 11 FTos. — 1T M
keK keK

may not map the total space of the bundle over Z/{7(9 ) (p) into U é% (). In this subsection, we remedy

this deficiency of the product gluing map. We also show that all the spaces U <(3.)> (1) and L_{<T> (n) are

naturally oriented topological orbifolds and the gluing maps defined below preserve orientations.
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Definition 3.31 If T is a (V, J)—rggular bubble type, M-tuple p of oriented submanifolds of V is
T -regular if the manifolds {,ul: lEM—M} intersect transversally in V and

TowV e P Ty, )V = Im dev|, + Im dev |, + Tevy) N m+ P T,y ()
leMNM leM—M leMnM

f07’ all b:(527M7 I;‘T7 (j,y),U)EBT(M)

Let 7, Ty, K, p, and b be as above. Denote by
bk = (S2,Mk7[kax|fk)(]ay)|Mkau|Ik)

the corresponding 7;-bubble map; see Subsection 2.5. Let /\/’If‘ T be the (L?, b)-orthogonal comple-
ment of

’657 = {(g,wfuM)EI@bT: gjl(yl)+dujl|ylwlETujl(yl)lu’l VZEM N M,
gi(OO)ETeV(b) ﬂ i VZEI—j}

leM—M

in @ Ky, 7. Denote by N#T — Bz () and N“T—>U7(9) (1) the corresponding vector bundles. Let
keK

N#Br = N'T & (Co R — Br(n), NUY =N'T & (CoR)S — Uy (u);
FOT = P FOT, — By, FT=@Fn —Uuy.
keK keK

The last two vector bundles carry norms induced from the norms on F()7},, while we define norms
on the first two by

‘(ba g, (Ca T)) ‘ = ”O-”b,C'O + |(Ca 7’)|,
ifoeN/'T C P Ky, Ti and (c,r) € (COR)X. Tf § is sufficiently small, define

keK
e NFBy s —s M(O) b T — . H(O) M(O)
o7 7,6 7. DY ¢ (0, (e.1) = ((ck,7r) Ti (Uk))keK = T ?
keK keK
where H(Ti ) is as at the end of Subsection 3.2 and (ck,7k)- denotes the action of a neighborhood of

0 CxR=CxRx{0} c CxRxR

described in Subsection 3.1. Since 55‘} is (.A(T ) MGT)—equivariant, it descends to a G’r-equivariant
map
0
¢;:Nﬂu§% — H M,
keK

Let <I>‘}: Ty, BT — FT be a Gr-equivariant vector-bundle map covering the map qb‘% such that
® is the identity over Z/{?)E,u). Denote by i)’} the lift of ®% to N*Brs. Let @‘}Jg and i)‘}k be
kth components of @’} and <I>‘%, respectively.
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Lemma 3.32 With assumptions and notation as above, there exist (A(’T ) MGT) -invariant func-
tions §,C € C°°(Br(p);RT) and an (A(T) Kéy)—equivam’ant section

@ €L (FOT5 w0, 7N Br s)
such that | @ (v)| < C’(bv)|’u\% and

FT; — U (), v — (72 (P 105 () e

s a homeomorphism onto an open neighborhood 0fo[7(9) (1) in Z;{é% (). Furthermore, the restriction

of this map to F7T5 is an orientation-preserving diffeomorphism onto an open subset of Uf% ().
Proof: Denote by N7 the normal bundle of

Xr(p) = {exeVE: wp =ap, e Vhy kpe K le M-M}y x [] < vExyIOM,
leMnM

Let Ny =N X7pu®(CoR)X. Since the Gr-action does not change any evaluation maps and the
constraints are in general position, the differential of the map

Uyt [[ MY — VE x VN (€ x R)E,
keK

Vi = ((eva (0n))resss (evi(b))iersmnrs (Y oy, (08)herc),

where \IITIc o, (br) € Cx R is as in Subsection 3.2, induces an isomorphism between N, lf‘ Br and /\~/'7—,u.
ik
This isomorphism is orientation-preserving by definition of orientations. Thus,

o NBrs — [[ MY

keK

is an orientation-preserving diffeomorphism onto an open neighborhood of Br(u) in [] M%)’
keK
provided d € C*°(B7(u); R™) is sufficiently small. By the same argument as in Subsection 3.8, for

any simple bubble type 7’, the map
’5/']'/2 FQIZ:;/ — M<7—/> = H<7—/>

is an orientation-preserving diffeomorphism onto an open subset of M 7y provided 6 € C°°(M; RT)
is sufficiently small. Along with Corollary 4.23, this implies that the product map

H%'ki HF'EWS—> HM(Tk>

keK keK keK

is a homeomorphism onto an open neighborhood of [[ M7, in [] M(q—w and its restriction to
keK kek
the preimage of [ Mg, is an orientation-preserving diffeomorphism. The lemma now follows by
keK
applying an argument similar to the proof of Lemma 3.28 to the functions

h(v) = r i (D7 (0, (e,;r)),  h(v) =ho(v) = U 7 (P (V) perc)
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where we write v = (o, (¢,7),v), with (o, (c,r)) € N¥Br and v € FOT. Since Br(u) is gen-

erally not precompact in [] /\/lg(-i), we end up with 6,C € C®°(Br(u);R"), instead of §,C€R™.
keK

Another difference is that h is not necessarily smooth with respect to the standard smooth struc-
ture on N“Br®FOT. However, we can put a smooth structure on the total space such that the
composite maps

NBrs o FOT — FOT R v — 34 (v), v, — lon|7, hely, kek,

are smooth, whenever § € C°(Bz(u); RT) is sufficiently small. Then by Corollary 4.5, h is C2,
which is sufficient for the arguments of Subsection 3.7. Finally, in the given case h is defined on
all of (N PBraF ©) T) 5 and thus the second condition on h; in Subsection 3.7 is redundant.

Suppose 7 is a bubble type and p is an M-tuple of constraints in general position. By Lemma 3.32,
there exist G%-invariant functions §,C'e C* (Z/{7(9 ) (n); RT) and a Gi—-equivariant section

ot € (FT;mhg N'ULY)

such that |4 (v)| < C(bv)|’u\% and

- —(0 ~ N
v FTy — U<(T)> (1), A4) = (’YT;C (‘I’%k@g(v)))kew

is a homeomorphism onto a neighborhood of L{7(—0 ) () in Z/_lg)% (1), which is an orientation-preserving

diffeomorphism on a dense open subset of the domain. If 7’ is another regular bubble type such
that (7)=(7") and p is 7'-regular, it follows that

B A A G FT) — 3T (i (FT)

is a homeomorphism provided §' € COO(U(TO/) (n); RY) is sufficiently small. Furthermore, by the

above it is orientation-preserving on a dense open subset of its domain. It follows that ’y#_l’yg—, is
an orientation-preserving homeomorphism everywhere. We thus obtain

Theorem 3.33 Let T*= (52, M, I*;j,\*) be a basic bubble type and p an M-tuple of constraints
such that w is T -reqular for every bubble type T <T*.

(1) The spaces 0(702 () and U= (1) are oriented topological orbifolds.
(2) Suppose T <T*, ¢4 : NPT —>L{7(9) is a Gr+-equivariant identification of neighborhoods of
Ug)) (n) in NH*T and in ng)), and 5 : w7 FT — FT s a lift of ¢4 such that (I)%M?)(u):l'
Then there exist Gr«-invariant functions §, C € C* (U(TO) (1); R*) and a Gr«-equivariant continuous
orientation-preserving identification,

W FTy — UP (),

of meighborhoods of Z/{?) (1) in FT and in Zjlg)*) (1), which is smooth on FYTy — Uz« (p). Further-
more, for every v e FTs, there exists o(v) ENPT such that

lo(v)

1

pe < C(b")|vl?  and Uspe () = eXpV,ubIO%;(U(U)) &v, where B (o(v)) = [V, ],
. 1

for some &, €T (uy o %‘;(a(u))) with ||&u]|co < C(by)|v|?.
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Remark: The descriptive statement (2) of Theorem 3.33 is used in [Z2] for local excess-intersection
type of computations on the spaces Uz« (u).

4 Technical Issues

4.1 Continuity of the Gluing Map

Let T =(S,M,I;j,\) be a simple regular bubble type and H a nonempty subset of I. Suppose
v €F (@)’Zg and the sequence v, converges to v* € F (H )’Z:;. In this subsection, we show that 37 (vy)
converges to Y7 (v*) in the Gromov topology. Our main interest is the case S=52.

It is sufficient to assume that mp(vg) = mp(v*) if h € H. In particular, b = b« =b,,. Denote by
T =T (H) the bubble type of b(v*). For each k, define

o = (b(v*), (o)) € Fggg*)f

as follows. If he H, put
igh=min{i<h:if W€l & i<h'<h, ¢ H}.
Since [ is a rooted tree, izh is well-defined. Let
U, = H Uk, b -
igh<h'<h
Since vy —v*, Uy, — 0 for all he€ H. Furthermore, by construction X, =z, and g,, = q,*o¢g, -

In particular, w,, =u,*ogg, .

For any he H and § >0, let

Apsk = q;kl({(Lh,z): rbﬁ(z)gé} U {(h, z): \q§1(2)| S(S}) C Yoyps

275 = q;*l({(bh,z): rb,h(z)gé} U {(h, z): |q§1(z)| §5}) CEpry, X5=Xp— U A;kwg.
heH

It is convenient to make the following definitions. If 1, € LP(vg), the sequence {n;} converges to
n* e LP(v*) if qﬁ_kl*nk converges to n* in the LP-norm on all precompact open subsets of £7. and

élin(] klglo an”vk,LP(Ah,&k) = O VhEH (41)

If & € L¥(vy), the sequence {&x} converges to £* € LF(v*) if & 0 qgkl converges to £* in the LF-norm
on all precompact open subsets of X7. and

In (4.1) and (4.2), we use the modified Sobolev norms.

Lemma 4.1 There exist C,§ € C*® (Mg(—));RJr) such that for any sequence {vy EF(@)’Z}} converging
to v* as above and €'y (V)

< CO) k=0 |I€llo= p.1-

Hﬂ'vk,—(f o qﬁk)Hvk,pJ -
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Proof: Note that I'_(vg) = {7 0gg, : £ €T'(v*)}. Thus, the difference 45, To*,— — Ty, —q5, arises
entirely from the difference between the metrics q;;k gu+ and g,, . By construction, the two metrics

differ only on the annuli Ah oo n|b for he H. Thus, the claim follows from (2) of Lemma 3.5.
34|V, h|“

Lemma 4.2 If n;, converges to n*, then P, n. converges to Pyn*.

Proof: (1) Let {ex},{0x} CR*" be sequences converging to zero such that

* . * :
lIn Hv*’Lp(Af*lﬁk) <ew |Poem vt LY (A7 5,) < €k, kh_I)nOOanHUkva(Ah,ék*,k) <e VheH. (4.3)

For every k* >0, choose Np« such that for all k> Ny«

gz, — 1] ) Sewrand 0kl ey, 0 < € VhEH. (4.4)

v LR (S5
It can be assumed that 2|vk—v*\% <, €= whenever k> Ny« For any k> Ny«, let 7« € LP(v*)
be given by
I R

’ 0, outside of ng*.

Then [|7e= klloxp < Mk |loy,p- Let

Pree 5ie = @5, Poeilie 1 € LY (vp).

Then by Lemma 3.16 and the first assumptions of (4.3) and (4.4),

a5, Pee ik — P’ ) < |[Poriii k= Porr’|

v*,Lf(Egk* v* p,1 (45)
< O(b)Hﬁk*,k - 77*| vt p < 2C(b)egx.
Since ||dgg, ||co < C(b), by (4.3) and the first assumption of (4.4) for all he H,
1Pk sy a5 a0 S CONPo bl s, (4.6)
< CO)([[Por] v apag s ) B e = Po’| ) £ C 0
(2) We now show that Pknkmg is close to P, n;. By Lemmas 3.16 and 4.1,
1B e = Poell, 2 < CO (Do P g = el + [T P el ) wn
<C(b) (HkaPk*,knk — 1y, p + 08— U*|||T}k||"-’k7p)'
Since Dy Py« g+ x =Tk~ and qg, is holomorphic outside of the annuli Ay, . x,
kapk*,knk =n, on X, — U Ap s i (4.8)
heH
By equation (4.6),
1D P ity a0 S CONBe sl p20a, 5, ) < C e (4.9)
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Thus, from equations (4.7)-(4.9) and the second assumption of (4.4), we conclude that for all
k> Np« ~
[ Pee et = P[0 < CO)ek (L4 10" o) (4.10)

vg,p,1 —

Since qugleCo <C(b) on X5 ,, by equations (4.5), (4.6), and (4.10),

gz P = P gy < GO (14 7o ): (4.11)

Pl sz < OO (14 [lr ) VhE (.12

By equations (4.11) and (4.12), P,, nx converges to P,«n*.

Lemma 4.3 There exist C’,(SEC"X’(M(TO);]RJF) such that for all v € F*) Ty and he H,

(| P Ot < C(by).

Gu* 7CI(A;;’5(1)U* ))

Proof: For each he€ H, this lemma is obtained by pasting

P« Oty and P« Oty

Ah,é(b:*)ﬂxu*,Lh Ah,é(b:‘]*)mzv*,h

onto %y, .., and ¥y , j via a cutoff function. We then use the usual elliptic estimates and Sobolev
inequalities on Y, , ,, and Y . along with

< C(by )07

v*p,l —

HPU* 51@*

1
v¥|P.

The bound obtained in this way is actually C'(b,+)

Corollary 4.4 There exist C,0 € C>® (Mg(—));RJF) such that for any sequence vy € FOTy converging
to v*e FU T as above,

< C(b) e —v*|7;

a5, Mo = 10 || oo Lo s

2|vg —v*

< O)|vk—v*|r Vhed.

‘1/2)

||77Uk ||Uk’Lp(Ah,2\vk7’U*\I/Q:k) —

Proof: We put
1 ~ 1
0 =2lvp—v*|2 and e = (2| |lgo+C (D)) v —v7|7,
where C is the function given by Lemma 4.3. Let

77(0) = —6UU*, 77(m+1) = _6uv* — Ny» U*n(m) m 2> 0;

0 = —0uy, Y = —uy, — Ny Py™ m>0.

By Lemma 4.3 and the explicit description of 5qvk in Lemma 2.2, €, &g, 7](0), and nlg,o) satisfy (4.3)
(m) (m)

and (4.4). Suppose €, is such that €;"”, o, n™, and n,gm) satisfy (4.3) and (4.4). Since the map
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qo,, is holomorphic on ¢ (Z* ), by (4.11), (4.12), the estimates in the proof of Lemma 3.18 and
the derivation of equation (3. 11) in [Z1],

qul*N kanl(c )_NU* U*n(m) HN *QUl*kan](g )_Nv*Pv*n(m)

v, LP(S5,) v, L (S5, )

(m) (m)

vt LP(S) ) Hqu I*kank — Poen

<O (qul*kanl(cm) v, L (S3) +H knk )‘ v, LP(S],)

< C'(b)(el(c* + |vg|? )ek*),

(m)

m)| < C'(b)|ve|pe
O, LY (Ansp, k) = RI7Chx

1
NPt L 1,00 < CONkl? | P

Thus, we can take
e,(gmH) elm )+C/(b)(ek* + |vg|P )e,(ff).

This sequence is bounded as long as |Uk|5 is sufficiently small (depending only on b). Since 7.+ is

the limit in the (v*,p)-norm of the sequence n™) and My, is the limit in the (vg,p)-norm of the
(m)

sequence 7, , the claim follows.

Corollary 4.5 If T is a simple regular bubble type, there exist ,C € C°(Mz;R") such that for
any sequence {vy € FOT5} converging to v* € FHT5, 4(vy,) converges to 5(v*) with respect to the
Gromov topology. Furthermore,

dy (ev(F(v¥)),ev(F(ur))) < C(bu*)lvk—v*ﬁ if S=52;
dy (evi(7(07)), evi(3(v4))) < C(bye) g —v7|7 VY leM;
‘\P(T),O(N(U’f)) — (s ()| < Clby)vp—v*[7 if S=52.

Proof: Tt is sufficient to consider the case mj(vy) = mp(v*) for all h & H if v* € FH)T;5. In such
a case, ¢z, maps the marked points of ¥,, to the marked points of ¥« and u,, =u,*0q,,. By
construction,

Uy, = XDy, .y, PoyTors Uy, = €XPy oy, Pornos.

By Corollary 4.5 and the proof of Lemma 4.2,

oz P = Pt e e,y = Clbwr)lon = VIS (413
1Pl zga, ,on < Clbos o =77 VheH. (4.14)
Let (x €'(X*;w,+) be given by
expy . a,. Ck = Uu, © qoy,, [Ckllco < inj gvip,..
By equation (4.13) and the proof of (2) of Lemma 3.5,
ISk llcos: ) S c7(bv*)IlékHIW,Lg(gg‘vkiv*HJQ) < O (by)og — 0¥ (4.15)

On the other hand, by (4.14) and by the same argument as in (3) of the proof of Lemma 5.12, the

1
variations of P,«n,« on A* we1/2 and P, 1, on A} are bounded C'(b,)|vg —v*|?.

h,2lvg— h,2|vg—v*|1/2 k
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This can be seen from equation (5.33); observe that an argument similar to the proof Lemma 4.3

shows that we can take J to be any small number bigger than 2\%—1}*\%. Equation (4.15) and the
small variation on the annuli imply that

Sy (e (45, (2)), 0 () < Ol o =]

It follows that 47 (vg) converges to 47 (v*) in the Gromov topology. The estimate on the evalu-
ation maps is immediate from the above bound. The last estimate follows from equations (4.13)
and (4.14), along with a Sobolev estimate on a neighborhood of co€ ¥ . 5 which implies that the

Cl-norm of ¢} there is bounded by C(b,+)|vg—v |P

4.2 Injectivity of the Gluing Map

The goal of this subsection is to prove that the gluing maps of (3.15) and (3.16) are injective,
as long as § € COO(Mg(—J);RJF) is sufficiently small. We start by showing local injectivity on the
subspaces FHT5 of FT5, where H is a subset of I.

If 7 is regular, we are only interested in the case t=0. If 7 is semiregular, we only consider the
case H =(). We use the same notation as in Subsection 3.4. If ||wl|, is sufficiently small, define
Cw,ty Er(ﬂv,tu) by _ ~

eXPy, iy 0 Sty = Umitvs |G twllp,,c0 < 1nj gvip.

Lemma 4.6 There exist 6,C € COO(Mg(—J);RJF) such that for all ve FE T where H=10 if T is
semireqular, and weT,FH T5(b.)s
(1) [N RN, wguv,,_ o)l €], Jor all € €T (1) with €l]pa <3(5.) and te0,1];

(2) HSWWW,ing Ty ifH 1 = C(b v)”WHv”guv,p,l for all § €T (uy);
(3) HSwaan PUWHUP 1= Cu)|@lolnllvp for all €T (uy).

Proof: Claim (1) follows from (2) of Lemma 3.6 and Riemannian geometry estimates such as in [Z1].
Claim (2) is a consequence of (5) of Lemma 3.6 and (b) of Definition 3.11. Finally, (3) is obtained
from (1), (2), Definitions 3.11 and 3.13, and Lemmas 3.6 and 3.16 as follows. Writing AP for
SeoPrRo — Py, etc.,

AmP = Pyry Dyfty 4 Aoy P+, S P Res
= Py Dy Ay P—(Pymy Dy —1) A 7. 1 S P R
= Pt 8 = (Pl Ba D+ (P Dy = 1) Do y) S Pe e
= —PyAnm LS 7% R, —( P, AnD + (Pl D, —1)Aw7~rw7+SwaRw).

Corollary 4.7 There exist §,C € COO(M(O) R*) such that for all t €[0;6(b,)], ve FH) T, where
H=0 if T is semireqular, and weT,FH T5(bs)>

Cbv)lwllo < Imtwllops + D lwn(@)lg, + Y (@), < Cbo)llw]lo.

heH leM

1
é‘vtl/HUpl_ b )(t+|’U"’)”WHv-
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Proof: The first claim of the lemma is immediate from the second and (1) of Lemma 3.6. On the
other hand, by construction in Subsection 3.6,

gw,tu = thV - nguw - PwNw,tugw,tz/-

Thus, if ¢t and |v| are sufficiently small (depending on b,), the second claim follows from Lem-
mas 3.6, 4.6, Corollary 3.19, and equation (3.11).

Corollary 4.8 If 7T is a simple bubble type and K is an open subset of Mz with compact closure,
there exists 6 >0 such that for any t€|0, 9], the map

Irav: F'T|k — CRon(S:V),  Armw(v) = bu(v),
is a differentiable embedding.

Proof: We first deduce from Corollary 4.7 that y7 4, is injective if ¢ is sufficiently small. Suppose
not, i.e. there exist sequences vy, v/ 6F®’ZZ;|K such that

vp—beK, v, —VeK, and by, (vp)=bs (v},).

It follows that b = b/, after possibly modifying the sequence {vy/} the action of an element of
(A(T)xGr). If for some k, v, = vj(wg) with |||, sufficiently small, then by Corollary 4.7,
v}, = vg. Otherwise, the difference between ¢, and !, is uniformly bounded below outside of the
preimage of the zeroth component and the necks A, 5. Thus, the bubble maps b(vy) and b(v},) are
far apart unless b has an automorphism. In the latter case, v} can be replaced by an equivalent
element of F?75. In the former case, Uy, and ﬂv; cannot be the same because

[ Pocogtv|| o < C(E+ \vkﬁ) <67 and 1Py 1wl o < C(t+ \U;fﬁ)ﬁ.

Thus, Y7 + is injective on F 07|k provided § is sufficiently small (depending on K). The smooth-
ness of Y7 4, follows from the smooth dependence of solutions of equation (3.12) on the parameters.
Finally, the differential of 7 4, is nondegenerate by Corollary 4.7.

Corollary 4.9 If T is reqular, there exists § € C*®° (Mz;R™) such that for all m, the map

YT° U FH% I U M'Z'(H)v &T(U) :E(U)’
|H|=m |H|=m

18 injective.
Proof: The same argument as in the proof of Corollary 4.8 shows that map

yr: FIT; — Hr(m)

is an embedding if 4 is sufficiently small. It remains to see that ’7%9 ) (v)# g-’yé(—) ) (v') for any g€ Grm)
whenever [v]#[v']. For each ve FU) T and i€ H, we construct (ci(v),ri(v)) €CxR such that

(c(w),r@)) -39 () € M.
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We define ¢;(v) €C and r;(v) €R by

U((ci(v),0) i) + Y dn(T(H)) (wn(v) + ci(v)) + (u(v) + ci(v) = 0;

tn(v)=i Ji(v)=i

T ((¢; (), 7:(v)) - i) Z dp (T (H))B((1 + r5(v)) |z (v) + ¢ (v)])

th(v)=

+ 3 B+ i) ly() + ei(v)]) :%.

Ji(v)=i

Since the metric g, ; for ¢ > 0 agrees with the standard metric on 52 on a neighborhood of the
south pole and W7 ;(b,) =0, by Corollary 4.7 for any w € T, F/'T with |||, sufficiently small,

i) = )] < COP @, [ri(@) = i) < CEIF @l (416)
Let b(v) = (c(v),r(v)) - b(v). Write
b(v) = (S, M, HU{0}; Z(v), (j(v), ), @)
If ||ew]|, is sufficiently small, define (, €T (i) by

C€XDPb,,, gw = U, H&wubv,CO < inj gvp, -

Similarly, for h€ H and € M, define wy, (@) € Ty, (1) Lo, (v) a0d Wi(@) € Ty, Xy, j,0) Y

eXPy, 3, (v) Wn(@) = Tp(w), |wp(w)| = [wn(w@)lg, < inj(g,zn(v));
eXPy, g,(v) V(@) = (@),  [wi(@)| = |w(@)lg, < inj(ge, v (v)).

Then by equation (4.16) and Corollary 4.7,

C"(bo) M@l < Illops + D [wn(@)] + Y (@) < C(by)||@ ], (4.17)
heH leM
It follows that the map
FIT,— M)y, v — (),

is a local embedding. By the same argument as in the proof of Lemma 4.8, we can conclude
that this map is injective as long as § € Coo(/\/lgq);RJr) is sufficiently small. Since this map is
G7(m)-equivariant by construction, it follows that the induced map on the quotient, i.e. the map
of Corollary 4.9, is injective.

Corollary 4.10 If S=S5?, there exists §€ C*™ (Mz;R") such that the map
1! FZS|MT — M)
1s injective. Furthermore, the restriction

ir: P, — Mz

1s a differentiable embedding.
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In order to adjust the gluing procedure in the presence of constraints, below we state the analogue
of Corollary 4.7 for we Ky, 7 CT, F 0T . 1t is obtained in the same way as Corollary 4.7, except the
analogue of Lemma 4.6 would make use of Lemma 3.8, instead of Lemma 3.6, and of (b-ii), instead
of (b-i), of Definitions 3.11 and 3.13. We also use (3) of Lemma 3.5.

Corollary 4.11 There exist §,C € COO(M(T());R+) such that for all t € [0;9(by)], v € FOT5. and

we,cbu,z-&(bv)’
Clbo) @l < IS twllopr + D [wi(@)lg, < C(by)lle|l-
leM
Furthermore, S’l’ﬂgw,tlj - gv,tu“v Co < C(bv)(t—l-"l)ﬁ) HWH

4.3 The Basic Gluing Map and the Space of Balanced Maps

Our next goal is to show that the gluing map of Subsection 3.6 is surjective in the appropriate sense.
More precisely, if 7 is a regular bubble type, we show that the image of 47 contains a neighborhood
of M7 in M (7y- If T is a semiregular, we show that all elements in My 4, ) that are close to any
given compact subset of M7 are in the image of the gluing map J7 4, if ¢ is sufficiently small. The
major difficulty in doing this is the following. If v€ F'T, a small change in the singular points of b,
may lead to a very large change in the map u,. This is precisely the reason we used the norm ||z||,
on T,FT instead of just ||ew|| in Subsection 3.4. In order to deal with this issue, we need Corol-
lary 4.13, which is proved in this subsection. We continue to assume that 7 is a simple bubble type.

Recall that H7 is the set of tuples b= (S, M, I;z, (j,y),u) such that wu,, (x) =wup(0c0) for all hel

and Ou; =0 for all i€ I. Furthermore, M(TO) is the subset of H7 consisting of the tuples b such that
U7 p(b) =0 for all hel. Tt is convenient to make the following definitions. If H is a subset of I
and €>0, let

Mg—HE) = {b: (S, M, I;x, (g, y),u) cO0u;=0Viel; dy (uLh(ach),uh(oo)) <eVhel;
(U7 (b)|<eVhel-H}.

Lemma 4.12 There exist §,C € C* (M(T());R+) with the following property. Suppose b*EMg(-)),
e<o(b"), bEMg—Ii) is such that d(b*,b) <6(b*), and v=(b, vf)EFb(H)’Z:;(b*). Then there exist

be MY, and o= (b,5;) e F''T

such that

(1) d(b,b) <C(b*)e and |, —vp|p < C(b*)e|lvply for all hel;

(2) if qu(z) € 14, rb7h(qu) > 2|vh|% for all he I—H such that u, =i and |q§1(quz)| 22|v¢|% if
iel—H, then dy (qu(2), 45 (2)) < 6(b*)e.

Proof: (1) Let b= (S, M, I;z, (j,y),u). If ¢ is sufficiently small, by Proposition 3.3, we can choose
& €T (u;) such that |||y, ;.01 < C(b%)e and

V= (S7M7 Iz, (jay)vul) € Hr,
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where u;=exp,, &. The C'-bound on &; and the assumption be /\/lg—HE) imply that W7, (0')] <C'(b*)e
for all he I—H.
(2) We now define ¥ = (S,M,I;&,(j,7),@') € Hr and ¥’ = (5’,6}) as follows. Suppose i* €1 and
for all i€ with 1>1", hel with th=t, and [ € M with j; =1, we have constructed

(i) (¢5,7i) €CXR such that |(¢c;, ;)| < C(b*)e;

(ii) },, 9, € X1, such that |, ,(2),)| < C(b*)e and |¢y,7;| < C(b*)e;

(iii) v}, € C such that |0}, —vp| < C(b*)e|vp;

(iv) if z; € S?, z; € S?, such that |ry;(Z;)| < C(b*)e|v;l;

(v) if 2; € S?, 1; € C such that |7;—v;| < C(b*)elvy],

such that

(I1)

(12)

if ig H, U ;(b')=0 where @, = (c;, ;) - u';

)

if 7, =92 z€%r,,, and |qbgchqz (@s,00)(2)] < §|1—1h|% for some hel—H, then

%;qu-,(@,m)(z)‘ <5417 and gp a1, 51 (90500 (2)) = Ganin) (Gistwrn (2))

where g; (z,1,), €tc., are the maps defined in Subsection 2.2.

Note that while we have not defined ¥’ completely yet, (Il) is still a well-defined statement. The
function U7 ; depends only the ith bubble component of &', which has already been constructed
by the induction assumptions.

If i* € H, we take ¢;» =0 and i+ =0. If i*€I—H, let (¢, r+) €CxR be given by
\il( (¢i+,0 Z dn(T)(Th+cix) + Z(yl+ci*) =0;

Lp=1* Ji1=t*
1
OO ((cie,rim)ufe) + > dp(D)B((L+re)[@n+es|) + > B(L+re)[y+eis ) = 3
=5 Ji=t*

If € is sufficiently small, by the proof of Lemma 3.3 such (civ,rix) € Cx R exists and satisfies
|cix], [ri (b*)e. For all hel with ¢, =14" and l€ M with j; =%, put

Ty =0 +re)(@n+cx), U= 0+ =041 (y+cr);

Tje = Tjx — CixV4, UVjx = (1 +7°Z-*)_1vi if  xy 652.

Continuing in this way, for all ¢ € f hel with v, =1, and | € M with j; =17, we obtain elements
(i)-(v) satisfying (I1),(I2). Let @f=uf. If I€ M and j;= 0, take ] =

(3) If S=52, let (&}, 7})= (:Eh,vh) if 1, =0, b=0', and ©=10'. By the inductive construction, b and
v satisfy the requirements of the lemma. In fact, be M(H) If S=3%, we could extend the above
construction to the principal component ¥ as we did for S —S2 if gz were defined using the metric
Gy OD >, which may differ slightly from 9 o This problem is fixed below.

(4) If le M and j;=0, we take §j;=1; as before. For all hel with 1, =0, let 7, €3, Op €T3, %, and
©p: B _1(0;C)—C be such that

2|vh‘b
(S31) dy (zh, @n) < CO")elvnl, |[Bnly — [vals] < CH*)elvnls;
1
(X42) for all ZEBb(mm Q‘Uhh?)’
¢, 2
lfh _ (1—|—7‘h){0h+ (bbh @h<w)}7

Up, Up, Up,
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(£43) Oy, is holomorphic, ©4(0)=0, ©}(0)=0, and |6} co < C(b*)[v|?e.

Note that even though we have not defined b completely yet, (X51) and (¥342) are still well-defined
statements, since the metric g; 5 on ¥ depends only on the singular points {Zj, : ¢, = 0} on X.
Existence of such &y, 0y, and ©y follows from Corollary 5.5, provided ¢ is sufficiently small.

If 1; =0 and j; =1, let (4,71) :qgﬂ-q;} (4,41). The map ¢z,; is well-defined even though © has not been
defined completely yet. By (3;2),

¢E7ji¢;;i(ylvi)
0

0= o0, (n) = =(1+r){ci+u+06iy)} (4.18)

Since §; = (1+7¢)(yi+ci), |[Gi—7)) < C(0*)[v]*e by (Z43).

Suppose hef, Lh Ef, and for every i€l with i<h and j €M with j;=1, we have defined

T3, ifu;=0;
= e &eC, ©;:B

R 0;C C
C, if ¢; #0; Q‘Uih:%( ) —>

ji € ZT,LN gl € ZT,ia {]2 € {

such that
(51) [y dily < OO )ofe if 120 and |6 yily < CO7)ofe
(22) [[#il — lvily| < C(0")elvily;
(83) [ — ei] < CO)loPe
(34) for all z€X such that 13;qy,,(2) < 2|vi|b%,
950007 _ a +n~){5¢ L Pidoni® @i(¢b,iQU,LiZ>}

(% (% (%

(¥5) ©; is holomorphic, ©;(0)=0, ©4(0)=0, and |07 c0 < C(b*)|v|?e.

)

If he H, we take 2, =), 0, =0, =0, §y=y, if ji=h, é,=c, =0, and ®;,(2)=0. If hZ H, let
(thy Bn) = Qo0 Qs (R T1).
By an argument similar to (4.18), from (34) we obtain
I = (1+7r,){é, +zn+ 0, ()} (4.19)

Since #}, = (1+ r,,)(Tn+c¢,), (4.19), (£3), and (X5) imply the first part of (X1) with ¢ = h.
Furthermore, by assumption (%4),

" o5 4o, (Z) 5
¢l~>,hq177bh (Z) = 4puy, (Z) — Tp = b%h{)ih — T
. (4.20)
¢ ) Qu,u,, \Z ¢ , Qu,,, (2
—(1+ 7«){(*’7() )+ (0, (Lt By g o))
vy, .,
Since ©,, is holomorphic, and
Pondv, (2)

— Zp = b hGu, (2) + ChUR,

Uy,
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we can rewrite (4.20) as

¢l~),hq@%(z) = (1 + T‘Lh) (1 + ah)vh{éh + (Zbl)’%}’:h(zj) + @h(%}’:h(z)> }, (4.21)

where the complex numbers ay,, ¢, € C and the holomorphic function

Oy : B2|vh|7% (0,C) — C
are given by
ap = i@ (Z)‘ (1 + ah)éh = Cp —+ @Lh (l'h) _ @Lh (ﬂl'h _ ChUh) (4 22)
dz th z:zh’ UVh ’ '
©,, (vhz + p) — V20, (x3) — O, (zh)

e} — h th h . 4.23
h(z) (1 + ah)vh ( )

By (4.23), ©,(0)=0 and ©}(0)=0. By our assumptions on ©,, and (4.22), (4.23),
Jan] < CO")[vl?elz,,| < C'(b%)|vle; (4.24)
|én — cn| < C0) (elan| + [on] ™ oPelenvn]) < C'(0%)|vf%e, (4.25)
187 llco < CO")|on|~HolPelun|* < O (0)|v[%e. (4.26)

We now take

o = (L+ap)®), = (1 +ap)(1+7, ) (1 +7)" o
It follows from (4.24)-(4.26) that the induction hypotheses (X2)-(35) with ¢ = h are satisfied. If
Ji=h, let (h,q;) :q@,hq;i(h,yl). By the same argument as in the case 1, =0 above, (£3)-(X5) of
the ¢ = 1}, case imply that the second part of (X1) with i=h is satisfied. Continuing in this way,
we obtain tuples

b= (2, M, L;7,(,9),@), ¢=c;, ©=(b7),

satisfying (X1)-(X5). Since E’EMg—fg, by (21) EEMg—Hg if § is sufficiently small. Finally, (£1)-(X25)

along with (I1) and (I2) show that b and U satisfy the two requirements of the lemma.

Corollary 4.13 If T is a simple bubble type, there exist §,C € C’OO(Mg(—J);RJF) with the fol-
lowing property. Suppose b* € Mg(—)), e < (b)), be Mg—HE) is such that d(b*,b) < §(b*), and
v=(b,v;) EFb(H)’Z:;(b*). Then there exist EEMg—Hg and 0= (b, U}) EFE(H)T such that

(1) d(b,b) < C(b*)e and |o,—vp| < C(b*)elvy| for all heT;

(2) if qu(2) € 1, o1 (qu2) > 3|vh\% for all he I—H such that v, =i and |q§1(qu)| 23|vi|% if
icI—H, then dy(qv(2), qo(2)) < e.

Proof: If S=52, the tuples b and © constructed in the first half of the proof of Lemma 4.12 satisfy
the requirements of the corollary. In fact, dj (g (2),qs(2)) = 0 if 2z is as in (2) above. If § =X, let

é=¢ I lwl >0
helll-H
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If C'(b*)6(b*) is sufficiently small, by repeated applications of Lemma 4.12, we can replace the tuples
b and v by b’EMg{Q and U’:(b’,v’f)EF(H)T such that

(1) d(b,b') < C'(b*)e and |v) —vp| < C'(b*)e|up|p for all he I;

(2) if qu(2) € B4, ro0(qu2) > %|vh|% for all h e I—H such that ¢, =i and ‘qgl(quz)‘ 2%|vz|% if
iel—H, then dy (qv(2), qo(2)) < 26(b)e.

Applying the construction of the first half of the proof of Lemma 4.12 to the tuples b’ and v’, we
obtain tuples bEM(TO) and 0= (b, v;) EFE(H)T such that

d(t/,b) < C(b*)E and |o), — v),| < C(b*)élvh|y Vh e .
Then if z is as in the requirement (2) of the corollary,
*\ ~ / -1 2
dy (g (2),05(2) < COVE( I lehl)  <e
hel-H

if § is sufficiently small. Thus, the tuples b and © satisfy both requirements of the corollary.

4.4 Gromov Convergence and the LP-norm of the Differential

Let b= (S, M, I;x,(j,yx), uk) be a sequence of smooth maps converging to
* * * .k * * 0
b* = (S,M,I s, (55,9, u ) EM%—,)F

with respect to the Gromov topology such that 5uk,6:tk’/ with t, — 0 and éuhh:O if hel. We
assume that 7* is a simple bubble type. In the next subsection, it is proved that by lies in the
image of the gluing map 7, for some k. In this subsection, we show the differentials of duy,
satisfy a certain condition which holds for all bubble maps in the image of Y7 4, .

By definition of convergence, for all k£ sufficiently large, we can choose
(a) curves Cp = (S, M, I*; z, (5*,y*)) with kli_r}nooa:Ah = zj for all heI*, and

such that klim lug| =0, C(vg) = (S, M, I;xp, (jk,y(vk))), and

(b) vectors (vk)EFC(S) with 16]vg|g, < re, 9»,

lim sup dV(Ub* (qu (Z))7 ubk (Z)) = 07 kh—1>noo QUk (jk,la yk,l) = (]1*7 yl*) VZEM,

k—so00 ZEEC(Uk)

where vy, = (Cy, (vi) ) and g, denotes the standard metric on ¥¢, if S =52, Let

. 2. : 2.

b — {gbﬂ%h’ if 23 ,€58% rep — {r%h, if 23, €5%
' %b,o%,h’ if a:;c’hEE; ’ T gy 05 if m}ahEE.
Let g,, be the metric on ¥;, =X, defined as in Subsection 3.3, using the metric g, 5 on X if S=1%.
For any element in the image 77 4, that lies near b*, the modified (L”, g, )-norm of d,, is bounded

above by a constant dependent only on b*. Furthermore, as v — 0 and the size of the necks is
reduced, the modified (LP, g,,)-norm of di,, on such necks tends to zero. The modified (L?, g,,)-norm
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is bounded above by the usual (L??, g,))-norm times some constant dependent only on b*. In this
subsection, we show that the (L2, Gu,, )-norm of duy, is uniformly bounded and tends to zero on
the “necks.” Instead of using our usual cutoff function 3, we will use the family of cutoff functions
provided by the following lemma. The proof can be found in [MS, p166]. The statement below is
somewhat sharper than in [MS], but the proof in [MS] suffices.

Lemma 4.14 For every € > 0, there exists a smooth function BG: R—0,1] such that

~ L #TZE P 2 2 1/e
B.(r) = {07 A /C|ﬁg(r)| rdrdd < Se, and |dB]|co < eV°.

Given >0, we denote by Bem the cutoff function defined by 5e,r(t) :BG(T_%t).

We now define nearly holomorphic maps fi; € C*(3¢, ;; V). In order to simplify computations,
we fix a finite family of J-invariant metrics on V such that for some fixed € > 0 and for every
g€V there exists a metric gy, in this family such that (Bgqu(q, e),dJ, gv7q) is isomorphic to a ball
in C™. Since V is compact and the family of metrics is finite, all estimates below that depend on a
particular metric gy, will involve bounds dependent only on V. We denote by exp, the exponential
map of (the Levi-Civita connection of) the metric gy, and by By(e€) the gy ,-geodesic ball about ¢
of radius e. If >0 and heI*—1, let

By (0) = {(t, 2) €Zcy uz : Tron(th, 2) <O,

4.27
By (8) = {(h,2)€ S, 5 ()] <3} 20

~1
Choose a sequence ¢, € RT converging to zero. Let ry = (2 > ||duf||b*702) €x. By taking a
iel*
subsequence if necessary, it can be assumed that

Itk < e, dv (up (quy, (2)), up, (2)) < € V2 €Dy,
(4.28)

2p 1
Tb*7h(b>ikzv$;<:,h) < Ty ek |Uk,h|b2* < 7rg.

Let gy =uj (o0) and
1 1 1
i+ + 3 + (o 3
Aty = B (loenl ) = B (7 ol ).

1 1 -
By (4.28), ubk<q;k1 (Bik(e% [Vk.hlE ))) C B, (C(b*)eg). Thus, we can define §ki7h ECOO(Aik; T,,V) by

€XDgp.an gzh(z) = Up,, (QE;L;;(LZ’ Z))’ |£/j,h(z)|gv,qh <g;
— _ -1 * -1 — (429)
€XDgp.an Ekﬁ(z) = Up,, (qvk% (Lh, ¢k7h(zvk,h)))a |£k,h(z)|gv,qh <g,
provided k is sufficiently large (depending on b*). Let gfhEthV be given by
& = % &k (4.30)
ko Area(Aih) Af, kh?
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where the area and the integral are computed using the metric Gb+,.; On Eb*,L; and gp+ p, on Xy p,
Define fj, ;€ C*>(Xp+ ;5 V) by

b+

_ ~ _ 1

XPay, qn {glj,h + ﬁﬁk,\vk,hh;* (Tk’vh(z)) (glj,h(z) - E];i:h) }’ if 0 (2) < vkply

_ ~ _ 1

Te2) = expy, g {€i + Betun e (05" D) (60,(:) = §) o i€ " =1 & lag " (2)] < Jogl?

b*s
Upy, (qq?kl (i, Z)) ) otherwise.

Let ;. ;€'(u]) be given by
€XPp oy Cri = frir Ckillx oo < inj gyp-.
Lemma 4.15 There exists C' >0 such that for all k sufficiently large and i€ I*,

Ik ills=co < Cers 10fnillgye 20 < 062" (fiillgye .20 +1)-

Proof: The first statement is clear from (4.28) and the construction of f;; above. Suppose z € X« ;.
If z§{B (|vk h|b*) for all he I*—1 and zg{Blk( ; ) if ;e I*—1, then

|gfk,i|gb*7i,z < Cl/tk < Cuek- (431)
Suppose ZEA;,k with heI*—1I. Since the metric gpn 4, is flat near gy,

afkﬂ"z = deXth,Qh 5{5};% + 5Ekv‘vk,h|b* (Tk,n(+)) (gl—:,h - gl—:,h) }z (4.32)

It follows from (4.32) that

_ 1 _ _
10k ilgye 2 = C(\vk,h\b*2|dﬁe\ -3 |66n = &l + |a§l—:h|z> (4.33)
’ [V, Bl TR, (2) ’ ’
1
By Lemma 4.14 and Poincare Lemma (see Lemma 2.6 in [Z1] applied with 7 = |vp, ;|2 and 2p
instead of p), and the last assumption in (4.28),
s
TS A B N vt
b FlopnlE ron() ‘ k,h kh| (A )
p— —2 1/p _
R Uk |y dﬁe Ein = Einllye
| b k|‘”k h|b* Tie,n () g i L2 ( AJr H k,h khllbx,C0
2p
< Cluy, h|b et o, h‘b Hd§k hHgb* L2 (Af)
= Cleiip g5 hHgb* L2 (Af ) <Cq’ de’fhngb*,i,?p'
The last two equations give
_ 1
2
10 fcilly,. . z2n i,y < €&’ ai2n | k). (4.34)

66



The same estimate applies to HékaH if ie I*—1I. Here the exponent of z—f in (4.28) is

gv+ 1L (A7)
crucial:

5¢— [12P 2p -1 2p
||8£k’i||gb*,i7L2p(A~;k) g / tk |7/ o quImLf gb*,L;

_1 1 _1
‘Uk,ilb*i Srgeek ‘Ui‘b*i

gf(l + 13?2 rdrdf

Vk.i
(4.35)

1 Ligp—2

< Ol ol (Jogal "2e )P < CHP.

_a 1 _1 1
Since fy; is constant on B;;k(e k \vk7h|b2*) for h € I* — I with «f =i and on ng(e “k \vk,i|b2*) if
1€I*—1, the second claim is proved.

Corollary 4.16 There exists C >0 such that for all k sufficiently large,

L
ldfrillgys2p <€ and [IGillgy- s2pa < Cep

Proof: By the quadratic expansion of 5@ (}.; as in Subsection 3.6,
Db*,u;‘ CI;,Z + Né,u;‘ CI;,Z = 5u;‘ Cli;,za (436)

where )

”&Lf Cl/c,ngb*,mQP < CEED (dek,Z'Hgb*,iQp + 1) (437)
by Lemma 4.15 and

1N Ckillgyeii2p < CllSillcollCk illgye i 2p < CerllCillgye s 2p.15 (4.38)

by Proposition 2.11 in [Z1] and Lemma 4.15. Thus, by standard elliptic estimates for wuy« and
(4.36)-(4.38),

HCI/c,z‘Hgb*,iQp,l < C(”Db*,uigl/c,z‘”gb*,ﬂp + HCI/c,z‘Hgb*,iQp)
N (4.39)
! _2 /
<C ekp (Hck,z‘Hgb*,iﬂp,l + ||dfk7i||9b*,i72p + 1)'
On the other hand, since f;; = €XPpyr C,;’Z-,
ldfiillgye .20 < C (I llgye 20 + G ill gy 2p.1) (4.40)
If € is sufficiently small, the claim follows from equations (4.39) and (4.40).

Corollary 4.17 There exists C >0 such that for all k sufficiently large, hef*, and § >0,

o 1
ldupy g, r2n (g0 (B (0))) < Cey” +67).

Proof: If h € I , the statement is immediate from Corollary 4.16; so we assume h € I*—1. The
metric g, on g, (B, (6)) differs by a bounded factor from the metric a5, 1 9o i Thus,

|

du, - <Clld(froqt.
|| kagvk’sz(q“kl(B;k(&))) - H (fk qthh) gb*’L;‘LvLQP(Bftk(é)—B;k(Wk,h‘b%*))

= Cl|dfi.;

1
gbm;,mp (B;k(a)_B;k(\ykﬂg*)) (4.41)

< Cdek,L;;

9o L2P (B 1 (9))°
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Since fg.r =€xPps 4, Ck 5 by Corollary 4.16,
Lh b

.1

< C(||av;

*
th

/
e sz L2 (B, 9) B Rl LS Py

o (4.42)
< C'(67 +e).

The claim for B; () follows from (4.41) and (4.42). The metric g, on ¢, '(B; . (6)) differs by a
bounded factor from the metric which is the pullback of the metric gy« j, by the map

¢k,hqvk,l,;; (Z)
Z — qN (7)
Uk,h
Thus, similarly to the above,
ldvw, Nl 220 (g2 By, o) < C Nfrnllg,e 120 (57, 0)) (4.43)
1 1
ldfknlg, . o0(57, 57) < C (67 +€%). (4.44)

The claim for By, (6) follows from (4.43) and (4.44).

4.5 Surjectivity of the Gluing Map

We continue with the notation of Subsection 4.4. In this subsection, for k sufficiently large, we use

Corollary 4.13 to construct ~
O = (bk, (Uk).) € FOT;

and (j, € T'(ug, ) such that by, is very close to b in ./\/lg(—)), Gkl p1 is small, and wuy, =expg, (. We
then look at the elements of F(O)7; near ¥, to find @), and ¢, € T4 (@) such that up, =expy, It

7T is semiregular, we consider only the case I =(; if T is regular, we assume t=0.

Let H=IcCI*. If §>0 and 1€1*, put
Sis = {(4,2) €Sy i: (6, 2) S VhED —H s.t. =i, |qg'(2)| >0 if i [*—H}.
In addition to (4.28), we can assume that our sequence satisfies

1Ch,illgye sc2(50,) < € (4.45)

Let b, = (S, M, I*; 2, (j*,y*),u*). By the second assumption in (4.28),

d(b*, by,) < Ce, = bhe ME,

since b* € Mg(-)z, where C' >0 depends only on b*. By the last assumption of (4.28), |Uk|b§c < Cé¢p.
Thus, if € >0 is sufficiently small, by Corollary 4.13, there exist

i)k S M%—fp and v = (l;k, (@k)f*) S F(H)T*

such thaﬁt )
(1) d(b,b) < C'e; and |Op p, —vpn| < C'eg|vg,plp for all he I*;
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(2) if qu, (2) €7+ 45 T 1 (G0, 2) 23\vk7h\% for all h € [*—H such that ¢ =7 and |q§1qvk (z)| 23|vkﬂ-|%
if te I*—H, then db(quk(z),q@k (z)) < €.
It then follows from the second and third assumptions of (4.28) that there exist (; € I'(ug,),

Wy p €T, by for he H, and wy €T, (@k)ngl for € M such that

h (D) “Oksth ul

eXPg, Ck = Upy,, XPgs, wrn(0r) Wkh = Thhy XPgy e (6)) Wkl = Y15
[e3

Lemma 4.18 There exists C'>0 such that for all k,

b*,C0 ‘wk7h|9f;k 7$k,h(f’k)|wkvl|gf}k k1 (k) < ey

- 1
”Ck”ﬁk,p,l < OE;p .

Proof: By (4.45), (1), and (2), ||C~k||gv7cl < C¢i, outside of the necks

Apn=q,! (sz,h(rk) U Bk_,h(rk)>'

On the other hand, ||dug, ||z, co <C by Lemma 3.5 and

1 1 1
ldus, o, 1r(i, ) < (2 +77) < C'el”

by Corollary 4.17. The three estimates imply the claim.

Suppose I =0 and thus H=0. If k is sufficiently large and w € T, FO7T* is such that 2||w||5, <d(b*),
where ¢ is as in Lemmas 3.6 and 4.6, let

bi(@) = bu (O1(w)) = (S, M, {0};, (0, 5(@)), i)

be the tuple defined as in Subsections 3.4 and 3.6. Let (j,(w) €T (fi 1) and iy (w) €Ty (o) Xw.j
for le M be given by

€XPpy, () Ck (@) = up and €XPgs, () yk,1(@) Wk (®) = Y1,

and || Gu(@) |y co, (D1 (@) g5, s () < 2C" €k
We need to find w such that ﬁw,_fk(w) =0 and y;(w) =Yk, or equivalently
Sewfw—Cr(w) =0 and Sy, (w) =0, (4.46)
where Sy (@) denotes the parallel transport of wy, ;(ww) back to y;(05) along the g,-geodesic
8 —€XDy, (5,) SWi().

Lemma 4.19 There exists C' >0 such that for all k sufficiently large and w,w’ET@kF(@)T* with
2|l |5, <o(b"),

Swﬁ-w,—gk(w) = 7~I—U,—C~k + N(O) (CNkv w) - ﬁu,—Cw + N(O) (w))
Swtig (@) = gy + N (g, @) — wi(w) + NO(w) vieM,
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where C is as in Subsection 3.4 and N and NO satisfy

|NO (G, @) = NO G, )|, 5 < Cllkllo2llo — @[l

Ug,2 —

‘N(l)(w,ﬂ)k’l) — N(l)(w/7@k,l)| ) < C”wk,l”gvk,yl(ﬁk)”w - w/Hf}k Vie M;

g5, Y1 (T

(0) (0) (1 / / (4.47)
IN®/ (@) = NP (@)lo.2 < C (l@lloy, + & ll6,) |2 — @[l
NO@) = NO),. oy < C (Il + 1'15,) I~ =l Vi€,

Proof: This lemma follows from a pointwise Riemannian geometry estimate on Swfk(w) — (fk — fw)
and the fact that all statements in Lemmas 3.6 and 4.6 can be written in a form similar to (4.47),
e.g. for all £ € T'(0y)

HSwﬁw,—wa — S‘W'ﬁ-w’,—Rw’f

‘51@72 < Cljew - w/Hﬁk,2”§Hﬁk,2-

The latter fact can be seen from the two lemmas and the definitions of R, and S in Subsection 3.4.

Lemma 4.20 There exist C,d € COO(Mg(—)z,RJF) such that for all v e F(H)’Z:;* and w € TUF(H)’Z:;*
with ||w||s, <0(b),
[¢ollvz < CO)]|Fv,~Ceollv,2-

Proof: It can be seen directly from the definitions that
¢z llo2 < (14 C(bo) [0]) 170, ~Clo,2-

The claim then follows from the proof of (2b) of Lemma 3.12.

Corollary 4.21 There exist a neighborhood U of b* in Mg(—)z and 8, € >0 such that for allv e F(@)’Z;* o,
el _(v) with |||lu2 <6, and wy € Ty, ()Xo j, for L€ M with |wilg, 4,) <0, the system of equations

ﬁu,—Cw - N(O)(w) = 57 wl(w) - N(l)(w) = w VZEM,
has a (unique) solution w e T,FWT with ||w||, <e.
Proof: By Lemmas 3.6 and 4.20,

C M @llo < N7v,~Elloz + Y lwi(@)lg, gy < Clleollo:
leM

whenever b, lies near b*. Thus, the claim follows from (4.47) by the usual contraction-principle
argument.

Corollary 4.22 Let T*=(S, M, I*;j*,\*) be a simple bubble type. If T* is reqular, the map
’S/T* : F’]:;* — M(T*)

contains a neighborhood of Mz~ in ./\;l<7—*>. If T* is semireqular, H=0, and k is sufficiently large,
there exists Uy, GF(@)’Z}* such that by ="+ 1,,(0k).
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Proof: The second statement is immediate from Lemmas 4.18 and 4.19 and Corollary 4.21. If
T* is regular, what we have shown is that the image of 47+ contains a neighborhood of Mz~ in
M7y UMr+. Furthermore, there exists a sequence of neighborhoods U1 DU D. .. of b* in /\;l<7*>
such that (" Up={[b*]}. If [bx] € M7 is a sequence of bubble maps converging to [b*] € M7+, it can
be assumed that [b] € Uy. By the above statement applied to 7, we can choose sequences

{[brr]} € M=y = M1y

such that for each fixed k the sequence {[bx,]} converges to [bg]. Since Uy is an open neighborhood
of [bg], it can be assumed that [bg,] € Uy for all . By the above, the image of F7+| FT;, contains

UpgNM 7+ if k is sufficiently large. Thus, for all r there exists vy, € F' 7:572 such that 7+ (k) = [bgr]-
Let 0y, € F75* be the limit of the sequence vy, with k fixed. Then, by continuity of the map 7+,
see Corollary 4.5,
A7+ (Ox) = lim 7+ (Ok,) = lim [bp,] = [bg].
T—00 T—00

Thus, the image of 47+ contains a neighborhood of Mz~ in /\;l<7*>.
Corollary 4.23 If T*=(S, M, I*;j*,\*) is a simple reqular bubble type, the map
’S/T* . F,]z;* — M(7*>

is a homeomorphism onto an open neighborhood of Mz~ in /\;l<7—*> provided § € C°(Mz«;RY) is
sufficiently small.

Proof: By Corollaries 4.5, 4.10, 4.22, the map J7~: FTg —>/\;l<7—*> is a continuous bijection onto
a neighborhood of M7+ in M 7+. In addition, the proof of Corollary 4.22 shows that y7+ is an
open map.

5 Appendix

5.1 Properties of Smooth Families of Metrics on X
Let m be a positive integer and
N = {x:m[m} cxp €Y, xpFay if h#l}

Suppose {g;: © €N} is a smooth family of metrics on ¥ such that for any = =[] €N the metric
g is flat on a neighborhood of z;, in ¥ for all he[m)]. If z = Ty € N and vE€T3, let

TIN = @ Tzh27 ‘U‘I = |v|gzvy'
he[m]

If w=wp, €T, let |w| denote »_ |wyl,. Define x(w)€X™ by
he[m)]

z(w) = (:El(w), ... ,azm(w)) = (expgwﬂ1 Wi, ..., €Xpy o wm).

We denote by ¢, , the map ¢4, , and by B;(y,d) the set By, (y,0) described in Subsection 1.3. If
0: N—R, let
TR; = {(z,w): z€X; weTR, |w|,<d(z)}.
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Lemma 5.1 There exist € C°(N;R1) and a smooth families of holomorphic maps
{ﬁm(w,w): {z€By(zp,(x))} — 2| (a;,w)ETN(g},

such that each map P, (zw) 15 @ (gas Go(w))-isSOmetry,

Aoz z), ‘Ih(w)¢x(w),rh(w)ﬁh,(x,w)(Z) = Pu,z), (2), (5.1)
and  dg, (2,9 u)(2)) S 20wly  Vz2E€Bg(a,0(2)).

In particular, both sides of (5.1) are defined.
Proof: We choose ¢ such that if w €T, R and |w|<44(x), then z(w) €N and the metric g, (., is flat

on By (xp,20(x)). This choice of § insures that both sides of (5.1) are defined. Equation (5.1) is
equivalent to

¢x(w),zh(w)ﬁh,(:c,w)(z) = dexpgm,zh |wh¢x,xh (Z) = (b:c,:ch(w)z + dexpgm,xh ‘whwh’ (52)

since the metric g, is flat on B, (a;h,25(a:)). This equation defines the required map py (4uw)-

Since the metrics g, and g, are flat on B, (a:h,25(a:)), the maps ¢, 4, ()2 and @p(w) 2y (w) are
holomorphic, and thus py, (;..,) is holomorphic. Taking the differential of (5.2), we obtain
batw)an g, (2 © Phitean]. = Do, (5.3)

Since ¢y (w) 2y (w) A0 Gy 2, (w) A€ (Ja(w)» Ju(w))- a0 (g, gu)-isSometries, respectively, on B, (a;h, 25(m)),
it follows that Py, (4w IS @ (gzs Gz (w))-isSOmetry on B, (ach, 25(3})). By (5.2),

dgz (Z’ﬁh,(x,w) (Z)) < |wh|$ + |(¢r(w),xh(w) - qu,xh(w))]ah,(r,w)(z)‘r

(5.4)
< |wplz + C(z)|w]d(z),

since the family of metrics is smooth. If C'(z)d(x) <1, the remaining claim of the lemma follows
from (5.4).

Lemma 5.2 There exist 6,C), € C°(N;R™T), where k is a positive integer, oy € C*®°(TRs;C), and
smooth families of maps

{Ouwp: {veTy, X vl <d(x)} — T3, | (z,w)€TRs}

such that every map O, is holomorphic,

Oun(0)=0, ©,,(0)=0, [0 co <Cu(x)w], lan(w) <Co(x)lwl, and
dqu,xh ‘xh(w)dqu(w),zh(w)‘xh (¢x(w),zhz) = (1 + ah(w))¢r,rhz + Gw,h (¢r,rhz)

5.5
Vz€ By (zh,6(2)). (55)

In particular, both sides of (5.5) are defined.
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Proof: We choose ¢ such that if w € T,N and |w| <46(x), then z(w) €N and the metric g, is
flat on By (z5,46(x)). This choice of § insures that both side of (5.5) are defined. If w and z are
as in the statement of the lemma, by the flatness of the metric g,(,) near z, C-linearity of the
differential of the exponential map near zero, and the smoothness of the family of the metrics

d¢x,xh |xh(w)d¢x(w),rh(w) ‘Ih (¢x(w),rhz) = (]- + CLh(’LU)) (¢r(w),xhz)7 (56)

for some ay, € C°°(TRs; C) such that a(0)=0. Note that if g, () = gz, an(w) =0, since the metric g,
is flat on By (zp,|w]). The map

{vely, X: v <20(2)} — Ty, 2, v— ¢w(w)7rh¢;,ihv — v,
is holomorphic since ¢y (), and ¢z, are, and vanishes at 0. Thus,
Ba(w).an oV = (14 bn(w))v + Oy p(v), (5.7)

for some by, (w) € C and holomorphic function ©,, , such that ©,, 5(0),©;, ;(0)=0. Equation (5.5)
follows from (5.6) and (5.7). Smoothness of b, and O.} in w follows from the smoothness of the
family of the metrics. The bounds on oy, and the derivatives of ©,,  follow from their smoothness
and compactness of the fibers of

{weTyR: |w|<d(z)} — N
Lemma 5.3 There exist 6,C € C®(X;R™) and smooth families of maps
Ny, {(:L‘,’LU): TEN; (a:,w)ETN(;} — TN
such that | Np(w,wp)|e < C(x)|w||wy| and
ddg z, |xh(w) (D)o () Th) = —wh + Np(w, wy). (5.8)
In particular, the left-hand side of (5.8) is defined.
Proof: We take 0 as in Lemma 5.2. Then, the left-hand side of (5.8) is defined and
Az, ‘zh(w) (Ba(w),anw)Th)
= dbuay |4, () (00,1 Th) + APa2n| 5, (1) L (Brw) o @) Th) = By y®n) ) (5.9)

= —wp, + Np(w,wp,),

where N (-, +) is some smooth function of both variables, that vanishes if either input is zero. Equa-
tion (5.8) is thus proved, while the bound on N}, is obtained from its smoothness and compactness
of the fibers as in the proof of Lemma 5.2.

Lemma 5.4 There exists 6 € C®°(N;R1) such that for all zeX, veT, N with [v]|<d(x), and
C=Clyy) EC™ with |c[|v] < 6(z), there exists w € TN with |wp|, < 2|ep||vple such that for all

2€ By (zp, 45(3;)%),
d¢x,xh |:ch(w) (sz(w),:ch(w) Z) = (1+ah (w)) (chvh+¢z,zhz) +®w,h(¢x,xhz)7 (510)

where ap(w) and O, p, are as in Lemma 5.2. In particular, both sides of (5.10) are defined.
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Proof: We start by choosing ¢ so that 862 is §maller that the function ¢ of Lemmas 5.2 and 5.3.
By flatness of the metric g,(,) on B(zp,88(x)?) for weT,N with |w|<§(z)

¢r(w),xh(w)z = dqu(w),rh(w) ‘rhqbr(w),xhz + qbr(w),xh(w)xh (511)

for any z € B(xh,45(:r)%). Taking dqbrvrh‘:nh(w) of both sides of (5.11) and applying Lemmas 5.2
and 5.3, we obtain

dog z, !mh(w) (gbx(wmh(w)z) = (1 + ah(w))¢z7zhz + Ou.h (Gz.2,2) — wy + Np(w,wy). (5.12)
Thus, we need to solve the equations
—wyp, + Np(w, wp) = (14 ap(w))cpvp. (5.13)
Let Wp,(w) = Np(w, wp,) — (1+ap(w))cpop. If |w] < 2|cp||vp|, then by Lemmas 5.2 and 5.3,

U (w)| < C@)lellvl (2lello] + 1) < 2fell],

5.14
@ (w) = T(w)| < C(x)leljo]jw — w'| < %Iw -, 1

provided 4C(z)d(z) <1. In such a case, ¥ is a contracting operator, and thus (5.13) has a unique
solution w € TN with |w|<2|c||v|. The estimate |wy|<2|cp||vy| follows directly from (5.13) if §(x)
is sufficiently small.

Corollary 5.5 There exist §,Cy, € C°(N;RT), where k is a positive integer, such that for any
TeN, v € TN with |v] <6(x), c=cppy, € C™ with |¢| <d(x), and r=r), € R™ with |r| < 3, there
exists TEXN and vETERN such that

(1) @ € By (zn, 2lenllvnl), |2 = 1| < Cr(@)lelfv], [Pnlz — [vnle| < CL(@)(lellv] + |ral)lvnl;

(2) for any zEBx(ach,élé(:r)lm),

‘%v—?z = (1+ rh){ch - %U—?Z + @h(%v—“’f) } (5.15)

where Oy ¢ 15 a holomorphic function, varying smoothly with the parameters, such that

@U,c,r,h(o) = 0’ G;j,c,r,h(o) = 0’ H®<k>

v,c,r,h

< Cr(@)lel[v][op |

oo

Proof: Let 0 be as in Lemma 5.4. Given v and ¢ as in the statement of the lemma, let we T, X be
the element provided by Lemma 5.4. Take

Tp = l‘h(w), Vp, = (1 + ’I"h)_1 (1 + ah(w))dqb;;hmhvh.

The estimates in (1) are immediate from Lemma 5.4, provided 0 is sufficiently small. The inequal-
ities in (2) arise from the smooth dependence of w on z, v, and ¢ in Lemma 5.4, and the fact that
w is zero if either v=0 or ¢=0.
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5.2 Sobolev Inequalities for the Metrics g,

In this subsection, we prove (3) of Lemma 3.5. The reason this estimate holds is that (3, g,) can
be written as a union of the surfaces (2, ;, g,,) with small disks missing and annuli (AiE p» 9v) that

are uniformly equivalent to annuli in R? with the smaller radius less than half of the larger.
Suppose T =(S, M, I;j,\) is a bubble type and
v = (b7 Uf) = ((57 M, I; z, (]a y)v ’LL), Uf) € F(O),Z:S

For any hel and 1€1, put

~ 1
AZy = azh, ({ns2) €3, 00 (207 (00) onls Sron(2) lonli } )
~ 1
Af) = arh (s 2) €S0, lonlg <ron(2) <207 (00)});

S, = q;%({(i,z)eSbmi: ro.h(2) > 67 (by) if th=1; |q§1(z)\ >d7(by) if i>0}).
Let flu,h denote fl;h U fl:}rh.

Lemma 5.6 For any p>2, there exists CPEC’OO(M%Q);R) such that for any ve FOT; and hel,

€ € Le(Aup; uTV) = [léllco < Cp(bo) €]lgup,1-

Proof: By construction of the metric g,, gy i, s the pullback of the metric g, ,, on gy, (Avh)

by the map ¢, ,,. Furthermore, the metric g,,, on qv(Ai: p) differs from the standard metric on

the annulus B - (b} fon 3 C R? by factors bounded by C(b,). Since |duyllg, » < Cp(by) by (1) of
7 \Ov ),|VUh

Lemma 3.5, the claim follows from Proposition 3.7 in [Z1].
Proposition 5.7 For any p>2, there exists CPECOO(M(TO);R) such that for all ve FOT;,

[€llco < Cp(bo)l[€llgy pr for all E€T (uy).

Proof: (1) Note that g,|s, , is the pull-back of the metric g, ; on ¢y ;(Sy,;) by the map g, ;. Thus,
by Proposition 3.7 in [Z1], if {€To(Sy i3 ulTV),

1€llco = 11€ © quillco < Cp(lldun, © quillgy, ;.p) 1€ © Gv.ill gy, .01 = Cp(bo)[Ellgo p.1,

since ¢ vanishes outside of S, ;. .
(2) We now define a partition of unity subordinate to {S, ;, A, p:i€l,hel}. Put

4 . 1- 5627(bv) (Tbu,h(qvah (Z)))7 if Qu,y, (Z) € Zbu,bh;
My h(z) = .
’ 1, otherwise;

_ 1= Bz (|a5 @ (2)]), if qua(2) €Sp,n _ n
2) = T\ ’ ’ w(z) =1— | | z z).
nv’h( ) {1, otherwise; ful?) hej%,h( )nv’h( )
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Note that alngE ;, is supported in flf p- It follows from the definition of g, that

+ + —
ldn;llg,.0r = 14015, © 4 g, ., o1 < Cb).

Thus, if £€T'(u,) by (1) and Lemma 5.6,

l€len < D iglloogs,o + 2 Inganiaglico < Colbo) (1llgupa + D Izt nllonn)

iel hel hel

< Cp(bv) (‘I‘Hf”gu,p,l + 22 Hn;hn:,h”gv,clHf”wm) < O{a(bv)Hf”gu,p,l’
hel

5.3 Elliptic Estimates for the Metrics g,

This subsection contains the proof of (4) of Lemma 3.5, the main elliptic estimate for the opera-
tors D,, and the modified Sobolev norms. This estimate does not hold for the standard Sobolev
norms. The argument is essentially the same as in [LT], but we do include all of the details, based
on [Z1], and state a sharper estimate.

Let T, v, fluh = fl;h U fl;rh, and S,; be as in Subsection 5.2. If ¢} = 0, the metric 9y, o 18 flat
on Bbu’h(é']'(bv)%) Thus, for any h € I, we can choose conformal polar coordinates (r,6) on A,

such that r(z) =7y, (qwh (z)) Since 9v|/iv s the pullback of the metric g,,,, on qwh(/iuh) by the
map qU,Lh7

2C (by) 2, 2702 A
9. ={(1- Aont Cr)) 1 T Ten 172 + B (1) (dr? +9%d6%) on Ape (5.16)
Similarly, since py, = puv,.,, ©Qu..,
9 |Uh|2 A
po =1+ 2 on A, p. (5.17)

Lemma 5.8 For all p>1, there exists CPECOO(Mg(—));R) such that for allve FOTs and hel,
_ ez o\l
fEPC(AU,hQUZTV) = (/A pv 7 IV UfP) < Op(bv)(”vauv,p + ”guv,p)'
v,h

Proof: (1) Let €; and ey denote (257(bv))_1\vh| and 267 (b,), respectively. Note that the integral
on the left-hand side in the statement of the lemma is conformally invariant. With respect to the
metric dr?+r2d6?,

D D
|DU£|(T,9) = ‘%5‘1‘ Jr @

(r,0)’

where % and % denote covariant differentiation with respect to the connection V% and the norms
are taken with respect to the metric gy, on V. Thus,

p—2

_p—2 21 rea _p-2 D D
2 = o POVl < DU2—2// o (=€ J=€ N drdf. 5.18
= [T <D, 2 [ [ (Ge e (5.15)

A'u,h
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Since V% .J =0, using integration by parts twice, we obtain

/%/62 o g J g drdO— /%/62 o de D, J£>drd0

_ / 27€2p; E 5@5,J5>_<R(uT,u9)g,J5>)drd9 (5.19)
_ /2762 =2 D £§> B (p;2)/:z_§:§<d%§7 J§> + (Ro, (ur, ug)é, J§>>drd0,

where u, and wug denote d%uu and d%uv, respectively, and R;, is the curvature tensor of the

connection V. Since
D D D D

by (5.19) and (1) of Lemma 3.5,

( / %/62[); w g, J%£>drdr0‘

b3 [ e A D 520
<A p 7Y —¢,JENdOdr| + C(by)| €17
<] [T [ (e s anar] + colels,
(2) By Poincare Lemma, see Proposition 2.5 in [Z1], for every circle with r fixed,
2m D 2, D |2 2w 2m
[ (e ae)as| < [ 5el a0+ ctand ] ([ ualae) ([ er2a0)
2r 27 1 2T D 2 1 ’
) 2 L 2
() ([ (D)
Since |Z%E:§ ‘ <2r~! on fluh, by Holder’s inequality and the first part of Lemma 3.5,
1/62[,—”;2 rpi;(r)‘(/2”r_1|u6|d9)(/2”|£|2d9)%(/ ‘ g‘ de) dr
2J)o " po(r) 1\ Jo 0 do
s (5.22)
< vi ?
<Clies( [ " e )"
Similarly,
1 [ =22 rp,(r) o 2 o 2
a (% < v : .
: / oo 7 [ ([ tuoao) ([ leRan)raran < e, (5.23)
Combining equations (5.21)-(5.23), we obtain
1 € _p-2 ./ 2 D
ol [0 b ) (e
“a polt) Jo (5.24)

2w prea _p-2 Ly D |2 )
< [0 e g ranan + ) el + el
€1
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Note that

/2762 =2
=5/,4U,w< A+ (BerorBe) - Bef) < i caci,

for any €>0. Combining equations (5.18), (5.20), (5.24) and (5.25), we obtain

2
aj, < |pp |(1+6) + (C(by) + C) (HvaH%,p + Hg”?hl’ = [1€lopan)-

2
g‘ rdrdf

(5.25)

Ip—2|

Since <1, the claim follows by choosing e sufficiently small.

Lemma 5.9 For all p>1, there exists CPEC"”(M%(—));R) such that for all ve FOT; and hel,

_p=2 1
€ € Le(AunluTV) = V"€l < Colt) (IDutllm + €l + ( [ 027 [967)").

Av,h
Proof: Choose a sequence
1 4 1
g > ... >5N+1 > (0 such that 50262, 5N+1 = €1, g < % < 5
!

For each [=1,...,N—1, let g; denote the metric

vr |2\ =1 - -
= <5l2 + ‘ 5}%‘ ) gy on A= {(7’, Q)EAUJLZ (514.2 <r< (51_1}.
Let p; =5l2+|7)h|251_2 and denote by A; the annulus {(r,0) € A, ht 041 <7 <6 }. The pullback of

the metric g; on A; to the annulus (61542, (S’—ll) x 81 Cc R? by the map (r,0) — (&;r,0) differs from
the Eucledian metric by a conformal factor bounded by C(b,), since

1

00 < { (1 = Byo, (Gi7)) 2

o] + o] 10772

I
<
+ By (0r) b (07 + 7 ) For <20,
whenever r € (§,3) and 6, € (|vn|,1). Thus, by Proposition 3.10 in [Z1],
be by
V%€l 100 < € (1Dl iy + IV €l pogiy + IEdully poiy): (5:26)

or equivalently

_p=2
19 €l poar < € (1Dug, iogan + o0 ™ V€l pacay + Neduly, 1ocay ) (5.27)

Pv (T)
"o € lar

([ 150e)” <y ( [1pier) + ([ 7 1976R)* 4 lednly aoiay)
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The claim follows by summing up the last inequality over all [ and using (1) of Lemma 3.5.

Remark: The above proof does not quite apply to the two outermost annuli A; and Ay. However,
since ¢ is compactly supported in flv,h, the proof of Proposition 3.10 in [Z1] can be applied to A;
with AjUAj, replacing A; to (5.26), and similarly for Ay. Alternatively, for the purposes of proving
Proposition 5.11 below, it is sufficient to prove Lemma 5.9 and Corollary 5.10 for £ that vanish on
A7 and Apy.

Corollary 5.10 For all p>1, there exists CpeCO"(M(TO);]R{) such that for all ve FOTy and hel
EET(Aup; w'TV) = [[€]lup1 < Cp(bo) (1Dokllup + [I€]lv,p)-

Proof: This corollary follows immediately from Lemmas 5.10 and 5.10.

Proposition 5.11 For all p>1, there exists CPEC’OO(M%Q);]R) such that for all ve FOT;,

[€]lv,p1 < Op(bv)(”va”v,p + ”f”v,p) VEEeT (uy).

Proof: This proposition follows from Corollary 5.10 and Proposition 3.12 in [Z1] by taking a
partition of unity as in the proof of Proposition 5.7.

5.4 Fiber-Uniform Inverse for the Operator D,

Lemma 5.12 Let {v;,} be a sequence in F(OT; that converges to b* € M(TO). Suppose &, € T'(uy,,)
is such that ||&glv,p1 <1 for all k, while || Dy, &kllv,p — 0 as k — oo for some p>2. Then a
subsequence of {&x} C°-converges £ €T_(b*). Furthermore, |||l co converges to |||y co.

Proof: (1) Write b* = (S, M, I;x*, (7, y*),u) and
vk = (b, vx) = ((S, M, I; g, (G, yn), un), (0k) 7).
For each i€l and § >0, put
s = {2€Sy;1 e p(2) =6 VheET; |qgt(2)| =0 if i>0}.
For i€l and all k sufficiently large (depending on §), define (j ;, {,’m EF(uﬂS;a) by
XPpr u* (2) Ch,i(2) = Uy (q;kl(z)), [Ck.illye,co < nj gvpes Ty ¢, (2)€ki(2) = Ek(q;kl(z))-

Since ||V (g illp- co < C for k sufficiently large, (1) of Lemma 3.5 and by Corollary 2.3 in [Z1],

Hgllc,z b pl = (1 + ek)HngkaLl + ekHSkHvk,COv (5 28)
Db,k illor p < (1 + €)1 Doy Ekllogep + €rll€k Nl c05
where €, — 0 as k— o00. Since [|€x]|v,p,1 <1, (2) of Lemma 3.5 applied to (5.28),
1€k.illor p1 < (1 + &) I€kllogpt + s Db,k illorp < (1 + &) Doy Eillog.p + & (5.29)
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where €, — 0 as k— 00. Sobolev’s embedding theorem then implies that & ; converges to a vector
field £ € I'(uls;, ) in the CP%-norm on the compact subsets of ¥} ;- Furthermore, ||
since '

b*’CO<OO,

1€ illb,co < (L + €)1kl c0 < C.
(2) We will now show that Dy« ,,+&; =0 weakly, i.e. ((§;, D *77>>b* =0 for any n€I'%! (u}). We have

(&7 Die wrm) )y = lim / (&, Dy e = lim - lim [ (&5, Die =) (5.30)
t 6—0 S g 0—0k—00 s 4
since fi/ai — & in the C%norm on S, 5. By integration by parts,

‘/ fkab* *77>b* —/ (Dpr, u*szﬂl>b*

<c / 166 < el olllecos 631

Since || Dy u;+8p illo- p—0 as k—— 00 on S} 5 and ||§1;,i||b*,00 <C, by (5.30) and (5.31),

(€5, D =0 Vel (us).

(3) Since Db*,u; £ =0 weakly on §; and Db*,u;j is an elliptic operator, it follows that £ is smooth
and Dy« o, =0. It will now be shown that &, (z}) =&} (00) for all he I,ie. € =¢&el(b*). For
cach hel, let Ap s C S denote the small cylinder connecting g, ' ( he) and 4o ( v s)- Let e>0

be any small number. Choose small § >0 such that up,(Bp+ n(00,26)) and u;, (Bps ,: (2}, 26)) lie in
By (uj (00), €). Then we can write

i () = XDy e oy T (2), e (2)] < 0] gves Ep(2) =T 6h(2)
for z€ By (00, 0) U By .z (27, 6). Similarly, put
E() =T L&) and &) =T e (2)
for z in By« j(00,d) and in By« ;, (2} ,0), respectively. We can also assume that ¢ is so small that

!g,”;—{;‘;(oo) pe and |§;“h &, (xF) » do not exceed € on By p(00,0) and on By« ,, (x}, ), respectively.
Choose large k* such that all k> k*

167 = &llcogs: JUS; ) SE
It can be assumed that uy(Ap 25k) lies in By (u*(z7); 2€) for k> k*. Thus, we can write
uk(2) = exXPye y(or) U(2), UR(2)|or < inj gy &(2) =10 uk(z 16k (2)

if z€ Ay, 51 Pick points z; and z2, one on each component of the boundary of Ay, 5. Then

&5 (00) = &, (21)] e < 2(e + €1 (qu, (21)) = &, (quy (22))] )
< A(e+ [ n (o (21)) = &gy (G (22))
< Cle+ |&(z1) — Er(22)

) (5.32)
pe T ||<k||b*,CO(S;75US;‘h75)||£k||b*,CO(Ah,57k))'
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Since Ap 5 is uniformly equivalent to the union of two annuli with the larger radius bounded
above by § and the smaller radius less than half of the larger, by Lemma 3.1 in [Z1] and Holder’s
inequality,

E(e1) = Eu(z2)] < Cl&(a1) = G2y, < C'6 7 il oty - (5.33)
By Corollary 2.3 in [Z1] and Proposition 5.11,
A€kl Lo 50) < N€kugp,t + 1At [l pll€k oy co < C. (5.34)
Combining equations (5.32)-(5.34), we obtain
2(p—2)
(00) — &6, (@) yr < Clet 875 + [l oo s ) (5.35)

Since the last term in (5.35) tends to zero as k— oo and € and § can be chosen to be arbitrarily
small, it follows &;(c0) =&} (77,)-

Proposition 5.13 For any simple bubble type T, there exist C,(SECOO(M(TO);R) such that for all
ve FOT5 if T is regular and ve FOT; if T is semiregular,

1€llopa < Cp(bo)[|[Duéllop  VEETL(v) and VEET,(v).

Proof: If not, we can choose a sequence vy € F' )75, converging to some beM(TO) and vector fields
Er €l (vg) (or & € Iy (vy)) such that ||k |lv, p1 =1, while [ Dy, &llv, p — 0. If § €'y (vg), note
that {I'_(vy)} CY-converges to V=I_(b). If & € I'y(vy), by Definition 3.11, a subsequence of
{T_(vp)} Cconverges to a subspace V C L¥(b) such that m, : V —T'_(b) is an isomorphism.
In either case, by the first statement of Lemma 5.12, a subsequence of {£;} C%-converges to a
vector field £* € T'_(b). By the second statement of Lemma 5.12, £* must be orthogonal V', since
& €T (vg) (or & €T (vg)). Thus, £*=0. On the other hand, by Proposition 5.11, there exists
€ >0 such that ||, ,p > € for all k sufficiently large. However, by Lemma 5.12, ||, co —0,
which is a contradiction.
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