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Abstract

We describe in detail a gluing construction for pseudoholomorphic maps in symplectic geom-
etry, including in the presence of an obstruction bundle. The main motivation is to try to
compare the symplectic and enumerative invariants of algebraic manifolds. These descriptions
can also be used to enumerate rational curves with high-order degeneracies of local nature in
projective spaces.
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1 Introduction

1.1 Background and Motivation

Suppose (Σ, j) is a nonsingular Riemann surface of genus g ≥ 2 and (V, J, ω) is a Kahler manifold
of complex dimension n. If λ∈H2(V ; Z), denote by HΣ,λ(V ) the set of simple (J, j)-holomorphic
maps u from Σ to V such that u∗[Σ]=λ. Let µ= (µ1, . . . , µN ) be an N -tuple of proper oriented
submanifolds of V such that

codim µ ≡
l=N∑

l=1

codim µl = 2
(
〈c1(V, J), λ〉 − n(g − 1) +N

)
. (1.1)

For many Kahler manifolds (V, J, ω) and choice of constraints µ, the cardinality of the set

HΣ,λ(µ) ≡
{
(Σ; y1, . . . , yN ;u) : u∈HΣ,λ(V ); yl∈Σ, u(yl)∈µl ∀l = 1, . . . , N

}
(1.2)

is finite and depends only on the homology classes of µ1, . . . , µN . The cardinality |HΣ,λ(µ)| of the
set HΣ,λ(µ) is then an enumerative invariant of the complex manifold (V, J). Such numbers for
algebraic manifolds (V, J), e.g. the complex projective spaces P

n, have been of great interest in
algebraic geometry for a long time.

If (V, ω, J) is a semipositive symplectic manifold, the symplectic invariant of (V, ω),

RTg,λ(;µ) ≡ RTg,λ(;µ1, . . . , µN )

of [RT], is a well-defined integer. Due to the two composition laws of [RT], this symplectic in-
variant is often more readily computable than the enumerative invariant |HΣ,λ(µ)|. In fact, all
such symplectic invariants of P

n are easily computable. It is also shown in Section 10 of [RT] that
the appropriately defined genus-zero enumerative invariants of P

n agree with the corresponding
symplectic invariants. On the other hand, even for P

2 and for genus one, the two invariants are no
longer equal. In [I], the difference

RT1,λ(µ1;µ2, . . . , µN ) − |HΣ,λ(µ)|
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is computed for genus-one surfaces Σ and all projective spaces using an obstruction-bundle ap-
proach, first introduced by [T] in a very different setting. In [Z2], the difference

RT2,λ(;µ) − |HΣ,λ(µ)|

is computed for genus-two surfaces Σ for P
2 and P

3 using a similar approach. Both differences are
linear combinations of genus-zero enumerative invariants.

The purpose of this paper is to describe in detail a gluing construction for pseudoholomorphic
maps which is suitable for analyzing relationships between symplectic and enumerative invariants
of Kahler, or more generally almost Kahler, manifolds. In particular, this paper supplies the most
technical portion of the justification needed for the main analytic setups in [I] and [Z2]. The ex-
plicit nature of the gluing construction can yield useful estimates for obstructions to smoothing
pseudoholomorphic maps from singular domains and for the behavior of derivatives of pseudoholo-
morphic maps under gluing; see Subsection 4.1 and Theorem 2.8 in [Z2]. Such estimates are used
in an essential way in [I] and [Z2].

The power series expansions of Theorem 2.8 and Proposition 4.4 in [Z2], and their analogues in
other genera, are useful in both enumerative geometry and Gromov-Witten theory. For example,
Theorem 2.8 of [Z2] is used in [Z3] to describe a method for solving a large class of enumerative
problems involving rational curves in P

n. On the other hand, a genus-one analogue of Proposi-

tion 4.4 in [Z2] is used in [Z4] to describe the ”main component” M0
1,k(V, λ) of the moduli space

M1,k(V, λ) of genus-one stable maps into V . This main component is a closed subset of M1,k(V, λ)
and contains the subspace M0

1,k(V, λ) of M1,k(V, λ) consisting of stable J-holomorphic maps with

smooth domains. If J is sufficiently regular, M0
1,k(V, λ) is the closure of M0

1,k(V, λ) and carries a
fundamental class.

The author is grateful to T. Mrowka for pointing out the paper [I], encouraging the author to work
out all of the analytic issues arising in [I], and sharing some of his expertise in applications of global
analysis over countless hours of conversations. The author would also like to thank G. Tian, for
first introducing him to Gromov’s symplectic invariants and helping him understand [LT], and the
referee, for corrections and suggestions on the original version of this paper.

1.2 Summary

In this subsection, we first recall the definition of Gromov-Witten fixed-complex structure invari-
ants for a semi-positive almost Kahler manifold (V, J, ω). We then outline the rest of the paper
and roughly describe the statements of the two main theorems.

If Σ and V are as in the previous subsection, we denote by

πΣ, πV : Σ×V −→ Σ, V

the two projection maps. Let
Λ0,1π∗ΣT

∗Σ⊗π∗V TV −→ Σ×V
be the bundle of (J, j)-antilinear homomorphisms from π∗ΣTΣ to π∗V TV . If

ν ∈ Γ
(
Σ×V ; Λ0,1π∗ΣT

∗Σ⊗π∗V TV
)
,
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we denote by MΣ,ν,λ the set of all smooth maps u from Σ to P
n such that

u∗[Σ] = λ and ∂̄u|z = ν|(z,u(z)) ∀ z∈Σ.

If µ is an N -tuple of constraints as above, put

MΣ,ν,λ(µ) =
{
(Σ; y1, . . . , yN ;u) : u∈MΣ,ν,λ; yl∈Σ, u(yl)∈µl ∀l = 1, . . . , N

}
.

If (V, ω, J) is semipositive, for generic choices of ν and µ, MΣ,ν,λ is a smooth finite-dimensional
oriented manifold, and MΣ,ν,λ(µ) is a zero-dimensional finite submanifold of MΣ,ν,λ×ΣN , whose
signed cardinality depends only the homology classes of µ1, . . . , µN ; see Section 1 of [RT]. The
symplectic invariant RTg,λ(;µ) is the signed cardinality of the set MΣ,ν,λ(µ).

If ‖νi‖C0 −→0 and (Σ; y
i
;ui)∈MΣ,νi,λ(µ), then a subsequence of {(Σ; y

i
, ui)}∞i=1 must converge in

the Gromov topology to one of the following:
(1) an element of HΣ,λ(µ);
(2) (Σ>; y;u), where Σ> is a bubble tree of S2’s attached to Σ with marked points y1, . . . , yN , and
u : Σ>−→V is a holomorphic map such that u(yl)∈µl for l = 1, . . . , N , and

(2a) u|Σ is simple and the tree contains at least one S2;
(2b) u|Σ is multiply-covered;
(2c) u|Σ is constant and the tree contains at least one S2.

This convergence statement says that for all t sufficiently small, every element of MΣ,tν,λ(µ) lies
near one of the spaces described by (1)-(2c). In many practical applications it is easy to show that
there is a bijection between the elements of HΣ,λ(µ) and the nearby elements of MΣ,tν,λ(µ); see
Proposition 3.30. This is the case for all projective spaces, provided λ is a sufficiently high multiple
of the line. In [I] and [Z2], Cases (2a) and (2b) do not occur, but they may have to be considered
when dealing with higher-dimensional projective spaces or higher genera. If the signed cardinality
of MΣ,tν,λ(µ) is RTg,λ(;µ) for all t>0 sufficiently small, the number of elements of MΣ,tν,λ(µ) that
lie near the spaces described by (2) is thus exactly

CRg,λ(µ) ≡ RTg,λ(;µ)−|HΣ,λ(µ)|.

The goal of this paper is to describe CRg,λ(µ) in terms of the spaces of holomorphic maps them-
selves, which can be viewed as an enumerative object, rather than a symplectic one. We do need
to assume that certain spaces of holomorphic maps are smooth, but they do not need to have the
expected dimension.

While there is a very good understanding of what constitutes a stable map, there is little in a way
of commonly accepted notation for stable maps and various spaces of stable maps. In Section 2,
we recall the definition of bubble or stable maps as well as set up analytically convenient notation.
Our notation for bubble maps evolved from that of D. McDuff’s lectures at Harvard. In Subsec-
tion 2.4, we restate the definition of the Gromov topology on the set of all bubble maps in our
notation. In Subsection 2.5, we define various spaces MT and UT of bubble maps and bundles of
gluing parameters FT over MT and FT over UT .

As is typical in symplectic geometry, our gluing construction has two steps: pregluing and pertur-
bation. The pregluing step is usually carried out in the target space V . In this paper, we work with
the domains to construct an approximately holomorphic map. Indeed, given a pseudoholomorphic
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map b=(Σb, ub) in MT (or UT ) and a gluing parameter υ∈FbT (or υ∈FbT ) for b, we construct a
Riemann surface Συ and a nearly holomorphic map

qυ : Συ −→ Σb;

see Subsection 2.2. We then take the approximately holomorphic map corresponding to υ to be

b(υ) =
(
Συ, uυ ≡ ub◦qυ

)
.

This explicit construction at the pregluing step leads to the estimates of Theorem 2.8 and Propo-
sition 4.4 in [Z2].

For the second step of a typical gluing construction, one needs to define a family of spaces Γ̃+(υ) of
admissible perturbations of b(υ) and sometimes a family of obstruction bundles Γ0,1

− (υ), which to-
gether will be called an obstruction bundle setup. The former space should be a maximal subspace
of all perturbations Γ(υ) of b(υ) on which a certain operator Dυ is fiberwise uniformly invertible,
i.e. the norm of its inverse may depend on b, but not on υ∈FbT . The obstruction bundle Γ0,1

− (υ)

should be the complement of the image of Dυ on Γ̃+(υ) in the target space of Dυ and should
be isomorphic to the cokernel Γ0,1

− (b) of a certain operator Db. It may appear there are obvious

choices for Γ̃+(υ) and Γ0,1
− (υ), i.e. the high eigenspaces of D∗

υDυ and the low eigenspaces of DυD
∗
υ.

These spaces, however, are not an option for an obstruction bundle setup. The usual difficulty
with the second step of gluing constructions in symplectic geometry is that the operator D∗

υDυ

has eigenvalues that tend to zero as the gluing parameter tends to zero, but then disappear as the
gluing parameter hits zero. This is not really dealt with in [I], but there are now several standard
approaches to this problem. We use the modified Sobolev norms of [LT], redefined in Subsection 3.3
in the notation of Section 2, and describe the requirements for an obstruction bundle setup in Sub-
section 3.5.

The main goal of Section 3 is to describe the number of elements of MΣ,tν,λ(µ) lying near the stable
maps of type (2) in terms of objects intrinsic to the space of such maps. Given a sufficiently regular
stratum S(µ)⊂MT of stable maps of type (2), Theorem 3.29 describes the number of elements of
MΣ,tν,λ(µ) lying near S(µ) as the number of zeros of a map between two vector bundles over S(µ).

The target vector bundle is the obstruction, or cokernel, bundle Γ0,1
− . The domain vector bundle

is the direct sum of the bundle FT of gluing parameters with the normal bundle of S in MT .
In Section 4 of [Z2], we use convenient choices of an obstruction bundle setup to approximate all
such bundle maps by much simpler polynomial bundle maps. The latter maps involve derivatives
of rational maps into P

n.

We also give a local description of spaces of stable rational maps into V under certain regularity
assumptions, i.e. in the unobstructed cases. By Theorem 3.33, the normal bundle of a stratum UT

in such a space is FT . This is still the case if generic constraints µ are imposed on the stable maps.
This is a known fact in symplectic, as well algebraic, geometry. However, the explicit nature of the
identification maps that appear in the statement of Theorem 3.33 is used to obtain the estimates
of Theorem 2.8 in [Z2] for the behavior of derivatives of pseudoholomorphic maps.

Section 4 contains proofs of continuity, injectivity, and surjectivity of the gluing maps. These are
usually omitted in the literature, but in the given case one has to choose the obstruction bundle
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Figure 1: A Linearly Ordered Tree and A Rooted Tree

setup carefully to ensure that these properties of the gluing map actually hold. In particular, Sec-
tion 4 contains what [LT] may mean by “asymptotic analysis near the nodes,” which they omit.
The appendix deals with even more technical details of the analysis.

We note that the gluing construction described in this paper deals only with attaching rational
bubble components to a smooth principal component. However, it can be generalized to allow
singular principle components.

1.3 Fundamental Notation

In this subsection, we collect the most frequently used combinatorial and analytic notation.

Definition 1.1 (1) A finite partially ordered set I is a linearly ordered set if for all i1, i2, h∈I
such that i1, i2<h, either i1≤ i2 or i2≤ i1.
(2) A linearly ordered set I is a rooted tree if I has a unique minimal element, i.e. there exists
0̂∈I such that 0̂≤h for all h∈I.
(3) If I and I ′ are linearly ordered sets, bijection φ : I−→I ′ is an isomorphism of linearly ordered
sets if for all h, i∈I, i<h if and only if φ(i)<φ(h).

A linearly ordered set can be represented by an oriented graph. In Figure 1, the dots denote the
elements of I. The arrows specify the partial ordering of the linearly ordered set I. By definition,
there is at most one outgoing edge at each vertex. A linearly ordered set I is a rooted tree if and
only if its graph is connected. The minimal element, or root, 0̂ of a rooted tree I is the unique
vertex of the graph associated to I that has no outgoing edges.

If I is a linearly ordered set, we denote the subset of the non-minimal elements of I by Î, i.e.

Î =
{
h∈I : i<h for some i∈I

}
.

This is the collection of the vertices of the graph corresponding to I that have an outgoing edge.
For every h∈ Î, the set {i∈I : i<h} has a unique maximal element ιh, i.e.

ιh < h and i ≤ ιh for all i∈I s.t. i<h.

The vertex ιh is the endpoint of the unique edge leaving h. For reasons clarified in Subsection 2.1,
ι : Î−→I will be called the attaching map of I. It is clear from Definition 1.1 that I has a unique
splitting

I =
⊔

k∈K

Ik
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such that Ik ⊂ I is a rooted tree and k is a minimal element of I. The rooted trees Ik are the
connected components of the graph corresponding to I. The attaching map of I restricts to the
attaching map of each Ik, which will still be denoted by ι.

Let I be a rooted tree. We denote the unique minimal element of I by 0̂I , or simply by 0̂ if there
is no ambiguity. If I∗, I∗, and I∗ are rooted trees, we will write Î∗, Î∗, and Î∗ for Î∗, Î∗, and Î∗,
respectively; here ∗ denotes any string of symbols. If i∈I, let

DiI = {h∈I : h>i}, D̄iI = DiI ∪ {i}.

The subset DiI of I consists of all vertices of I that are ”upstream” from i. Every rooted tree I
has a number of subsets that are rooted trees; the subsets D̄iI are one example. If H is a subset
of I, the set

I(H) ≡
{
i∈I : i 6>h ∀h∈H

}

is also a rooted tree. If i∈I, denote I({i}) by I(i). If H is a subset of Î, let

IH =
{
i∈I : i 6≥h ∀h∈H

}
, I(H) = H ∪ {0̂I}.

If h∈ Î , denote I{h} by Ih.

If M1 and M2 are two sets, let M1tM2 be the disjoint union of M1 and M2. Finally, if N is a
nonnegative integer, let [N ]={1, . . . , N}.

We now introduce some analytic notation. Let β : R−→ [0, 1] be a smooth function such that

β(t) =

{
0, if t≤1;

1, if t≥2,
and β′(t) > 0 if t∈(1, 2). (1.3)

If r>0, let βr∈C∞(R; R) be given by βr(t) = β
(
r−

1
2 t

)
. Note that

supp(βr) =
[
r

1
2 , 2r

1
2

]
, ‖β′r‖C0 ≤ Cβr

− 1
2 , and ‖β′′r ‖C0 ≤ Cβr

−1. (1.4)

Throughout the paper, β and βr will refer to these smooth cutoff functions.

Let qN , qS : C−→ S2 ⊂R
3 be the stereographic projections mapping the origin in C to the north

and south poles, respectively. Explicitly,

qN (z) =
( 2z

1+|z|2 ,
1−|z|2
1+|z|2

)
∈ C×R, qS(z) =

( 2z

1+|z|2 ,
−1+|z|2
1+|z|2

)
. (1.5)

Denote the south pole of S2, i.e. the point (0, 0,−1)∈R
3, by ∞. We identify C with S2−{∞} via

the map qN . If x ∈S2−{∞}, we define the corresponding inverse exponential map

φx : S2−{∞} −→ C by φxz = z − x ≡ q−1
N (z) − q−1

N (x). (1.6)

Note that this map is a biholomorphism. If g is a Riemannian metric on Riemann surface (Σ, j)
of positive genus, x∈Σ and v ∈ TxΣ, we write expg,x v ∈Σ for the exponential of v defined with
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respect to the Levi-Civita connection of g. Let injgx denote the corresponding injectivity radius
at x and dg the distance function. If x∈Σ, we define the corresponding inverse exponential map

φg,x :
{
z∈Σ: dg(x, z)< injgx

}
−→ TxΣ by expg,x φg,xz = z, |φg,xz|g,x < injgx. (1.7)

Note that if g is flat on a neighborhood U of x in Σ, then φg,x|U is holomorphic.

Let gV be the Kahler metric of (V, J, ω). Denote the corresponding Levi-Civita connection, expo-
nential map, and distance function by ∇V , expV and dV , respectively. For every λ∈H2(V ; Z), let
|λ|=〈ω, λ〉. The number |λ| is the gV -energy of any element of HΣ,λ; see Chapter 1 in [MS]. By
rescaling ω, it can be assumed that |λ|≥1, whenever λ 6=0 and HS2,λ 6=∅. If g is any Kahler metric
on (V, J), denote the corresponding Levi-Civita connection, exponential map, distance function,
injectivity radius, and the parallel transport along the geodesic for X∈TV by ∇g, expg, dg, injg,
and Πg,X , respectively. If q∈V and δ∈R, let

Bg(q, δ) =
{
q′∈V : dg(q, q

′)≤δ
}
.

In our construction, we allow g vary in a smooth family. Without causing any additional difficulty
in the gluing construction, consideration of such families simplifies computations in specific cases
such as in [Z2]. If (S, j) is a smooth Riemann surface and u ∈ C∞(S;V ), put

Γ(u) = Γ(S;u∗TV ), Γ1(u) = Γ(S;T ∗S⊗u∗TV );

Γ0,1(u) = Γ(S; Λ0,1T ∗S⊗u∗TV ), ∂̄u =
1

2

(
du+ J ◦ du ◦ j

)
∈ Γ0,1(u).

We denote by DV and Dg the linearizations of ∂̄-operator with respect to the metrics gV and g
on V , respectively. Since both metrics are Kahler, DV and Dg commute with J ; see [Z1].

It should be mentioned that it is not essential for the main gluing construction described in this
paper that (V, J, g) is Kahler or even symplectic. If (V, J, g) is not Kahler, we would need to choose
an orientation on certain spaces of holomorphic maps and take the induced orientation on the
cokernel bundle; see Subsection 3.2. Dropping the Kahler assumption would have almost no effect
on the analysis, but would slightly complicate the notation.

2 Spaces of Bubble Maps

2.1 Bubble Trees

Let S be either the Riemann sphere S2 or a smooth Riemann surface Σ of genus at least 2. Allowing
the genus-one case would lead to somewhat more complicated notation, but would have no effect
on the analysis done in Section 3. We put

S∗ =

{
S−{∞}, if S=S2;

S, if S=Σ.

Definition 2.1 A bubble tree based on S is a tuple >=(S, I;x), where
(a) I is a rooted tree and x : Î−→S∪S2 is a map;
(b) xh∈S∗ if ιh =0̂ and xh∈S2−{∞} otherwise;
(c) if h1 6=h2 and ιh1 = ιh2, xh1 6=xh2.
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Given a bubble tree > as above, let Σ> be the nodal complex curve

Σ> =
((

{0̂}×S
)
t

⊔

h∈Î

(
{h}×S2

))/
∼, where (h,∞)∼(ιh, xh) ∀h∈ Î .

In other words, the algebraically irreducible components of Σ> are indexed by the set I. The point
(h,∞) on the component

Σ>,h ≡ {h}×S2

is attached to the point (ιh, xh) on the component Σ>,ιh, where

Σ>,0̂ = {0̂}×S.

We will call the component Σ>,0̂ corresponding to the root 0̂ of I the principal component of

> or Σ>. For each i ∈ Î, Σ>,i will be called the ith bubble component of > or Σ> or simply a
bubble component. Let Σ∗

>,i and Σ∗
> denote the open subsets of smooth points of Σ>,i and Σ>,

respectively, i.e.

Σ∗
>,i =

{
Σ>,i − {(i,∞)} − {(i, xh) : ιh = i}, if i∈ Î;
S − {(0̂, xh) : ιh =0̂}, if i=0̂;

Σ∗
> =

⋃

i∈I

Σ∗
>,i.

The complement of Σ∗
> in Σ> is the set of the singular points or nodes of Σ>.

If i∈I and h∈ Î, we put

>(i) =
(
S, I(i);x|Î(i)

)
and >h =

(
S, Ih;x|Îh

)
.

These tuples are again bubble trees based on S. The complex curve Σ>(i) is obtained from Σ> by
dropping all bubble components descendent from the ith bubble component. The curve Σ>h is ob-
tained by dropping the hth bubble component along with all bubble components descendent from it.

If S=S2 and h∈ Î, we denote the inverse exponential map φxh
defined in (1.6) by φ>,h. If z∈Σ>,i,

put

r>,h(z) =

{
|φ>,hz| , if i= ιh and z 6=∞;

100, otherwise.
(2.1)

If δ>0, let B>,h(δ)={z∈Σ> : r>,h(z)<δ}. We set

r> = min
h∈Î

(∣∣q−1
S (xh)

∣∣,min
{
r>,h(ιl, xl) : l 6=h

})
. (2.2)

The positive number r> measures the separation of the nodes of Σ> pairwise and from the point
(0̂,∞) of the principal component Σ>,0̂. This point will be a special marked point.

If S=Σ and h∈ Î is such that ιh∈ Î, we again let φ>,h denote the inverse exponential map φxh
of

(1.6) and define r>,h and B>,h(δ) as above. If g is a Riemannian metric on Σ, ιh =0̂, and z∈Σ>,i,
put

r>,g,h(z) =

{
dg(xh, z), if i=0̂;

100, otherwise.
(2.3)
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We denote by φ>,g,h the inverse exponential map φg,xh
of (1.7) and by B>,g,h(δ) the ball Bg(xh, δ).

We set

r>g = min
(

min
ιh=0̂

{
r>,g,h(ιl, xl) : l 6=h

}
,min
ιh 6=0̂

(∣∣q−1
S (xh)

∣∣,min{r>,h(ιl, xl) : l 6=h}
))
. (2.4)

The positive number r>g measures the separation of the nodes of Σ>. We say g is a >-admissible
Riemannian metric on Σ if there exists δ>0 such that for all h∈ Î with ιh =0̂, the metric g is flat
on B>,g,h(δ).

2.2 The Basic Gluing Construction

In this subsection, we describe a gluing construction on bubble trees, which is the basis of all the
other gluing constructions in this paper. Lemma 2.2 plays a very important role in the next section
and in the explicit computations of [Z2].

Let >=(S, I;x) be a bubble tree. If h∈ Î , put

F
(0)
h,> =

{
C, if xh∈S2;

Txh
Σ, if xh∈Σ,

F
(0)
> =

⊕

h∈Î

F
(0)
h,>. (2.5)

If S=S2, for any δ>0, put

F
(0)
>,δ =

{
υ=(>, vÎ) : vÎ ∈F

(0)
> , |υ| ≡

∑

h∈Î

|vh| < δ
}
.

Let δ>∈(0, 1) be such that 8δ
1
2
><r>. If S=Σ and g is an admissible metric on Σ, put

F
(0)
>,g,δ =

{
υ=(>, vÎ) : vÎ ∈F

(0)
> , |υ|g ≡

∑

ih=0̂

|vh|g +
∑

ih 6=0̂

|vh| < δ
}
,

where |vh|g = |vh|g,xh
. Let δ>g ∈ (0, 1) be such that 8(δ>g)

1
2 < r>g and the metric g is flat on

Bg

(
xh, 4(δ>g)

1
2

)
for all h∈ Î with ιh =0̂.

For each υ ∈F (0)
>,δ>

if S =S2 and υ ∈F (0)
>,δ>g if S = Σ, we will construct a bubble tree >(υ) and a

smooth map
qυ : Σ>(υ) −→ Σ>.

The Riemann surface Σ>(υ) is obtained from Σ> by replacing the attaching node of the bubble
Σ>,h by a thin neck whenever vh 6= 0. The map qυ simply pinches all these necks. Alternatively,
the map qυ can be described as a stretching of small neighborhoods of the points (ιh, xh) in Σ>,ιh

around the bubbles Σ>,h.

First, for every h∈ Î and vh∈F (0)
>,h with

|vh|∈(0, δ) if xh∈S2 and |vh|g∈(0, δ) if xh∈Σ,

we define local stretching maps

qh,(xh,vh) : Σ>(ιh) −→ Σ>(h) if xh∈S2 and qg,h,(xh,vh) : Σ>(ιh) −→ Σ>(h) if xh∈Σ.
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These maps will stretch a small neighborhood of the point (ιh, xh) in Σ>,ιh around the bubble Σ>,h,
which is attached to Σ>(ιh) at (ιh, xh). If xh∈S2, let

ph,(xh,vh) : B>,h(δ
1
2 ) −→ C∪{∞}

be the map given by

ph,(xh,vh)(z) =
(
1 − β|vh|(2|φ>,hz|)

)( vh

φ>,hz

)
. (2.6)

We note that ( 1

ph,(xh,vh)(z)

)
=
φ>,hz

vh
∀z∈B>,h

(
|vh|

1
2/2

)
. (2.7)

Define qh,(xh,vh) : Σ>h −→Σ>(h) by

qh,(xh,vh)(z) =






(
h, qS(ph,(xh,vh)(z))

)
, if r>,h(z)≤|vh|

1
2 ;(

ιh, φ
−1
>,h

(
β|vh|(|φ>,hz|)(φ>,hz)

))
, if |vh|

1
2 ≤r>,h(z)≤2|vh|

1
2 ;

z, otherwise.

(2.8)

This map wraps the ball B>,h(|vh|
1
2 ) around the sphere Σ>,h. It stretches the ball B>,h(|vh|

1
2 /2)

by the factor of 1/vh, as can be seen from (2.7). The map qh,(xh,vh) is smooth everywhere and is a

diffeomorphism, outside of the circle r>,h(z)= |vh|
1
2 in Σ>,ιh .

If xh∈Σ, similarly to the above, let pg,h,(xh,vh) : B>,g,h(δ
1
2 )−→C∪{∞} be given by

pg,h,(xh,vh)(z) =
(
1 − β|vh|g(2|φ>,g,hz|g)

)( vh

φ>,g,hz

)
. (2.9)

Note that the ratio vh/φ>,g,hz is well-defined as an extended complex number, since Txh
Σ is one-

dimensional and vh 6=0. Define qg,h,(xh,vh) : Σ>h −→Σ>(h) by

qg,h,(xh,vh)(z) =






(
h, qS(pg,h,(xh,vh)(z))

)
, if r>,g,h(z)≤|vh|

1
2 ;(

ιh, φ
−1
g,>,h

(
β|vh|g(|φ>,g,hz|g)(φ>,g,hz)

))
, if |vh|

1
2 ≤r>,g,h(z)≤2|vh|

1
2 ;

z, otherwise.

(2.10)

Similarly to the case xh ∈ S2, qg,h,(xh,vh) is smooth and is a diffeomorphism, except on the circle

r>,g,h(z)= |vh|
1
2
g in Σ>,ih .

If S = S2, for every h ∈ I and υ ∈ F (0)
>,δ, we now define a bubble tree >h(υ) and a smooth map

qυ,h : Σ>h(υ) −→Σ>(h) . Choose an ordering of I consistent with its partial ordering. If h=0̂, we

take Ih(υ) = {0̂}, >h(υ)=
(
S, Ih(υ);

)
, and qυ,h = IdS . Suppose h 6=0̂ and

>h−1(υ) =
(
S, Îh−1(υ);xh(υ)

)

with Ih−1(υ)⊂I. If vh =0, put

Ih(υ) = Ih−1(υ) ∪ {h},
(
ιh,l(υ), xh,l(υ)

)
=

{(
ιh−1,l(υ), xh−1,l(υ)

)
, if l∈Ih−1(υ);

q−1
υ,ιh

(ιh, xh), otherwise.
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Let qυ,h|Σ>h−1(υ)
=qυ,h−1 and qυ,h(h, z)=(h, z). If vh 6=0, let

Ih(υ) = Ih−1(υ),
(
ιh,l(υ), xh,l(υ)

)
=

(
ιh−1,l(υ), xh−1,l(υ)

)
.

We take qυ,h = qh,(xh,vh)◦qυ,h−1. Inductively this procedure defines a bubble tree >(υ) = >h∗(υ)
based on S and a smooth map

qυ =qυ,h∗ : Σ>(υ) −→ Σ>,

where h∗ is the largest element of I. This map is a diffeomorphism outside of |I−I(υ)| disjoint
circles. The resulting bubble tree and map are independent of the choice of the extension of the
partial ordering. While the domains of the maps qυ,h do depend on such a choice, whenever we
make use of the maps qυ,h below, the result will also be independent of the choice. If S = Σ, for

every h∈ I and υ∈F (0)
>,g,δ, we define bubble tree >g,h(υ) and maps qg,υ,h : Σ>g,h(υ) −→Σ>(h) simi-

larly to the above, but replacing qh,(xh,vh) by qg,h,(xh,vh) whenever ιh =0̂. We let >g(υ)=>g,h∗(υ)
and qg,υ =qg,υ,h∗. As before, qg,υ is smooth and a diffeomorphism outside of |I−I(υ)| disjoint circles.

If S=S2 and vh 6=0, put

A+
υ,h = q−1

υ,ιh

({
z∈Σ>,ιh : |vh|

1
2 ≤r>,h(z)≤2|vh|

1
2
})

;

A−
υ,h = q−1

υ,ιh

({
z∈Σ>,ιh :

1

2
|vh|

1
2 ≤r>,h(z)≤|vh|

1
2
})
.

(2.11)

Note that A±
υ,h⊂Σ>(υ),i∗h(υ), where

i∗h(υ) = min
{
i∈I : i<h and vh′ 6=0 if i<h′<h

}
= max

{
i∈I(υ) : i<h

}
.

If S=Σ and vh 6=0, we similarly define

A+
g,υ,h = q−1

g,υ,ιh

({
z∈Σ>,ιh : |vh|

1
2
g ≤r>,g,h(z)≤2|vh|

1
2
g

})
;

A−
g,υ,h = q−1

g,υ,ιh

({
z∈Σ>,ιh :

1

2
|vh|

1
2
g ≤r>,g,h(z)≤|vh|

1
2
g

})
,

(2.12)

where |vh|g and r>,g,h denote |vh| and r>,h if ιh∈ Î.

Lemma 2.2 If S = S2, the map qυ is holomorphic outside of the annuli A±
υ,h with vh 6= 0.

For such h,

‖dqh,(xh,vh)‖C0(qυ,ιh
(A±

υ,h)) ≤ C;

∂̄
(
qυ ◦ q−1

υ,ιh

)∣∣
z

= −2|vh|−
1
2

( vh

φ>,hz

)
dqS

∣∣
ph,(xh,vh)z

◦ ∂β
∣∣
2|vh|

− 1
2 φ>,hz

◦ dφ>,h

∣∣
z

∀z∈qυ,ιh(A−
υ,h),

where the norm is computed with respect to the standard metric on S2, and β is a viewed as a
function on C via the standard norm on C. If S = Σ, the map qg,υ is holomorphic outside of the
annuli A±

g,υ,h with vh 6=0. For such h,

‖dqg,h,(xh,vh)‖C0(qg,υ,ιh
(A±

g,υ,h)) ≤ Cg if ιh =0̂; ‖dqh,(xh,vh)‖C0(qg,υ,ιh
(A±

g,υ,h)) ≤ C if ιh 6=0̂;

∂̄
(
qg,υ ◦ q−1

g,υ,ιh

)∣∣
z

= −2|vh|−
1
2

( vh

φ>,hz

)
dqS

∣∣
ph,(xh,vh)z

◦ ∂β
∣∣
2|vh|

− 1
2 φ>,hz

◦ dφ>,h

∣∣
z

∀z∈qg,υ,ιh(A−
υ,h),

where we regard β as a function on Txh
Σ via the metric g and denote φg,>,h by φ>,h if ιh =0̂.
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Proof: The first statement in each of the two cases is immediate from the construction. The
estimates on the differential of qh,(xh,vh) and qg,h,(xh,vh) follow from (1.4). Suppose S = Σ, ιh =0̂,

vh 6=0, and z∈A−
g,υ,h. Since qg,υ =qg,υ,ιh on A−

g,υ,h and qS is anti-holomorphic, from (2.9) and (2.10)
we obtain

∂̄qg,υ

∣∣
z

= dqS
∣∣
pg,h,(xh,vh)z

◦ ∂pg,h,(xh,vh)

∣∣
z

= −2|vh|
− 1

2
g

( vh

φ>,g,hz

)
dqS

∣∣
pg,h,(xh,vh)z

◦ ∂β
∣∣
2|vh|

−1
2

g φ>,g,hz
◦ dφ>,g,h

∣∣
z
.

The other cases are proved similarly, since qg,υ ◦ q−1
g,υ,ιh

= qh,(xh,vh) on qg,υ,ιh(A−
g,υ,h) and a similar

statement holds in the case S=S2.

2.3 Curves with Marked Points

Definition 2.3 (1) If M is a finite set, a curve with M -marked points based on S is a tuple

C =
(
S,M, I;x, (j, y)

)
, where

(a) >C≡
(
S, I;x

)
is a bubble tree based on S, and j : M−→I and y : M−→S∪S2 are maps;

(b) (jl, yl)∈Σ∗
>C ,jl

and yl 6=∞ for all l∈M ;
(c) for all l1, l2∈M with l1 6= l2 and jl1 =jl2 , yl1 6=yl2.

(2) The curve C is stable if ∣∣{h : ιh = i}
∣∣ +

∣∣{l : jl = i}
∣∣ ≥ 2

for all i∈ Î if S=Σ and all i∈I if S=S2.

Via the construction in Subsection 2.1, such a tuple C corresponds to a complex curve ΣC ≡Σ>C

with marked points {(jl, yl)}l∈M . For each i∈I, we denote by ΣC,i and Σ∗
C,i the surfaces Σ>C ,i and

Σ∗
>C ,i, respectively.

With notation as above, for every h ∈ Î, let F
(0)
h,C and F

(0)
C denote the spaces F

(0)
h,>C

and F
(0)
>C

,

respectively. If S=S2, put

rC = min
(
r>C

,min
l∈M

(∣∣q−1
S yl

∣∣,min{r>C ,h(jl, yl) : h∈ Î},min{|φ−1
yl
yh| : h 6= l, jh =jl}

))
. (2.13)

This positive number measures the minimum pairwise separation between all special points of ΣC ,
including the point (0̂,∞). Let δC ∈(0, 1) be such that

16(|I| + |M |)δ
1
2
C < rC .

If υ=(C, vÎ ) with vÎ ∈F
(0)
C and |υ|<δC , we now construct a curve C(υ) with M -marked points as

follows. Let
>(υ) =

(
S, I(υ);x(υ)

)
and qυ : Σ>(υ) −→ ΣC

be the bubble tree and the smooth map defined in Subsection 2.2. Then we take

C(υ) =
(
S,M, I(υ);x(υ), (j(υ), y(υ))

)
,
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where (jl(υ), yl(υ))∈Σ>(υ),jl(υ) is defined by

qυ(jl(υ), yl(υ)) = (jl, yl).

Similarly, if S=Σ and g is an admissible Riemannian metric on Σ, put

rCg = min
(
r>C

g,min
jl=0̂

(
min
ιh=0̂

{r>C ,g,h(jl, yl)},min{|φ−1
g,yl

yh|g : h 6= l, jh =0̂}
)
,

min
jl 6=0̂

(∣∣q−1
S yl

∣∣,min
ιh 6=0

{r>C ,h(jl, yl)},min{|φ−1
yl
yh| : h 6= l, jh =jl}

))
.

(2.14)

Let δCg∈ (0, 1) be such that 16(|I|+|M |)(δCg)
1
2 <rCg and g is flat in Bg

(
xh, 8(δCg)

1
2

)
for all h∈ Î

with ιh =0̂. If υ∈F (0)
C and |υ|g <δCg, we construct the curve Cg(υ) with M -marked points in the

same way as above, but replacing qυ and >(υ) by qg,υ and >g(υ).

Definition 2.4 An isomorphism of curves with M -marked points

C =
(
S,M, I;x, (j, y)

)
and C′ =

(
S,M, I ′;x′, (j′, y′)

)

is a tuple of maps,

φ0 : I −→ I ′, φ1,0̂ : S −→ S, φ1,h : S2 −→ S2 for h∈I, where

(a) φ0 is an isomorphism of the linearly ordered sets I and I ′ and φ0(jl)=j
′
l for all l∈M ;

(b) φ1,i is a biholomorphic map for all i∈I and φ1,0̂ is the identity map if S=Σ;

(b) φ1,i(∞)=∞ for all i∈I if S=S2 and for all i∈ Î if S=Σ;
(d) φ1,ιh(xh)=x′φ0(h) for h∈ Î and φ1,jl

(yl)=y
′
l for all l∈M .

Such a set of maps corresponds to a continuous map

φ : ΣC −→ ΣC′

that maps the lth marked point (jl, yl) on ΣC to the lth marked point (j′l , y
′
l) on ΣC′ and is bi-

holomorphic on each component of ΣC . If S = S2, φ also takes the special marked point (0̂,∞)
on ΣC,0̂ to the special marked point (0̂,∞) on ΣC′,0̂. Note that if C is stable, C has no nontrivial
automorphisms.

Let [C] denote the equivalence class of C in the set of all curves based on S with marked points.
Denote by MS,M the set of all equivalence classes of stable curves based on S with M -marked
points. If S = S2, MS,M can be identified with the moduli space M0,|M |+1 of all stable rational

curves with |M |+1 marked points, or more canonically with the space M0,Mt{0̂} of all stable

rational curves with the marked points labeled by the set Mt{0̂}. If S=Σ has genus bigger than
two and is generic, MS,M is the closed subset of Mg,M consisting of all stable curves of genus g
with M -marked points that have a fixed complex structure on the principal component. If S has
genus two, MS,M is a double cover of the corresponding set for g=2, since any smooth genus-two
curve has a holomorphic automorphism of order two; see [GH, p254]. The reason we require that
φ1,0̂ =IdΣ is that the symplectic invariant of [RT] disregards the automorphisms of Σ.
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2.4 Bubble Maps

Definition 2.5 (1) A V -valued bubble map is a tuple b=
(
S,M, I;x, (j, y), u

)
, where

(a) I is a linearly ordered set, which is a rooted tree if S=Σ;
(b) u : I−→C∞(S;V )∪C∞(S2;V ) is a map;
(c) if I =

⊔
k∈K

Ik is the splitting of I into rooted trees, then M =
⊔

k∈K

Mk for some subsets Mk

of M such that Ck =
(
S,Mk, Ik;x|Îk

, (j, y)|Mk

)
is an Mk-marked curve based on S;

(d) uh ∈C∞(S;V ) if h∈ I− Î, uh ∈C∞(S2;V ) if h∈ Î is a smooth map, and uh(∞)=uιh(xh)
for all h∈ Î;

(e) for all i∈ Î if S=Σ and i∈I if S=S2,

∣∣{h∈ Î : ιh = i}
∣∣ +

∣∣{l∈M : jl = i}
∣∣ < 2 =⇒ ui∗[S

2] 6= 0 ∈ H2(V ; Z).

(2) The bubble map b is simple if I is a rooted tree; b is J-holomorphic if ∂̄Jui =0 for all i∈I.

With notation as in Definition 2.5, every bubble map b corresponds to a continuous map

ub : Σb ≡
⊔

k∈K

ΣCk
−→ V,

which is smooth on the components of ΣCk
. If i∈Ik, the restriction of ub to

Σb,i ≡ ΣCk,i

is of course ui. If h∈ Îk, we put

F
(0)
h,b = F

(0)
h,Ck

.

Similarly, let

F
(0)
b =

⊕

k∈K

F
(0)
Ck
, Σ∗

b =
⋃

k∈K

Σ∗
Ck

⊂ Σb, Σ∗
b,i = Σ∗

Ck,i ⊂ Σb,i.

If b is simple, denote by >b the bubble tree >Ck
for the unique element k∈K.

Definition 2.6 An isomorphism of V -valued bubble maps

b =
(
S,M, I;x, (j, y), u

)
and b′ =

(
S,M, I ′;x′, (j′, y′), u′

)

is a tuple of maps

φ0 : I −→ I ′, φ1,i : S −→ S for i∈I−Î , φ1,i : S
2 −→ S2 for i∈ Î , where

(a) φ0 is an isomorphism of the linearly ordered sets I and I ′ with φ0(jl)=j
′
l for all l∈M ;

(b) φ1,i is a biholomorphic map for all i∈I and is the identity map if S = Σ and i 6∈ Î;
(c) φ1,i(∞)=∞ for all i∈I if S=S2 and for all i∈ Î if S=Σ;
(d) φ1,ιh(xh)=x′φ0(h) for all h∈ Î and φ1,jl

(yl)=y
′
l for all l∈M ;

(e) u′φ0(i) ◦ φ1,i = ui for all i∈I.

15



Such a set of maps corresponds to a continuous map

φ : Σb −→ Σb′

that maps the marked points of b to the marked points of b′, intertwines the maps ub : Σb −→ V
and ub′ : Σb′ −→V , and is biholomorphic on each component Σb,i of Σb. If S=S2, φ also takes the
special marked point (0̂,∞) on ΣC,0̂ to the special marked point (0̂,∞) on ΣC′,0̂.

Let Gb denote the group of automorphisms of the bubble map b. This group is necessarily finite
by the stability condition (e) of Definition 2.5. If λ∈H2(V ; Z), let

C̄∞
(λ;M)(S;V ) =

{
b=

(
S,M, I;x, (j, y), u

)
is V -valued bubble map:

∑

i∈I

ui∗[Σb,i] = λ
}/

∼;

C∞
(λ;M)(S;V ) =

{
b=

(
S, {0̂}; , (0̂, y), u0̂

)
is V -valued bubble map: u0̂∗[S]=λ

}/
∼,

where the equivalence relation is given by isomorphisms of V -valued bubble maps. If µ=µM is an
M -tuple of submanifolds of V , let

C̄∞
(λ;M)(S;µ) =

{
b=

[
S,M, I;x, (j, y), u

]
∈ C̄∞

(λ;M)(S;V ) : ujl
(yl)∈µl ∀l∈M

}
,

C∞
(λ;M)(S;µ) =

{
b =

[
S,M, {0̂}; , (0̂, y), u0̂

]
∈C∞

(λ;M)(S;V ) : u0̂(yl)∈µl ∀l∈M
}
.

A topology on C̄∞
(λ;M)(S;V ) and its subsets C∞

(λ;M)(S;V ), C̄∞
(λ;M)(S;µ), C∞

(λ;M)(S;µ) is defined
below.

Definition 2.7 Suppose

b∗=
(
S,M, I∗;x∗, (j∗, y∗), u∗

)
and bk =

(
S,M, Ik;xk, (jk, yk), uk

)

be simple bubble maps. If S = S2, the sequence {bk} converges to b∗ if for all k sufficiently large
one can choose

(i) M -marked curves Ck =
(
S,M, I∗;x′k, (j

∗, y∗)
)
, and

(ii) elements (vk)Î∗ ∈F
(0)
Ck

with 16|vk|<r2Ck
,

such that with υk =
(
Ck, (vk)Î∗

)
,

(a) lim
k−→∞

x′k,h = x∗h for all h∈ Î, and lim
k−→∞

|υk| = 0;

(b) C(υk) =
(
S,M, Ik;xk, (jk, y(υk))

)
,

lim
k−→∞

qυk
(jk,l, yk,l) = (j∗l , y

∗
l ) ∀l∈M, and lim

k−→∞
sup

z∈ΣC(υk)

dV (ub∗(qυk
(z)), ubk

(z)) = 0.

If S = Σ, convergence is defined in the same way, but |vk| and C(υk) are replaced by |vk|g and
Cg(υk), respectively, for a >b∗-admissible metric g on Σ.

This notion of convergence is independent of the choice of an admissible metric on Σ. Definition 2.7
induces a topology on the space C̄∞

(λ;M)(S;V ), which will be referred to as the Gromov topology.

Remark: It is often appropriate to strengthen the last condition in (b) above to Lp
1-convergence,

for p>2, with additional conditions on the behavior near the nodes. However, this is not necessary
for the purposes of [I] and [Z2], for example.
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2.5 Strata of Bubble Maps

In this subsection, we introduce the notion of a bubble type. We then define various spaces of
holomorphic bubble maps indexed by bubble types and vector bundles over them.

Definition 2.8 (1) A bubble type is a tuple T =
(
S,M, I; j, λ

)
such that

(a) I is a linearly ordered set, and j : M−→I and λ : I−→H2(V ; Z) are maps;
(b) for all i∈ Î if S=Σ and all i∈I if S=S2, λi 6=0 if |{h : ιh = i}|+|{l : jl = i}| < 2.

(2) Bubble type T is simple if I is a rooted tree; T is basic if Î = ∅.
(3) Two bubble types T =

(
S,M, I; j, λ

)
and T ′ =

(
S,M, I ′; j′, λ′

)
are equivalent if there exists an

isomorphism of linearly ordered sets φ0 : I−→ I ′ such that φ0(jl)= j′l for all l∈M and λ′φ0(i) =λi

for all i∈I.
(4) If T ∗=

(
S,M, I∗; j∗, λ∗

)
and T =

(
S,M, I; j, λ

)
are two bubble types, T ∗<T if I⊂I∗,

jl = max
{
i∈I : i≤j∗l

}
∀l∈M and λi =

∑

i=max{i′∈I:i′≤h}

λ∗h ∀i∈I.

(5) If T =
(
S,M, I; j, λ

)
is a bubble type, a T -bubble map is a bubble map b=

(
S,M, I;x, (j, y), u

)

such that ui∗[Σb,i]=λi ∈ H2(V ; Z) for all i∈I.

The splitting of I into rooted trees Ik induces a splitting of T into simple bubble types

Tk =
(
S,Mk, Ik; jk, λk

)
,

where jk and λk are the restrictions of j and λ to Mk and Ik, respectively. Similarly, each T -bubble
map b corresponds to a K-tuple of bubble maps bK =(bk)k∈K , where bk is a Tk-bubble map.

We denote the equivalence class of the bubble type T by [T ] and the group of automorphisms of T
that fix all minimal elements of I by A(T ). This group acts naturally on the set of all T -bubble
maps. The partial ordering on the set of bubble types induces a partial ordering on the set of their
equivalence classes. If b and b′ are T - and T ′-bubble maps, respectively, such that [b] = [b′], then
[T ] = [T ′]. Furthermore, if {bk} is a sequence of T -bubble maps, b∗ is T ∗-bubble map, and [bk]
converges to [b∗] with respect to the Gromov topology, then [T ∗]≤ [T ].

Let T =
(
S,M, I; j, λ

)
be a bubble type. We denote by 〈T 〉 the basic bubble type such that 〈T 〉≥T .

It can be described explicitly as follows. Let I =
⊔

k∈K

Ik be the splitting of I into rooted trees and

M=
⊔

k∈K

Mk the corresponding splitting of M ; see Definition 2.5. It can be assumed that K=I−Î
and k is the unique minimum element of Ik. For every k∈K and l∈Mk, let

λ′k =
∑

i∈Ik

λi, j′l = k.

Then 〈T 〉=
(
S,M,K; j′, λ′

)
.

Suppose T =
(
S,M, I; j, λ

)
is a simple bubble type. If H is a subset of Î, we define bubble type

T (H)=
(
S,M,Ht{0̂}; j′, λ′

)
by

j′l = max
{
i∈Ht{0̂} : i≤jl

}
and λ′i =

∑

i∗H≤h≤i

λh with i∗H = max
{
i∗∈Ht0̂ : i∗≤ i

}
.
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Then T (H) is again a bubble type. The bubble type T (H) is the bubble type obtained by glu-
ing T -bubble maps with the parameter vÎ such that vh =0 if and only if h∈H; see the next section.

Given a bubble type T =(S,M, I; j, λ), let d(T ) : I−→R be given by

di(T ) = |λi| +
∣∣{l∈M : jl = i}

∣∣ +
∑

ιh=i

dh(T ) ∀i∈I. (2.15)

Since I is a linearly ordered set, the numbers di(T ) are uniquely defined by (2.15). If

b =
(
S,M, I;x, (j, y), u

)

is a T -bubble map, b is T -balanced if for all i∈ Î
(B1)

∫
C
|dui ◦ qN |2z +

∑
ιh=i

dh(T )xh +
∑
jl=i

yl = 0;

(B2)
∫

C
|dui ◦ qN |2β(|z|) +

∑
ιh=i

dh(T )β(|xh|) +
∑
jl=i

β(|yl|) = 1
2 .

The integrals above are computed with respect to the metric gV on V . Recall that we consider C

to be a subset of S2 via the map qN . Thus, xh and yl can be viewed as complex numbers, as done
above. If S = S2 and b is as above, b is completely T -balanced (or cb) if (B1) and (B2) hold for
all i∈I.

Denote by HT the set of all holomorphic T -bubble maps. Let

PSL
(0)
2 =

{
g∈PSL2 : g(∞)=∞

}
, GT =

∏

h∈Î

PSL
(0)
2 .

The group GT acts on HT by reparametrizations. In other words, if

b =
(
S,M, I;x, (j, y), u

)
∈ HT and g = gÎ ∈ GT ,

then gb =
(
S,M, I; gx, (j, gy), (gu)

)
is defined by

(gx)h =

{
gιhxh, if ιh∈ Î;
xh, if ιh 6∈ Î;

(gy)l =

{
gjl
yl, if jl∈ Î;

yl, if jl 6∈ Î;
(gu)i =

{
gi · ui, if i∈ Î;
ui, if i 6∈ Î ,

where for any map f : S2−→V and g∈PSL2, we define

g · f : S2 −→ V by {g · f}(z) = f(g−1z).

Let M(0)
T ⊂HT denote the subset of T -balanced holomorphic maps and

GT ≡
∏

h∈Î

S1 ⊂ GT ,

Since every element of GT is a map on I, A(T ) acts naturally on GT . The semi-direct product

A(T )nGT acts on M(0)
T and all the stabilizers are finite. Denote the quotient by MT , and let

MT =
⋃

T ′≤T

MT ′ .
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If A(T )={1}, corresponding to the quotient MT = M(0)
T /GT , we obtain |Î | line (orbi)-bundles

{LhT −→ MT : h∈ Î},

that carry natural norms:

|[b, ch]| = |ch| if b∈M(0)
T and ch∈C.

If A(T ) 6={1}, the fiber products and connect sums of the above line bundles taken over each orbit

of A(T ) are well-defined. Let F
(0)
h T −→M(0)

T be the bundle with the fiber F
(0)
h,b at b∈M(0)

T , i.e.

F
(0)
h T =

{
M(0)

T ×C, if xh∈S2;

π∗hTΣ, if xh∈Σ,
where πh(b) = xh,

with notation as above. The action of GT on M(0)
T lifts to an action on each bundle F

(0)
h T by

g · (b, vh) =

{(
g · b, gιhg

−1
h vh

)
, if ιh∈ Î;(

g · b, g−1
h vh

)
, if ιh 6∈ Î .

Here and in the rest of the paper, we identify S1 with the unit complex numbers in the usual way.
Let FhT be the line orbi-bundle over MT given by

FhT = F
(0)
h T

/
GT .

This bundle has a natural norm unless ιh =0̂ and S=Σ. In such a case, any metric g on Σ induces
a norm on FhT . Let

F (0)T =
⊕

h∈Î

F
(0)
h T , F

(0)
b T = F (0)T

∣∣
b
; FT =

⊕

h∈Î

FhT , F
(0)
[b] T =F (0)T

∣∣
[b]
.

Note that if T ∗<T , there is a natural splitting

(
A(T ∗)nGT ∗

)
= A(T ) n

(
GT ×G

)
,

with G determined by T and T ∗. Thus, GT acts on M(0)
T ∗ and the line bundles F

(0)
h T ∗, while GT ∗

acts on M(0)
T and F

(0)
h T .

If S=S2, let

BT =
{
b=

(
S,M, I;x, (j, y), u

)
∈HT : b is cb; ui1(∞)=ui2(∞) ∀i1, i2∈I−Î

}
.

Denote by U (0)
T ⊂MT the quotient BT /

(
A(T )nGT

)
. The group

G∗
T ≡

∏

i∈I−Î

S1

acts on U (0)
T and MT as follows. If

[b] =
[
(S2,M, I;x, (j, y), u)

]
∈ MT and g = (gi)i∈I−Î ∈G∗

T ,
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define g[b]=
[
(S2,M, I; gx, (j, gy), gu)

]
by

(gx)h =

{
xh, if ιh∈ Î;
gιhxh, if ιh 6∈ Î;

(gy)l =

{
yl, if jl∈I;
gjl
yl, if jl 6∈ Î;

(gu)i =

{
ui, if i∈ Î;
gi · ui, if i 6∈ Î .

As in the previous paragraph, all stabilizers are finite. Furthermore, this GT ∗-action on MT

naturally lifts to an action on M(0)
T and along with the GT -action on M(0)

T induces an action of

G̃T ≡G∗
T ×GT on M(0)

T as well as on F
(0)
h T by

(g∗, g) · (b, vh) =

{(
(g∗, g) · b, gιhg

−1
h vh

)
, if ιh∈ Î;(

(g∗, g) · b, g∗ιhg
−1
h vh), if ιh 6∈ Î .

Note that G∗
T ′ =G∗

T whenever T ′≤T . Let

UT = U (0)
T /G∗

T , U (0)
T =

⋃

T ′≤T

U (0)
T ′ , UT =

⋃

T ′≤T

UT ′ .

With respect to the Gromov topology, the space ovU (0)
T is Hausdorff and compact; see [RT]. Fur-

thermore, G∗
T acts continuously on U (0)

T ′ as can be easily seen from Definition 2.7. If follows that

ŪT is also Hausdorff and compact in the quotient topology. Denote by
{
LiT −→ŪT : i∈I−Î

}
the

line orbi-bundles corresponding to the quotient ŪT = Ū (0)
T /G∗

T . Let

FhT =
(
F

(0)
h T

∣∣
BT

)
/G̃T −→ UT , Fh,[b]T = FhT

∣∣
[b]

; FT =
⊕

h∈Î

FhT , F[b]T = FT
∣∣
[b]
.

The line bundles FhT have natural norms, defined as in the previous paragraph.

If T =(S,M, I; j, λ) is a bubble type and b=
(
S,M, I;x, (j, y), u

)
is a T -bubble map, for any l∈M ,

let evl : HT −→V be the map given by

evl

(
(S,M, I;x, (j, y), u)

)
= ujl

(yl).

This map descends to the quotients defined above and induces continuous maps on the spaces MT ,

U (0)
T , and UT . If µ=µM is an M -tuple of submanifolds in V , put

HT (µ) =
{
b∈HT : evl(b)∈µl ∀l∈M

}
.

Define spaces M(0)
T (µ), MT (µ), MT (µ), etc. similarly. If S=S2, we define another evaluation map,

ev: BT −→ V by ev
(
(S2,M, I;x, (j, y), u)

)
= u0̂(∞),

where 0̂ is any minimal element of I. This map induces continuous maps on the spaces Ū (0)
T and ŪT .

If µ=µM̃ is an M̃ -tuple of constraints, let

UT (µ) =
{
b∈UT : evl(b)∈µl ∀l∈M̃ ∩M, ev(b)∈µl ∀l∈M̃−M

}

and define U (0)
T (µ), etc. similarly.
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3 The Gluing Construction and the Obstruction Bundle

3.1 Summary and Notation

We now present a gluing construction on the spaces MT (µ) such that HT is a smooth manifold
with the tangent bundle isomorphic to the kernel of the linearization of the ∂̄-operator, as defined
below. The space HT is well-known to be smooth if the linearization of the ∂̄-operator is surjec-
tive; see Chapter 3 in [MS]. However, surjectivity of the linearization is not a necessary condition;
see [Z2] for examples. In fact, there are two main cases of primary interest to us. The first is when
T =

(
S2,M, I; j, λ) and the linearization of the ∂̄-operator is indeed surjective. In this case, we give

an analytic description of a neighborhood of UT (µ) in Ū〈T 〉(µ) for a generic set of constraints µ. The
second case is when T =

(
Σ,M, I; j, λ) and the cokernels of the linearization of the ∂̄-operator form

a vector bundle over HT , which will be the analogue of Taubes’s obstruction bundle of [T] in the
gluing construction below. Using the same analysis as in the first case, we describe any sufficiently
nice element of C∞

(λ;M)(Σ;µ) lying near MT (µ), where λ=
∑
λi. The elements of MΣ,tν,λ(µ) lying

near MT (µ) will correspond to the zero set of a certain section of the obstruction bundle.

For our gluing construction, we fix a smooth family {gV,b : b∈MT } of Kahler metrics on (V, J).
We assume that this family is

(
A(T )nGT

)
-invariant if S=Σ and

(
A(T )nG̃T

)
-invariant if S=S2.

If b ∈MT , X,Y ∈ TqV , and u : (D, j) −→ V is a smooth map from a one-dimensional complex
manifold, let

expb,q X = expgb,q
X, ∇b = ∇gb , Πb,XY = Πgb,XY, Db,u = Dgb,u;

see Subsection 1.3 for more details. If S=Σ, we also choose a smooth family

{gT ,x : x=(x){h:ιh=0̂}; xh∈Σ; xh1 6=xh2 if h1 6=h2}

of Riemannian metrics on Σ such that each metric gT ,x is flat on a neighborhood of xh in Σ for all

h∈ Î with ιh =0̂. Existence of such a family of metrics is shown in [FO]. If

b =
(
Σ,M, I;x, (j, y), u

)
∈HT ,

let gb,0̂ denote the metric gT ,(x){h:ιh=0̂}
on Σ. If i∈ Î , we write gb,i for the standard metric on S2.

Similarly, if S=S2, for all i∈I, we write gb,i for the standard metric on S2.

If b=
(
S,M, I;x, (j, y), u

)
∈HT , let

Γ′(b) =
⊕

i∈I

Γ(ui); Γ(b) = Γ(ub) =
{
ξI ∈Γ′(b) : ξh(∞)=ξιh(xh) ∀h∈ Î

}
;

Γ1(b) = Γ1(ub) =
⊕

i∈I

Γ1(ui); Γ0,1(b) = Γ0,1(ub) =
⊕

i∈I

Γ0,1(ui).

Define Db : Γ(b)−→Γ0,1(b) by (
DbξI

)
i
= Db,ui

ξi ∀i∈I.
We denote the kernel of the operator Db on Γ(b) by Γ−(b). If ξ ∈Γ(ui) or ξ ∈Γ1(ui), let ‖ξ‖b,Ck

and ‖ξ‖b,2 denote the Ck- and L2-norms of ξ computed with respect to the metrics gV,b on V and
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gb,i on Σb,i. If ξ=ξI ∈Γ′(b) or ξ∈Γ1(b), put

‖ξ‖b,Ck =
∑

i∈I

‖ξi‖b,Ck , ‖ξ‖b,2 =
∑

i∈I

‖ξi‖b,2.

Let πb,− : Γ(b) −→ Γ−(b) be the (L2, b)-orthogonal projection map.

The space PbT of perturbations of a bubble map b is the collection of tuples σ=(ξÎ ;wÎtM ), where

ξi∈Γ(ui) ∀i∈I, wh∈F (0)
h,b ∀h∈ Î , wl ∈

{
C, if l∈M & Σb,jl

=S2;

Tyl
Σ, if l∈M & Σb,jl

=Σ.

If σ is sufficiently small, we define expb σ=
(
S,M, I;x(σ), (j, y(σ)), uσ

)
by

xh(σ) =

{
xh+wh, if Σb,ih =S2;

expgb,0̂,xh
wh, if Σb,ih =Σ;

yl(σ) =

{
yl+wl, if Σb,jl

=S2;

expgb,0̂,yl
wl, if Σb,jl

=Σ;

and uσ,i =expb,ui
ξi. If z ∈Σ, let |v|b = |v|gb,0̂,x. For consistency, if v∈C, let |v|b = |v|. Along with

the (L2, b)-norm on the vector fields defined above, we obtain an inner-product on the space of
tuples σ as above.

In order to get a good description of the spaces M(0)
T as submanifolds of HT , we describe an action

of an open subset of 0 in
(
C⊕R⊕R

)Î
on bubble maps and distinguished elements σ

(k)
(b,i)∈PbT that

correspond to this action. If

(c, r, θ)=(c, r, θ)Î ∈
(
C×R×R

)Î

and b is a bubble map as above, we define

(c, r, θ) · b =
(
S,M, I; (c, r, θ)x, (j, (c, r, θ)y), (c, r, θ)u

)

by setting

(
(c, r, θ)x

)
h

= eiθιh (1+rιh)(xh+cιh),
(
(c, r, θ)y

)
l
= eiθjl (1+rjl

)(yl+cjl
),

(
(c, r, θ)u

)
i

(
qN (z)

)
= ui

(
qN

(
(1+ri)

−1e−iθiz−ci
))
.

If (c, r, θ) is sufficiently small, (c, r, θ) · b is again a bubble map, i.e. the maps into V still agree
at the nodes, and the nodes and the marked points are still all distinct. In fact, the values of the
maps at the nodes or the marked points do not change, i.e.

(
(c, r, θ)u

)
ιh

(
((c, r, θ)x)h

)
=uιh(xh),

(
(c, r, θ)u

)
h
(∞)=uh(∞),

and
(
(c, r, θ)u

)
jl

(
((c, r, θ)y)l

)
=ujl

(yl).

Furthermore, if b∈HT , (c, r, θ) · b∈HT . If b is of type T , the above describes the action of a neigh-
borhood of the identity in GT on the space of stable maps of type T . The action by C corresponds
to the translations of C, by the first R-component to dilations about the origin, and by the last

R-component to rotations about the origin. If S=S2 and (c, r, θ)∈
(
C×R×R

)I
is sufficiently small,
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we define (c, r, θ) · b similarly.

If u∈C∞(S2;V ), define ξ
(1)
u , . . . , ξ

(4)
u ∈Γ(u) by:

ξ(1)u (qN (z)) = −d(u ◦ qN )
∣∣∣
z

∂

∂s
, ξ(2)u (qN (z)) = −d(u ◦ qN )

∣∣∣
z

∂

∂t

ξ(3)u (qN (z)) = −d(u ◦ qN )
∣∣∣
z

(
s
∂

∂s
+ t

∂

∂t

)
= −rd(u ◦ qN )

∣∣∣
z

∂

∂r
,

ξ(4)u (qN (z)) = d(u ◦ qN)
∣∣∣
z

(
t
∂

∂s
− s

∂

∂t

)
= −d(u ◦ qN )

∣∣∣
z

∂

∂θ
.

where we write z= s+it ∈ C and r=
√
s2+t2. These vector fields extend smoothly by zero over

the south pole. For any x∈S2−{∞}, let w
(1)
x , . . . , w

(4)
x ∈C be given by

w(1)
x = 1, w(2)

x = i, w(3)
x = x, w(4)

x = ix.

If b is a bubble map as above, k=1, . . . , 4, i∗∈ Î if S=Σ and i∗∈I if S=S2, let

σ
(k)
(b,i∗) =

(
(ξ

(k)
(b,i∗))I , (w

(k)
(b,i∗))ÎtM

)

be given by

ξ
(k)
(b,i∗),i =

{
ξ
(k)
ui , if i= i∗;

0, if i 6= i∗;
w

(k)
(b,i∗),h =

{
w

(k)
xh , ιh = i∗;

0, ιh 6= i∗;
w

(k)
(b,i∗),l =

{
w

(k)
yl , jl = i

∗;

0, jl 6= i∗.

The tuples σ
(k)
(b,i∗) correspond to the infinitesimal action of GT on the space of stable maps of type T .

Finally, if X is any space, F −→X a normed vector bundle, and δ : X−→R is any function, let

Fδ =
{
(b, v)∈F : |v|b<δ(b)

}
.

Similarly, if Ω is a subset of F , let Ωδ =Fδ ∩Ω. If υ=(b, v)∈F , denote by bυ the image of υ under
the bundle projection map, i.e. b in this case.

3.2 The Basic Setup

In this subsection, we describe our assumptions on the smooth structure of HT and state some of
their implications.

Definition 3.1 Bubble type T =(S2,M, I; j, λ) is (V, J)-regular if for all

b =
(
S,M, I;x, (j, y), u

)
∈ HT ,

(a) Db,ui
: Γ(ui)−→Γ0,1(ui) is onto for all i∈I;

(b) kerDb,ui
−→Tui(∞)V , ξ−→ξ(∞), is onto for all i∈I.

Definition 3.2 Simple bubble type T =(S,M, I; j, λ) is (V, J)-semiregular if
(a) the space H(S,∅,{0̂};,λ0̂)

is a complex manifold, and there exist δ, C ∈C∞(H(S,∅,{0̂};,λ0̂)
; R+) and

for each b=(S, ∅, {0̂}; , u0̂) ∈ H(S,∅,{0̂};,λ0̂)
a map

hT ,0̂;b :
{
ξ∈kerDgV ,b : ‖ξ‖gV ,C0<δ(b)

}
−→ Γ(u0̂)
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such that

‖hT ,0̂;b(ξ)‖gV ,b≤C(b)‖ξ‖2
gV ,C0,

∥∥hT ,0̂;b(ξ) − hT ,0̂;b(ξ
′)
∥∥

gV ,C0 ≤C(b)
∥∥ξ−ξ′

∥∥
gV ,C0,

for all ξ, ξ′∈kerDgV ,b with ‖ξ‖gV ,C0, ‖ξ′‖gV ,C0 < δ(b) and the map

HT ,0̂;b :
{
ξ∈kerDgV ,b : ‖ξ‖gV ,C0<δ(b)

}
−→H(S,∅,{0̂};,λ0̂)

, ξ−→expgV ,u0̂

(
ξ+hT ,0̂;b(ξ)

)
,

is an orientation-preserving diffeomorphism onto an open neighborhood of b in H(S,∅,{0̂};,λ0̂)
. Fur-

thermore, the family of maps {HT ,0̂;b : b∈H(S,∅,{0̂};,λ0̂)
} is smooth.

(b) for all b=
(
S,M, I;x, (j, y), u

)
∈HT

(b-i) Db,uh
: Γ(uh)−→Γ0,1(uh) is onto for all h∈ Î;

(b-ii) kerDb,uh
−→Tuh(∞)V , ξ−→ξ(∞), is onto for all h∈ Î.

Remarks: (1) All conditions in both definitions above are independent of the choice of metric on V .
(2) Condition (a) of Definition 3.2 says that H(S,∅,{0̂};,λ0̂)

is a smooth manifold modeled on kerDb

for b∈H(S,∅,{0̂};,λ0̂), as would be the case if Db : Γ(ub) −→ Γ0,1(ub) were surjective.

(3) The conditions of Definitions 3.1 and 3.2 insure that HT is a smooth manifold; see Proposi-
tion 3.3 below. However, (b) of Definition 3.1 and (b-ii) of Definition 3.2 are somewhat stronger
than necessary to show that HT is smooth. They allow us to obtain the second part of (1) in
Proposition 3.3, which is used in the proof of surjectivity of the gluing map; see Subsection 4.3.
These two conditions hold for all complex homogeneous manifolds; see Section 10 in [RT].

Note that if T is semiregular, the homotopy invariance of the index implies that the vector spaces

Γ0,1
− (b) ≡ cokerDb ≈ kerD∗

b ⊂ Γ0,1(b), b ∈ HT ,

form a vector bundle over HT . Here D∗
b denotes the formal adjoint of Db with respect to a metric

g on S; it is a J-linear operator. The space kerD∗
b is independent of a conformal choice of the met-

ric g. The bundle Γ0,1
− −→HT will be called the T -cokernel bundle. It is

(
A(T )nGT

)
-equivariant,

and thus descends to a bundle Γ0,1
− −→MT , which will be the analogue of Taubes’s obstruction in

our gluing setting.

Let T =
(
S,M, I; j, λ

)
be a bubble type. If b=

(
S,M, I;x, (j, y), u

)
∈HT , put

KbT =
{
σ=(ξ, wÎtM )∈PbT : ξi∈ker(Db,ui

) ∀i∈I; 〈σ, σ(k)
(b,h)〉=0 ∀h∈ Î , k∈ [4];

ξh(∞)=ξιh(xh)+duιh

∣∣
xh
wh ∀h∈ Î

}
.

If σ=(ξ, wÎtM ) ∈ KbT , let

‖σ‖b,Ck = ‖ξ‖b,Ck +
∑

h∈Î

|wh|b +
∑

l∈M

|wl|b.

We take the default norm on KbT to be given by ‖ · ‖b,C0 . If b is as above,

b′ =
(
S,M, I;x′, (j, y′), u

)
,

and δ>0, we say d(b, b′)<δ if there exists σ∈PbT such that expb σ=b′ and ‖σ‖b,C0 ≤δ.
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Proposition 3.3 (1) If T =(S,M, I; j, λ) is a regular or semiregular bubble type, HT is a complex

manifold and there exist εT , CT ∈C∞(M(0)
T ; R+) with the following property. If b∗∈HT and

b =
(
S,M, I;x, (j, y), u

)
is s.t. d(b∗, b) < εT (b∗) and ∂̄ui = 0 ∀i∈I,

there exist ξi∈Γ(ui) for i∈ Î such

‖ξi‖gV ,C0 ≤ CT (b∗)
∑

h∈Î

dV

(
uιh(xh), uh(∞)

)
and b′ = (S,M, I;x, (j, y), u′) ∈ HT ,

where u′
0̂
=u0̂ and u′i =expgV ,ui

ξi if i∈ Î.
(2) The space M(0)

T is a smooth oriented manifold on which the group GT acts smoothly. The maps

ev: M(0)
T −→ V, ev

(
S,M, I;x, (j, y), u

)
= u0̂(∞),

evl : M(0)
T −→ V, evl

(
S,M, I;x, (j, y), u

)
= ujl

(yl),

dui|z : M(0)
T −→ T ∗ΣT ,i⊗u∗iTV, dui|z

(
S,M, I;x, (j, y), u

)
= dui|z,

are smooth. In particular, ui−→‖dui‖b,C0 defines a continuous function on M(0)
T .

(3) There exist δT , CT ∈C∞(M(0)
T ; R+) and smooth maps

hT ,b = h
(1)
T ,b ⊕ h

(2)
T ,b : KbTδT (b) −→ Γ′(b) ⊕

(
C ⊕ R

)Î
,

such that
∥∥hT ,b(σ)

∥∥
b,C0 ≤ CT (b)‖σ‖2

b,C0 ,

∥∥hT ,b(σ) − hT ,b(σ
′)
∥∥

b,C0 ≤ CT (b)
(
‖σ‖b,C0 + ‖σ′‖b,C0

)
‖σ−σ′‖b,C0 ,

and each map

H
(0)
T ,b :

{
(σ, θ)∈KbTδT (b)×R

Î : |θ|<π
}
−→ M(0)

T ,

H
(0)
T ,b(b, σ, θ) =

(
h

(2)
T ,b(σ), θ

)
· expb

(
σ+h

(1)
T ,b(σ)

)
,

is orientation-preserving diffeomorphism onto an open neighborhood of b in M(0)
T .

Proof: (1) Let Ti = (ΣT ,i, {l : jl = i}+{h : ιh = i}, {0̂}; 0̂, λi). By (a) of Definition 3.1, and (a) and
(b-i) of Definition 3.2, HTi is a complex manifold for all i∈I. Let

4Î
V =

{
(q, q)Î ∈

∏

Î

(V ×V ) : qh∈V
}
.

The submanifold 4Î
V is the Î-product of the diagonal in V ×V . Since V is oriented, so is the normal

bundle of 4Î
V . Claim (1) of the proposition follows by applying the Implicit Function Theorem,

(b) of Definition 3.1 and (b-ii) of Definition 3.2 to the smooth map

evÎ :
∏

i∈I

HTi −→
∏

Î

(V ×V ), evh

(
(S,M, I;x, (j, y), u)

)
=

(
uh(∞), uιh(xh)

)
.
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Note that HT =ev−1

Î

(
4Î

V

)
.

(2) For any u∈C∞(S2;V ), define Ψ̃u∈C, Ψ(3)u∈R, and Ψu∈C×R by

Ψu =
(
Ψ̃u,Ψ(3)u

)
=

( ∫

C

|du ◦ qN |2z,
∫

C

|du ◦ qN |2β(|z|) − 1

2

)
,

where the integrals are computed using the metric gV . For i∗∈ Î if S=Σ and i∗∈ I if S=S2, we
define maps

ΨT ,i∗ :
∏

i∈I

HTi −→ C×R by

ΨT ,i∗
(
S,M, I;x, (j, y), u

)
=

(
Ψ̃ui∗+

∑

ιh=i∗

dh(T )xh+
∑

jl=i∗

yl,Ψ
(3)ui∗+

∑

ιh=i∗

dh(T )β(|xh|)+
∑

jl=i∗

β(|yl|)
)
.

These maps ΨT ,i∗ are smooth, since the smooth structure on all HTi is described similarly to (a)

of Definition 3.2. Furthermore, if b∈M(0)
T , i∗∈ Î, and k∗=1, 2, 3, since ΨT ,i(b)=0 for all i and β′

does not change sign, by Lemma 3.4,

dΨ
(k∗)
T ,i∗

∣∣∣
b
σ

(k)
(b,i)






= 0, if i 6= i∗;
6= 0, if i= i∗, k=k∗;

= 0, if k 6=k∗ 6=3,

where k=1, 2, 3. By (b) of Definition 3.1 and (b-ii) of Definition 3.2, it follows that the map

∏

i∈I

HTi −→
(
C×R

)Î ×
∏

Î

(V ×V ), b −→
((

ΨT ,i(b)
)
i∈Î
, evÎ(b)

)
,

is transversal to the submanifold {0}×4Î
V . The preimage of this submanifold is precisely the

space M(0)
T . Thus, M(0)

T is a smooth oriented manifold by the Implicit Function Theorem.

Lemma 3.4 For any k∈ [4] and u∈C∞(S2;V ), ξ(k)(∞)=0. Furthermore,

Ψ̃
(
(c, r, θ) · u

)
= (1+r)

(
Ψ̃u+ c‖du‖2

2

)
∀(c, r)∈C×R; (3.1)

d

dr
Ψ(3)

(
(0, r, θ) · u

)∣∣∣
r=0

=

∫

C

|d(u◦qN )|2β′(|z|)|z|, (3.2)

where (c, r) · u is defined as in Section 3.1. Finally, Duξ
(k)
u =0 if ∂̄u=0.

Proof: The first and last statements are immediate. We use the change of variables

z −→ (1+r)−1z − c

to prove (3.1):

∫

C

∣∣d
(
((c, r) · u) ◦ qN

)∣∣2z =

∫

C

(1+r)−2
∣∣d(u ◦ qN )

∣∣2
(1+r)−1z−c

z

= (1+r)

∫

C

∣∣d
(
u ◦ qN )

∣∣2(z+c) = (1+r)
(
Ψ̃u+ c‖du‖2

2

)
,
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Similarly,

d

dr

∫

C

∣∣d
(
(r · u) ◦ qN

)∣∣2β(|z|)
∣∣∣
r=0

=
d

dr

∫

C

∣∣d(u ◦ qN)
∣∣2β

(
(1+r)|z|

)∣∣∣
r=0

=

∫

C

∣∣d(u ◦ qN)
∣∣2β′

(
|z|

)
|z|.

The lemma is now proved, since the action by the θ-component does not change Ψ̃.

If T =(S2,M, I; j, λ) is a regular bubble type, with notation as above, let

K̃bT =
{
σ = (ξI , wM+Î)∈KbT : 〈σ, σk

(b,0̂)
〉=0 ∀k∈ [4], ξi1(∞)=ξi1(∞) ∀i1, i2∈I−Î

}
.

By (b) of Definition 3.1 and the same argument as in the proof of Proposition 3.3, we can construct

smooth maps h
(1)
T ,b×h

(2)
T ,b : K̃bTδ(b)−→Γ′(b)×(C×R)I such that each map

H
(0)
T ,b :

{
(b, σ, θ)∈KbT̃δ(b)×R

I : |θ|<π
}
−→ BT ,

H
(0)
T ,b(σ, θ) =

(
h

(2)
T ,b(σ), θ

)
· expb

(
σ+h

(1)
T ,b(σ)

)
,

is orientation-preserving diffeomorphism onto an open neighborhood of b in BT .

3.3 Construction of Nearly Holomorphic Bubble Maps

Let T = (S,M, I; j, λ) be a simple bubble type. In this subsection, for all b∈M(0)
T and υ=(b, vÎ)

with vÎ ∈F
(0)
b T sufficiently small, we construct a bubble map b(υ) with domain Συ, where Συ is as

in Subsection 2.2. The map ub(υ) will be just the composite ub ◦ qυ. We then define a Riemannian
metric gυ,i and a nonnegative function ρυ,i on each component Συ,i of Συ. The metrics will be
such that the C0-norm of the differential of qυ is bounded independently of vÎ . The nonnegative
functions are used to modify the Sobolev norms, in such a way that the norm of the inverse of the
operator Db(υ) on certain subspaces of Γ(b(υ)) is bounded independently of vÎ .

By Proposition 3.3, M(0)
T is a smooth manifold. If S=S2, let δT ∈C∞(M(0)

T ; R+) be an A(T )nG̃T -

invariant function such that δT (b)< r>b
for all b∈M(0)

T . If S = Σ, let δT ∈C∞(M(0)
T ; R+) be an

A(T )nGT -invariant function such that for all

b =
(
Σ,M, I;x, (j, y), u

)
∈ M(0)

T ,

(A1) 4δT is smaller than the function δ of Lemma 5.1;
(A2) 4δT (b)<rCb

gb,0̂.

In both cases, it can be assumed that δT does not exceed 1
4 .

If H is a subset of Î, put

F (H)T =
{
υ=(b, vÎ)∈F (0)T : vh =0 if and if h∈H

}
,

FHT =
{
υ=[b, vÎ ]∈FT : vh =0 if and if h∈H

}
.
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For any υ = (b, vÎ) ∈ F (0)T , let |υ| denote |υ|gb
if S = Σ. From now on, we assume that

δ∈C∞(M(0)
T ; R+) is an A(T )nGT -invariant function if S=Σ and an A(T )nG̃T -invariant function

if S=S2 such that 8δ
1
2 ≤δT . If

υ =
(
bυ, vÎ

)
=

(
(S,M, I;x, (j, y), u), vÎ

)
∈ F (0)Tδ,

let qυ : Συ−→Σbυ be the smooth map defined in Subsection 2.2 for

υ =
(
C, vÎ

)
=

(
(S,M, I;x, (j, y)), vÎ

)
,

using the metric gbυ ,0̂ on Σ if S = Σ. Let uυ =ubυ ◦qυ and b(υ)=
(
C(υ), uυ

)
.

We now define a Riemannian metric gυ,i on Συ,i for each i∈I(υ)⊂I. Along the way, we construct
a metric gυ,i on Σbυ,i for each i ∈ I. Suppose i ∈ I and for all h ∈ Î such that ιh = i, we have

constructed a metric gυ,h on Σbυ,h. For each h∈ Î such that ιh = i and vh 6=0, let g̃υ,i,h denote the

metric on Bbυ,h

(
2δ(bυ)

1
2

)
which is the pullback of the metric gυ,h by the map

z −→ qN

(φbυ,h

vh

)
, where φbυ ,h =

{
φ>bυ ,h, if xh∈S2;

φ>bυ ,gb,h, if xh∈Σ.

This metric is conformal with the original metric gbυ ,i on Σbυ,i, because the maps φb,h are holomor-
phic on the set {rb,h ≤ δT (b)} and the metric gυ,h is conformal with the standard metric on C. Thus,
there exists a smooth positive function λυ,i,h such that g̃υ,i,h =λ2

υ,i,hgbυ ,i. Let λυ,i∈C∞(Σbυ ,i; R
+)

be given by

λυ,i(z) =

{
λυ,i,h(z) + β|vh|

(
rbυ,h(z)

)(
1 − λυ,i,h(z)

)
, if ιh = i and rbυ,h(z)≤2|vh|

1
2 ;

1, if rbυ,h(z)≥2|vh|
1
2 ∀h∈ Î .

Since I is a rooted tree, this procedure defines metrics gυ,i for each i∈I(υ).

In addition, we define a smooth nonnegative function ρυ,i on Συ,i for each i ∈ I(υ). As in the
previous paragraph, along the way we define a function ρυ,i for each i∈I. Suppose i∈I and for all
h∈ Î such that ιh = i, we have constructed a smooth function ρυ,h on Σbυ,h. For h∈ Î with ιh = i
and z∈Σbυ,i with |z|h≡rbυ,h(z) ≤ 2δT (bυ), put

ρυ,i(z) =





ρυ,h(qh,vh

z) + β
(

δT (bυ)|z|h
|vh|

){(
|z|2h + |vh|

2

|z|2h

)
− ρ̃υ,h(qh,vh

z)
}
, if |z|h≤δT (bυ);

(
|z|2h + |vh|

2

|z|2h

)
+ β

(
|z|h

δT (bυ)

){
1 −

(
|z|2h + |vh|

2

|z|2h

)}
, if |z|h≥δT (bυ),

if vh 6=0, where qh,vh
is defined as in Section 2.3, using the metric gbυ ,0̂ on Σ if S=Σ. If vh =0 and

z is as above, let

ρυ,i(z) = |z|2h + β
( |z|h
δT (bυ)

){
1 − |z|2h

}
.

If |z|h≥2δT (bυ) for all h∈ Î with ιh = i and vi 6=0 if i>0, set ρυ,i(z)=1. Otherwise, let

ρυ,i(z) = |q−1
S (z)|2 + β

(
δT (bυ)|q−1

S (z)|
){

1 − |q−1
S (z)|2

}
.
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This construction defines nonnegative functions ρυ,i on Συ,i for all i∈I(υ).

We finally define norms on the spaces Γ(uυ) and Γ1(uυ). If ηi∈Γ1(uυ,i), put

2‖ηi‖υ,p;i =
( ∫

Συ,i

|ηi|p
) 1

p
+

(∫

Συ,i

ρ
− p−2

p

υ,i |ηi|2
) 1

2
, (3.3)

where |ηi| and the integrals are computed with respect to the metric gυ,i on Συ,i and gV,bυ on V .
Denote by ‖ηi‖υ,C0;i the C0-norm of ηi with respect to these metrics. If η=ηI(υ)∈Γ1(uυ), let

‖η‖υ,p =
∑

i∈I(υ)

‖ηi‖υ,p;i, ‖η‖υ,C0 =
∑

i∈I(υ)

‖ηi‖υ,C0;i.

Similarly, for any ξi∈Γ(uυ,i), put

2‖ξi‖υ,p;i =
(∫

Συ,i

|ξi|p
) 1

p
+

(∫

Συ,i

ρ
− p−2

p

υ,i |ξi|2
) 1

2
; ‖ξ‖υ,p,1;i = ‖ξi‖υ,p;i + ‖∇ξi‖υ,p;i, (3.4)

where we again use the metrics gυ,i on Συ,i and gV,bυ on V as in (3.3). Denote by ‖ξi‖υ,C0;i the
C0-norm of ξi with respect to the metric gV,bυ on V . If ξ=ξI(υ)∈Γ(uυ), let

‖ξ‖υ,p =
∑

i∈I(υ)

‖ξi‖υ,p;i, ‖ξ‖υ,p,1 =
∑

i∈I(υ)

‖ξi‖υ,p,1;i, ‖ξ‖υ,C0 =
∑

i∈I(υ)

‖ξi‖υ,C0;i.

Note that even though the functions ρ
− p−2

p

υ,i have poles at the singular points of Συ, all smooth

one-forms and vector fields have finite norms defined by (3.3) and (3.4), respectively, since p−2
p <1.

We denote by Lp
1(υ) the completion of Γ(uυ) with respect to the (υ, p, 1)-norm and by Lp(υ) the

completion of Γ0,1(uυ) with respect to the (υ, p)-norm. Finally, let

Dυ : Γ(uυ) −→ Γ0,1(uυ)

denote the linearization of the ∂̄-operator at uυ with respect to the metric gV,bυ on V .

Lemma 3.5 If T is a simple bubble type and p>2, there exist δ, C∈C∞(M(0)
T ; R+) such that for

all υ∈F (0)Tδ,

(1) ‖duυ‖υ,C0 ≤ C(bυ) and ‖∂̄uυ‖υ,p ≤ C(bυ)|υ|
1
p ;

(2) ‖Dυξ‖υ,p ≤ C(bυ)‖ξ‖υ,p,1 for all ξ∈Γ(uυ);
(3) ‖ξ‖υ,C0 ≤ C(bυ)‖ξ‖υ,p,1 for all ξ∈Γ(uυ);
(4) ‖ξ‖υ,p,1 ≤ C(bυ)

(
‖Dυξ‖υ,p+‖ξ‖υ,p

)
for all ξ∈Γ(uυ).

Proof: If h ∈ I− I(υ) and S = S2, let A±
υ,h be the annulus as in Subsection 2.2. If S = Σ, let

A±
υ,h denote A±

gbυ ,υ,h. By definition of the norms, qυ is an isometry outside of such annuli, and by

Lemma 2.2 the C0-norm of dqυ is bounded on such annuli independently of vÎ . Thus, the first part
of (1) follows from (2) of Proposition 3.3. Since ρυ ≥ |vh| on Aυ,h, the second part of (1) follows
from Lemma 2.2. Statement (2) of the lemma is immediate from the definition of the norms. The
last two claims are proved in the appendix; see Propositions 5.7 and 5.11. In fact, the C0-norm
of ξ is bounded by the usual Lp

1-norm of ξ.
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3.4 Scale of Variations

In Subsection 3.6, we consider perturbations of the bubble maps {b(υ)} in directions “away” from
the space of such bubble maps. More precisely, we look at replacing uυ by expbυ ,uυ

ξ with ξ lying
in a certain subspace of Lp

1(υ) complementary to “the tangent space” of the space of maps {b(υ)}.
If T is regular, one obvious candidate for such a subspace is the (L2, υ)-orthogonal complement
of the kernel of Dυ . While the construction in Subsection 3.6 would go through, we would run
into significant difficulty showing injectivity and surjectivity of the gluing map; see Subsections 4.2
and 4.5. In this subsection, we start by describing a choice of the complementary subspace which
will work for the purposes of Subsections 3.6, 4.2, and 4.5. We then describe norms on the tangent
spaces to FT and the properties of our setup that are sufficient to show injectivity and surjectivity
of the gluing map.

Suppose υ=
(
(S,M, I;x, (j, y), u), v

)
∈F (0)Tδ, where T is a simple bubble type as before. For any

ξ∈Γ(bυ), define Rυξ∈Lp
1(υ) by

{Rυξ}(z) = ξ(qυ(z)).

Note that Rυξ is smooth outside of the |I−I(υ)| circles mapped by qυ to the nodes of Συb
and is

continuous everywhere, since Γ(bυ) is the set of smooth vector fields on the components of Σbυ that
agree at the nodes. It follows that Rυξ is indeed of class Lp

1. Let Γ−(υ) be the image of ker(Dbυ )
under the map Rυ. This space models the “tangent bundle” to the space of maps {b(υ)}. Denote by
Γ+(υ) its (L2, gυ)-orthogonal complement in Lp

1(υ). Let πυ,− and πυ,+ be the (L2, gυ)-orthogonal
projections onto Γ−(υ) and Γ+(υ), respectively.

With H⊂ Î and υ∈F (H)Tδ, let

TυF
HT =

{
$=(ξ, wÎtM , θÎ , rÎ−H) : (ξ, wÎtM )∈KbυT ; θh, rh∈R

}
;

T̃υF
HT =

{
(ξ, wÎtM , θÎ , rÎ−H)∈TυF

HT : wh =0 ∀h∈H
}
.

Given $ as above, put

‖$‖ = ‖ξ‖bυ ,C0 +
∑

h∈Î

|wh|bυ +
∑

l∈M

|wl|bυ +
∑

h∈Î

|θh| +
∑

h∈Î−H

|rh|.

If δT and H
(0)
T ,bυ

are as in Proposition 3.3 and ‖$‖<δT (bυ), put

b$ ≡
(
S,M, I;x($), (j, y($)), u($)

)
= H

(0)
T ,bυ

(
ξ, wÎtM ; θÎ

)
∈ M(0)

T ,

vh($) =





(1 + rh)

{
vh, if xh∈S2;

dφ−1
bυ ,h|φbυ,hxh($)vh, if xh∈Σ;

if h 6∈H;

0, if h∈H;

υ($) ≡
(
b$, (v($))Î

)
.

Then υ($) ∈ F (H)T2δ if ‖$‖ < δ(bυ) for some δ ∈ C∞(M(0)
T ; R+) sufficiently small. If H = ∅,

TυF
HT = T̃υF

HT models the tangent space of [υ] in FHT . If H 6= ∅, the bundle FHT and the
construction in the previous subsection lift to a bundle HFT over

MH
T ≡ M(0)

T

/{
gÎ ∈GT : gh =1 ∀g∈H}.
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Then TυF
HT models the tangent space of [υ] in HFT . On the other hand, T̃υF

HT models the
tangent space of [υ] in the restriction of HFT to the subspace

{[
b′=(S,M, I;x′, (j, y′), u)

]
∈MH

T : x′h =xh ∀h∈H
}
.

The reason for defining subspaces T̃υF
HT is that if x′h 6=xh for some h′∈H, b(υ) and b(υ′) do not

have the same singular points for all υ∈F (H)
b T and υ∈F (H)

b′ T . Since the perturbation construction
of Subsection 3.6 does not change the singular points of b(υ) and b(υ′), the resulting bubble maps
b̃(υ) and b̃(υ′) will necessarily be different.

We now define norms on TυF
HT , which make the estimates in Lemma 3.6 dependent only on bυ.

If h∈ Î−H, let

w′
h = φbυ ,hqυ($),ιh

(
q−1
υ,ιh

(ιh, xh)
)
∈ F

(0)
h,bυ

if qυ($),ιh

(
q−1
υ,ιh

(ιh, xh)
)
∈ Σbυ,ιh .

In such a case, let ‖$‖υ,h =
∣∣∣w′

h+wh

vh

∣∣∣. Otherwise, put ‖$‖υ,h =1. Let ‖$‖υ =‖$‖+
∑

h∈Î−H

‖$‖υ,h.

In order to simplify notation, we replace υ($) by $ whenever there is no ambiguity. If ‖$‖υ is
sufficiently small, define ζ$∈Γ′(uυ) by

expbυ,uυ
ζ$ = u$, ‖ζ$‖bυ ,C0 < inj gV,bυ .

Similarly, l∈M , define wl($)∈Tyl(υ)Συ,jl(υ) by

expgυ,yl(υ) wl($) = yl

(
υ($)

)
, |wl($)| ≡ |wl($)|gυ < injyl(υ)gυ.

If $∈ T̃ FH
υ T and ξ∈Γ(uυ), let R$ξ∈Γ(u$) be the vector field given by

R$ξ(z) = Πbυ ,ζ$(z)ξ(z).

Note that since b(υ) and b($) have the same singular points whenever $ ∈ T̃ FH
υ T , Πbυ ,ζ$ does

indeed map Γ(uυ) to Γ(u$). If η∈Γ1(uυ), we define R$η ∈Γ1(u$) similarly. Let S$ denote the
inverse of R$.

Lemma 3.6 There exist δ, C∈C∞(M(0)
T ; R+) such that for all υ∈F (H)Tδ and $∈ T̃υF

HTδ,
(1) C(bυ)−1‖$‖υ ≤ ‖ζ$‖υ,p,1 +

∑
l∈M

|wl($)|gυ ≤ C(bυ)‖$‖υ;

(2)
∥∥gV,b$

gV,bυ
− 1

∥∥
C3 ≤ C(bυ)‖$‖,

∥∥ g$

gυ
− 1

∥∥
C0 ≤ C(bυ)‖$‖υ and

∥∥ρ$

ρυ
− 1

∥∥
C0 ≤ C(bυ)‖$‖υ;

(3)
∥∥S$du$ − duυ

∥∥
υ,p

≤ C(bυ)‖$‖υ and
∥∥S$∂̄u$ − ∂̄uυ

∥∥
υ,p

≤ C(bυ)|υ|
1
p ‖$‖υ;

(4)
∥∥S$ν − ν

∥∥
υ,p

≤ C(bυ)
∥∥$‖υ;

(5)
∥∥S$D$R$ξ−Dυξ

∥∥
υ,p

≤C(bυ)‖$‖υ‖ξ‖υ,p,1 and
∥∥S$π$,±R$ξ−πυ,±ξ

∥∥
υ,p,1

≤C(bυ)‖$‖υ‖ξ‖υ,p,1

for all ξ∈Γ(uυ).

Proof: The first statement of (2) is clear. Proofs of (1), the last two claims of (2), (3), and the last
claim of (5) are direct, though lengthy, computations, all of the same nature. The statement of (4)
is immediate from (1). The first claim of (5) follows from (2) and basic Riemannian geometry
estimates as in [Z1].
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Remark: The second claim in (5) above is proved by choosing an orthonormal basis {ξb,i} for the

kernel of Db for b lying near bυ in M(0)
T , so that each ξb,i varies smoothly with b. Then the claim

follows immediately from an estimate on S$Rυ($)ξb$ ,i −Rυξb,i, since the projection maps can be
expressed in terms of inner-products with ξb,i. Note that if we had defined Γ−(υ) to be the kernel
of Dυ in the case T is regular, this claim, if true, would have been much harder to prove because
of the presence of small eigenvalues of D∗

υDυ; see Subsection 3.6 for more details.

If υ ∈F (0)Tδ, (Συ, gυ) can be viewed as a connected sum of the surfaces {(ΣT ,i, gbυ ,i)} with very

thin necks. If $ ∈ KbυT ⊂ TυF
∅T is as above and |wh| ≥ 2|vh|

1
2 , the maps uυ : Σ −→ V and

u$ : Σ−→V are very far apart in the C0-norm even if ‖$‖ is small. However, we can still compare
the two maps and the various objects of Lemma 3.6, appropriately defined, on the corresponding
direct summands. If the gluing map of Subsection 3.6 is defined only on F (∅)Tδ, and not on FTδ,
we need to be able to do such comparisons in order to adjust the gluing map in the presence of
constraints µ; see Subsection 3.8.

In order to state an analogue of Lemma 3.6 with ‖$‖υ for $∈ T̃$F
HT replaced by ‖$‖ for

$ ∈ KbυT ⊂ T̃$F
∅T ,

for each $∈KbυTδ(b), with δ sufficiently small, we construct a smooth map q̃$ : (Συ, gυ)−→(Σ$, g$),

which is almost an isometry. The map will depend only on the elements wh∈F (0)
b,h . The structure

of the construction is similar to the construction of the map qυ in Subsection 2.2. For each h∈ Î
with ιh =0̂, let p̃h,$ : Bbυ ,h

(
4δT (bυ)

)
−→Σ be the (holomorphic) (gbυ ,0̂, gb$ ,0̂)-isometry provided by

Lemma 5.1. Define q̃h,$ : Σ−→Σ by

q̃h,$(z)=

{
φ−1

bυ ,h

{
φbυ,hp̃h,$(z)+βδ2

T (bυ)

(
rbυ,h(z)

)(
φbυ ,h(z)−φbυ ,hp̃h,$(z)

)}
, if rbυ ,h(z)≤2δT (bυ);

z, if rbυ ,h(z)≥2δT (bυ).

If h∈ Î and ιh 6=0̂, we similarly define q̃h,(xh,wh) : Σb,ιh −→Σb,ιh by

q̃h,$(z) =

{
φ−1

bυ,h

{
φbυ ,h(z) + wh − βδ2

T (bυ)

(
rbυ ,h(z)

)
wh

}
, if rbυ,h(z)≤2δT (bυ);

z, if rbυ,h(z)≥2δT (bυ).

Let q̃$,0̂=IdΣ. If h∈ Î and q̃$,ιh : Σ−→Σ has been constructed, let

q̃$,h(z) =

{
q−1
$,ιh

(
p̃h,$(z)

(
q$,ιh(q̃$,ιh(z))

))
, if rbυ,h,h

(
q$,ιh(z)

)
≤2δT (bυ);

q̃$,ιh(z), if rbυ,h,h

(
q$,ιh(z)

)
≥2δT (bυ).

Going through all of I, we obtain a map q̃$ : Σ−→Σ, which shifts the connect-summands of (Σ, gυ)
to the connect-summands of (Σ, g$). The important properties of such maps q̃$ as summarized
below.

Lemma 3.7 There exist δ, C∈C∞(M(0)
T ; R) and a smooth family of maps

{
q̃$ : Σ−→Σ | $∈KbυTδ(bυ)⊂TυF

(∅)
υ T , υ∈F (∅)

bυ
Tδ(bυ)

}
, such that
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(1) q̃0 =IdΣ and qυ =q$◦q̃$ on Σ∗
bυ,i =Σ∗

b$ ,i outside of the annuli

A$ = q̃−1
$,ιh

q−1
$,ιh

({
z∈Σbυ,ιh: δT (bυ)≤rb,h(z)≤2δT (bυ)}

)
,

which contain no marked points of b(υ) or b($).

(2)
∣∣∣ q̃∗$g$

gυ
− q̃∗

$′g$′

gυ

∣∣∣ ≤ C(bυ)‖$−$′‖ for all $,$′ ∈ KbυTδ(bυ).

These maps q$ allow us to compare operators on vector fields and one-forms on (Συ, uυ) and
(Σ$, u$) whenever ‖$‖ is sufficiently small. Define ζ ′$∈Γ(uυ) by

expbυ,uυ
ζ ′$ = u$ ◦ q̃$, ‖ζ ′$‖bυ ,C0 ≤ inj gbυ .

For ξ∈Γ(uυ), let R′
$ξ∈Γ(u$) be given by

{R′
$ξ}(z) = Πbυ ,ζ′$(q̃−1

$ (z))ξ
(
q̃−1
$ (z)

)
.

Similarly, for any η∈Γ0,1(uυ), let R′
$η∈Γ0,1(u$) be given by

{R′
$η}

∣∣
z

= Πbυ,ζ′$(q̃−1
$ (z)) ◦ η

∣∣
q̃−1
$ (z)

◦ ∂q̃−1
$

∣∣
z
.

Denote by S′
$ the inverse of R′

$. Similarly to Lemma 3.6, we have

Lemma 3.8 There exist δ, C∈C∞(M(0)
T ; R+) such that for all υ∈F (∅)Tδ and $∈KbυT ⊂ T̃υF

∅Tδ,
(1) C(bυ)−1‖$‖ ≤ ‖ζ ′$‖υ,p,1 +

∑
l∈M

|wl($)|gυ ≤ C(bυ)‖$‖;

(2)
∥∥S′

$du$ − duυ

∥∥
υ,p

≤ C(bυ)‖$‖ and
∥∥S′

$∂̄u$ − ∂̄uυ

∥∥
υ,p

≤ C(bυ)|υ|
1
p ‖$‖;

(3)
∥∥S′

$ν − ν
∥∥

υ,p
≤ C(bυ)

∥∥$‖;
(4)

∥∥S′
$D$R

′
$ξ −Dυξ

∥∥
υ,p

≤C(bυ)‖$‖‖ξ‖υ,p,1 and
∥∥S′

$π$,±R
′
$ξ − πυ,±ξ

∥∥
υ,p,1

≤C(bυ)‖$‖‖ξ‖υ,p,1

for all ξ∈Γ(uυ).

3.5 Obstruction Bundle Setup

In the next subsection, we look for solution of the equation ∂̄ expbυ,uυ
ξ= tν with ξ lying in a fixed

complement of Γ−(υ). If t is sufficiently small, we are able to solve this equation up to an element
of a vector bundle of the same rank as the dimension of Γ−(bυ), called obstruction bundle. This
element is the obstruction to solving the equation. There are choices to be made for this obstruc-
tion bundle as well as for the subspace complementary to Γ−(υ). We describe in this subsection
what conditions these choices must satisfy for the gluing construction to work properly.

If b∗ =
(
S,M, I;x∗, (j, y∗), u∗

)
∈M(0)

T and b=
(
S,M, I;x, (j, y), uI

)
=HT ,b∗(σ, θ) for some σ∈Kb∗T

and θ∈R
Î , let ξb∗,b =ξb∗,b,I ∈Γ′(b) be given by

expb∗,u∗
i
ξb∗,b,i = ui,

∥∥ξb∗,b,i

∥∥
C0 < inj gV,b∗ .

Let Πb∗,b =Πb∗,ξb∗,b
.
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Definition 3.9 Suppose b∗ =
(
S,M, I;x∗, (j, y∗), u∗

)
, bk =

(
S,M, I;xk, (j, yk), uk

)
∈ M(0)

T , and

υk =(bk, vk)∈F (0)T are such that the sequences {bk} and {|υk|bk
} converge to b∗∈M(0)

T and 0∈R,
respectively.
(a) The sequence {ξk∈Lp

1(uυk
)} C0-converges to ξ∗∈Γ′(b∗) if

(a-i) the sequence
{
Π−1

b∗,bk
(ξk ◦ q−1

υk
)
}
C0-converges to ξ∗ on compact subsets of Σ∗

b∗;
(a-ii) there exists C>0 such that ‖ξk‖υk ,p,1<C for all k.

(b) The sequence of subspaces {Vk ⊂Γ(uυk
)} C0-converges to subspace V ∗⊂Γ(b∗) if there exists a

sequence of bases
{
{ξk,i}i=N

i=1 ⊂Vk

}
such that

(b-i) for each i fixed, the sequence {ξk,i} C0-converges to some ξ∗i ∈V ∗;
(b-ii) the set {ξ∗i } has cardinality N and is a basis for V ∗.

Lemma 3.10 If the sequence {υk}⊂F (0)T converges to b∗∈M(0)
T and the sequences {ξk∈Lp

1(υk)}
and {ξ̃k∈Lp

1(υk)} converge to ξ∗∈Γ′(b∗) and ξ̃∗∈Γ′(b∗), respectively,

lim
k−→∞

〈〈ξk, ξ̃k〉〉υk ,2 = 〈〈ξ∗, ξ̃∗〉〉υ∗,2.

Proof: If υk −→ b∗, the metrics gV,bυk
on V and gbυk

,i on ΣT ,i C
0-converge to gV,b∗ and gb∗,i,

respectively. On the other hand, by (a-ii) of Definition 3.9 and (2) of Lemma 3.5, there exists C>0
such that

‖ξk‖υk ,C0, ‖ξ̃k‖υk,C0 < C ∀k.
Thus, the claim follows from (a-i) of Definition 3.9.

Definition 3.11 Suppose Ω is an open subset of F (∅)T such that b(υ) is defined for all υ∈Ω. An(
A(T )nGT

)
-invariant smooth complex subbundle Γ̃− −→ Ω of the Banach bundle Lp

1 −→ Ω is a
tangent-space model over Ω if

(a) for every sequence {υk}⊂Ω converging to b∗∈M(0)
T , a subsequence of {Γ̃−(υk)} C0-converges

to a subspace V ∗⊂Γ(b) such that πb,− : V ∗−→Γ−(b∗) is an isomorphism;

(b) if π̄υ,− : Lp
1(υ)−→ Γ̃−(υ) is the (L2, υ)-orthogonal projection, there exist δ, C ∈C∞(M(0)

T ; R+)
such that for all υ∈Ωδ and all ξ∈Γ(uυ),

(b-i)
∥∥S$π̄$,−R$ξ − π̄υ,−ξ

∥∥
υ,2

≤ C(bυ)‖$‖υ‖ξ‖υ,p,1 for all $∈TυF
(∅)Tδ(bν );

(b-ii)
∥∥S′

$π̄$,−R
′
$ξ − π̄υ,−ξ

∥∥
υ,2

≤ C(bυ)‖$‖‖ξ‖υ,p,1 for all $∈KbυT ⊂TυF
(∅)Tδ(bν).

One example of a tangent-space model is {Γ−(υ) : υ∈F (∅)Tδ}. In such a case, the limit V ∗ in (a) of
Definition 3.11 is Γ−(b∗) and thus depends only on b∗, and not on the sequence {υk}. However, for
computational reasons, it is sometimes advantageous to work with other choices. With the choices
in [Z2], the limit V ∗ in (a) of Definition 3.11 usually depends on the sequence.

The following lemma collects some of the implications of (a) of Definition 3.11. Condition (b) is
needed in Subsections 4.2 and 4.5. For any tangent space model over Ω and υ∈Ω, we denote the
(L2, υ)-orthogonal complement of Γ̃−(υ) by Γ̃+(υ). Write Γ̃0,1

+ (υ) for the image of Γ̃+(υ) under the

operator D̃υ.

Lemma 3.12 Let Γ̃− −→Ω be a tangent-space model. Then there exist C, δ ∈C∞(M(0)
T ; R) such

that for all υ∈Ωδ

(1a) ‖ξ‖υ,p,1 ≤ C(bυ)‖ξ‖υ,2 for all ξ∈ Γ̃−(υ);
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(1b) ‖π̄υ,−ξ‖υ,p,1 ≤ C(bυ)‖ξ‖υ,p,1 for all ξ∈Γ(uυ);
(2a) Lp

1(υ) = Γ−(υ) ⊕ Γ̃+(υ);
(2b) if π̃− and π̃+ are the projection maps corresponding to the above decomposition,

‖π̃υ,±ξ‖υ,p,1 ≤ C(bυ)‖ξ‖υ,p,1 ∀ξ∈Γ(uυ).

Proof: (1) Suppose there exists a sequence {υk ∈ Ω} converging to b∗ ∈ M(0)
T and a sequence

{ξk∈ Γ̃−(υk)} such that ‖ξk‖υk ,p,1=1, while ‖ξ‖υk ,2−→0. Since ‖ξk‖υk ,p,1=1, by (2) of Lemma 3.16
and (a) of Definition 3.11, a subsequence of {ξk} C0-converges to some nonzero ξ∗∈Γ(b∗). However,
since ‖ξk‖υk ,2−→0, ‖ξ∗‖b∗,2 =0 by Lemma 3.10. This is a contradiction, and thus (1a) holds. Claim
(1b) is an immediate consequence of (1a) and (2) of Lemma 3.16.
(2) Claim (2a) is equivalent to saying that no nonzero element of Γ̃−(υ) is orthogonal to Γ−(υ). So,

suppose υk−→b∗∈M(0)
T and {ξk∈ Γ̃−(υk)} is such that ξk is orthogonal to Γ−(υ) and ‖ξk‖υk ,p,1 =1.

Since ξk ∈ Γ̃−(υk) and ‖ξk‖υk ,p,1 = 1, by (a) of Definition 3.11, a subsequence of {ξk} converges to
some nonzero ξ∗∈Γ(b∗). By Lemma 3.10, ξ∗ is orthogonal to Γ−(υ). However, this contradicts the
second part of (a) of Definition 3.11.
(3) Due to (1b), Claim (2b) is equivalent to saying that there exist C, δ∈C∞(MT ; R) such that

‖ξ‖υ,p,1 ≤ C(bυ)‖π̄υ,−ξ‖υ,p,1 ∀υ∈Ωδ and ξ∈Γ−(υ).

Suppose there exists a sequence {υk}⊂Ω converging to some b∗∈M(0)
T and a sequence {ξk∈Γ−(υk)}

such that ‖π̄υk,−ξk‖υk,2 −→ 0, while ‖ξk‖υk,p,1 = 1. By Definition 3.11, a subsequence of {Γ̃−(υk)}
converges to a subspace V ⊂ Γ(b). On the other hand, a subsequence of {ξk} C0-converges to a
nonzero element ξ∗∈Γ−(b∗), which must be orthogonal to V by Lemma 3.10. This contradicts the
second part of (1) of Definition 3.11.

Definition 3.13 Suppose Ω is an open subset of F (∅)T such that b(υ) is defined for all υ∈Ω. An(
A(T )nGT

)
-invariant smooth complex subbundle Γ0,1

− (υ)−→Ω of the Banach bundle Lp−→Ω with

the same rank as Γ0,1
− −→M(0)

T is an obstruction bundle if

(a) there exists C∈C∞(M(0)
T ; R) such that

‖η‖υ,p ≤ C(bυ)‖η‖2 and ‖D∗
υη‖υ,1 ≤ C(bυ)|υ|

1
p ∀υ∈Ω, η∈Γ0,1

− (υ);

(b) if π0,1
υ,− : Lp(υ) −→ Γ0,1

− (υ) is the (L2, υ)-orthogonal projection, there exists δ ∈C∞(M(0)
T ; R+)

such that for all υ∈Ωδ and all η∈Γ0,1(uυ),
(b-i)

∥∥S$π
0,1
$,−R$η − π0,1

υ,−η
∥∥

υ,2
≤ C(bυ)‖$‖υ‖ξ‖υ,p for all $∈TυF

(∅)Tδ(bν );

(b-ii)
∥∥S′

$π
0,1
$,−R

′
$η − π0,1

υ,−η
∥∥

υ,2
≤ C(bυ)‖$‖‖ξ‖υ,p for all $∈KbυT ⊂TυF

(∅)Tδ(bν).

Such an obstruction bundle is related to the cokernel bundle Γ0,1
− −→M(0)

T . However, if Î 6=∅, the
low eigenspaces of DυD

∗
υ are too large to form an obstruction bundle; see Remark below. Examples

of bundles that satisfy Definition 3.13 can be found in [Z2]. Given such an obstruction bundle, we
denote by π0,1

υ,+ the (L2, υ)-orthogonal projection onto Γ0,1
+ (υ), the (L2, υ)-orthogonal complement

of Γ0,1
− (υ). The following lemma is clear from (a) of Definition 3.13.

Lemma 3.14 If Γ0,1
− −→Ω is an obstruction bundle, there exists C∈C∞(MT ; R) such that

‖π0,1
υ,±η‖υ,p ≤ C(bυ)‖η‖υ,p ∀υ∈Ω, η∈Γ0,1(uυ).
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Definition 3.15 If T is a semiregular bubble type, an obstruction bundle setup for (V, J,T ) is a
tuple (δ, Γ̃−,Γ

0,1
− , R), where

(a) δ∈C∞(M(0)
T ; R+) is

(
A(T )nGT

)
-invariant and b(υ) is defined for all υ∈F (0)Tδ;

(b) Γ̃−−→F (∅)Tδ and Γ0,1
− −→F (∅)Tδ are a tangent-space model and an obstruction bundle, respec-

tively;
(c) R : π∗Γ0,1

− −→Γ0,1
− is a smooth oriented

(
A(T )nGT

)
-equivariant bundle isomorphism over F (0)Tδ,

where π : F (0)Tδ−→M(0)
T is the bundle projection map.

For the rest of the paper, we fix such an obstruction bundle setup. However, whenever we refer to
δ∈C∞(MT ; R+), we will mean any function smaller than the function δ in Definition 3.15. The
following lemma states some of the consequences of our setup that are crucial for the construction
of the next subsection. If T is a regular bubble type, we take Γ̃−(υ) and Γ0,1

− (υ) to be Γ−(υ)
and {0}, respectively, and define the other bundles and the projection maps in the same way.

Lemma 3.16 If T is a simple bubble type, there exist δ, C ∈ C∞(M(0)
T ; R+) such that for any

υ∈F (0)Tδ if T is regular and any υ∈F (∅)Tδ if T is semiregular,
(1) ‖ξ‖υ,p,1 ≤ C(bυ)‖Dυξ‖υ,p for all ξ∈Γ+(υ) and all ξ∈ Γ̃+(υ);

(2) ‖π0,1
υ,−η‖υ,p ≤ C(bυ)|υ|

1
p ‖η‖υ,p for all η∈ Γ̃0,1

+ (υ);

(3) π0,1
υ,+ : Γ̃0,1

+ (υ) −→ Γ0,1
+ (υ) is an isomorphism with the norm of the inverse bounded by C(bυ).

Proof: (1) The first statement of the lemma is proved in the appendix; see Proposition 5.13. It
is consequence of (2) and (4) of Lemma 3.5 and of (a) of Definition 3.11. The second claim is
immediate from (a) of Definition 3.13 and the first claim.
(2) Let W be the (L2, gυ)-orthogonal complement of π0,1

υ,+(Γ̃0,1
+ (υ)) in Γ0,1

+ (υ). The second claim
implies that

Lp(υ) =
(
Γ0,1
− (υ) ⊕W

)
⊕ Γ̃0,1

+ (υ). (3.5)

Since Γ̃0,1
+ (υ) is the image of Γ̃+(υ) under Dυ, with respect to the decompositions (3.5) and

Lp
1(υ) = Γ−(υ) ⊕ Γ̃+(υ),

Dυ =

∣∣∣∣∣
D

(−−)
υ 0

D
(+−)
υ D

(++)
υ

∣∣∣∣∣ .

Since D
(++)
υ is an isomorphism by (1) of the lemma,

ind Dυ = ind D(−−)
υ = dim Γ−(υ) −

(
dim Γ0,1

− (υ) + dimW
)

=
(
dimΓ−(bυ) − dim Γ0,1

− (bυ)
)

+ dimW = ind Dbυ − dimW.
(3.6)

On the other hand, by the Index Theorem, with n=dimC V ,

ind Dυ = 2
( ∑

h∈Î(υ)

(
〈c1(V, J), λi(υ)〉 − n(g(ΣT ,i) − 1)

)
− n

(
|Î(υ)| − 1

))

= 2
( ∑

h∈Î(υ)

〈c1(V, J), λi〉 − n(g(S) − 1)
)

= ind Dbυ .
(3.7)

By equations (3.6) and (3.7), W ={0}, and the last claim of the lemma follows from the second one.
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Remark: It is essential for claim (1) of Lemma 3.16 that p> 2. The operator D∗
υDυ has at least

|Î |(dimV ) eigenvalues that tend to 0 as |υ| −→ 0. The corresponding eigenfunctions converge to
vector fields on the components of Σb that do not agree at the nodes. If T is semiregular, the oper-
ator Dbυ has cokernel Γ0,1

− (b). In such a case, the number of low eigenvalues of D∗
υDυ, including 0,

is (dim Γ0,1
− (b)) + |Î |(dimV ).

Let π̃0,1
υ,+ : Γ0,1

+ (υ)−→ Γ̃0,1
+ (υ) denote the inverse of π0,1

υ,+ : Γ̃0,1
+ (υ)−→Γ0,1

+ (υ). We extend π̃0,1
υ,+ to all

of Lp(υ) by taking it to be π̃0,1
υ,+ ◦ π0,1

υ,+. If η∈ Γ̃0,1
+ (υ), let Pυη∈ Γ̃+(υ) be the unique element such

that DυPυη = η. We extend Pυ to all of Lp(υ) by taking it to be Pυ ◦ π̃0,1
υ,+. From Lemma 3.16, we

immediately obtain

Corollary 3.17 If T is a simple bubble type, there exist δ, C ∈ C∞(M(0)
T ; R+) such that for all

υ∈F (0)Tδ if T is regular and υ∈F (∅)Tδ if T is semiregular,
(1) ‖π̃0,1

υ,+η‖υ,p ≤ C(bυ)‖η‖υ,p for all η∈Γ0,1(υ);
(2) ‖Pυη‖υ,p,1 ≤ C(bυ)‖η‖υ,p for all η∈Γ0,1(υ).

3.6 The Gluing Map

In this subsection, we look for small vector fields ξ∈ Γ̃+(υ) such that expbυ,uυ
ξ is holomorphic if T

is regular and lies in MΣ,tν,λ if T is semiregular. In Subsection 4.5, we show that all holomorphic
maps if T is regular and all maps in MΣ,tν,λ×ΣM if T is semiregular that lie near MT with respect
to the Gromov topology can be obtained in this way.

If ξ∈Γ(uυ), define expυ ξ : Συ−→V and ∂̄υξ∈Γ0,1(uυ) by

{expυ ξ}(z) = expbυ ,uυ(z) ξ(z), {∂̄υξ}|z = Π−1
bυ ,ξ(z) ◦ ∂̄{expυ ξ}

∣∣
z
.

If S=Σ and ν∈Γ(Σ;Λ0,1π∗ΣT
∗Σ⊗π∗V TV ), let νυ,ξ ∈Γ0,1(uυ) be given by

νυ,ξ|z = Π−1
bυ,ξ(z) ◦ ν|(z,{expυ ξ}z).

Then,
∂̄{expυ ξ}(·) = tν|(·,{expυ ξ}(·)) ⇐⇒ ∂̄υξ = tνυ,ξ. (3.8)

Write
∂̄υξ = ∂̄uυ +Dυξ +Nυξ and νυ,ξ|z = ν|(z,uυ(z)) + Lν,υξ|z. (3.9)

Then the second equation in (3.8) is equivalent to

Dυξ +Nυ,tνξ = tν − ∂̄uυ, (3.10)

and by Proposition 2.11 in [Z1] and (1) of Lemma 3.5, there exist C∂̄ , δ∈C∞(M(0)
T ; R+) such that

for any υ∈F (0)Tδ and ξ1, ξ2∈Γ(uυ),

‖Nυ,tνξ1 −Nυ,tνξ2‖υ,p ≤ C∂̄(bυ)
(
‖ξ1‖υ,p,1 + ‖ξ2‖υ,p,1 + t

)
‖ξ1−ξ2‖υ,p,1. (3.11)

If T is semiregular, the term ν will be fixed, and we will be looking for solutions of (3.10) with
t > 0 very small for υ ∈F (∅)Tδ. If T is regular, we will consider (3.10) with t= 0 and υ ∈F (0)Tδ.
In both cases, we will consider only solutions ξ of (3.10) that lie in the subspace Γ̃+(υ) of Lp

1(υ),
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since the subspace Γ−(υ) corresponds to moving along the image of the pregluing map υ−→b(υ).

Vector field ξ=Pυη with η∈Γ0,1
+ (υ) solves equation (3.10) if and only if

η + π0,1
υ,+Nυ,tνPυη = π0,1

υ,+

(
tν − ∂̄uυ

)
(3.12)

and π0,1
υ,−

(
tν − ∂̄uυ − π̃0,1

υ,+η −Nυ,tνPυη
)

= 0. (3.13)

Denote the map η−→ π0,1
υ,+Nυ,tνPυη by N+

υ,tν . By Corollary 3.17 and equation (3.11), there exist

C̃∂̄ , δ∈C∞(M(0)
T ; R+) such that for any υ∈F (0)Tδ if T is regular and υ∈F (∅)Tδ if T is semiregular,

‖N+
υ,tνη1 −N+

υ,tνη2‖υ,p ≤ C̃∂̄(bυ)
(
‖η1‖υ,p + ‖η2‖υ,p + t

)
‖η1−η2‖υ,p (3.14)

for all η1, η2∈Γ0,1
+ (υ) such that ‖η1‖υ,p, ‖η2‖υ,p≤δ(b).

Lemma 3.18 There exist ε, δ∈C∞(M(0)
T ; R+) such that for all υ∈F (0)Tδ and t=0 if T is regular,

υ∈F (∅)Tδ and t∈ [0; δ(bυ)] if T is semiregular, and α∈Γ0,1
+ (υ) with ‖α‖υ,p<ε(bυ), the equation

η +N+
υ,tνη = α

has a unique solution ηα in Γ0,1
+ (υ) such that ‖ηα‖υ,p≤2ε(bυ). Furthermore, such a solution satisfies

‖ηα‖υ,p≤2‖α‖υ,p.

Proof: Put ε(b)=(6C̃∂̄(b))−1, where C̃∂̄ is as in (3.14). Define

Ψα : {η∈Γ0,1
+ (υ) : ‖η‖υ,p ≤ 2‖α‖υ,p} −→ Γ0,1

+ (υ)

by Ψα(η) = α−N+
υ,tνη. By equation (3.14),

‖Ψα(η)‖υ,p ≤ ‖α‖υ,p + C̃∂̄(bυ)
(
‖η‖υ,p + t

)
‖η‖υ,p ≤ 2‖α‖υ,p;

‖Ψα(η1) − Ψα(η2)‖υ,p ≤ C̃∂̄(bυ)(‖η1‖υ,p + ‖η2‖υ,p + t)‖η1−η2‖υ,p ≤ 5

6
‖η1−η2‖υ,p.

It follows that Ψα is a contracting operator, and thus has a unique fixed point ηα, i.e.

ηα +N+
υ,tνηα = α, and ‖ηα‖υ,p ≤ 2‖α‖υ,p.

The uniqueness claim follows immediately by taking the difference of the corresponding equations.

Corollary 3.19 If T is a simple bubble type, there exist δ, ε, C ∈C∞(M(0)
T ; R+) such that for all

υ∈F (0)Tδ and t=0 if T is regular and υ∈F (∅)Tδ and t∈ [0; δ(bυ)] if T is semiregular, there exists a
unique ηυ,tν ∈Γ0,1(υ) such that ηυ,tν satisfies equation (3.12) and ‖ηυ,tν‖υ,p ≤ ε(bυ). Furthermore,

‖ηυ,tν‖υ,p ≤ C(bυ)
(
t+ |υ|

1
p
)
.

Proof: This corollary follows from Lemmas 3.18 and 3.5.

We now put ξυ,tν =Pυηυ,tν and ũυ,tν = expυ ξυ,tν . Replacing uυ in b(υ) by ũυ,tν , we obtain a new
bubble map that will be called b̃tν(υ). If T is regular (and thus t= 0), we will write ũυ and b̃(υ)
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for ũυ,0 and b̃0(υ), respectively. We can assume that the functions δ, ε and C of Corollary 3.19 are(
A(T )nG̃T

)
-invariant if S=S2 and

(
A(T )nGT

)
-invariant if S=Σ. For T regular, we have thus

constructed a gluing map

γ̃
(0)
T : F (0)Tδ −→ M̄〈T 〉, υ −→ b̃(υ).

Since this map is
(
A(T )nGT

)
-invariant, as can be seen from the construction, γ̃

(0)
T induces a map

on the quotient
γ̃T : FTδ −→ M̄〈T 〉. (3.15)

By the smooth dependence of solutions of (3.12), the restrictions

γ̃
(0)
T : F (H)Tδ −→ M(0)

T (H)

are smooth. However, continuity of γ̃T on all of FTδ is not immediate. In the next section, we
show the map γ̃T is a homeomorphism onto a neighborhood of MT in M̄〈T 〉.

If T is semiregular and t>0, we have constructed a map

γ̃
(0)
T ,tν : F (∅)Tδ

∣∣
ε−1(−t,t)

−→ C∞
(λ;M)(Σ;V ),

which again is
(
A(T )nGT

)
-invariant and thus descends to a map

γ̃T ,tν : F ∅Tδ

∣∣
ε−1(−t,t)/(A(T )nGT )

−→ C∞
(λ;M)(Σ;V ). (3.16)

The map ub̃tν(υ) lies in MΣ,tν,λ if and only if equation (3.13) is satisfied, i.e.

RυψT ,tν(υ) ≡ tν − ∂̄uυ − π̃0,1
υ,+ηυ,tν −Nυ,tνPυηυ,tν = 0 ∈ Γ0,1

− (υ), (3.17)

since ηυ,tν satisfies equation (3.12).

3.7 An Implicit Function Theorem

In this subsection, we prove a refined version of the Implicit Function Theorem. It will be used
in the rest of this section to modify the gluing maps of Subsection 3.6 for the spaces MT (µ),
UT (µ), etc.

Let S be a smooth oriented manifold, and NS, N µ, and F oriented Riemannian vector bundles
over S. We denote by b, (b, ~n), (b, σ), and (b, v) general elements of S, NS, N µ, and F , respectively.
If Ω is any subset of F and δ>0, let

Ω(δ) =
{
(b, ~n, v)∈NS ⊕ F : (b, v)∈Ω; |~n|, |v|<δ

}
.

Let U be an open neighborhood of S in NS⊕N µ⊕F and h : U−→R
k a smooth map such that

h(b, ~n, σ, v) = h(b, ~n, σ, 0), h|S = 0, and d(h : N µ
b −→R

n)(b,0) : N µ
b −→ R

k

is an orientation-preserving isomorphism for all b ∈ S. Let Ũ be a subset of U such that Ũ is
the fiber product along S of an open neighborhood of S in NS⊕N µ and an open subset Ω of F .
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Suppose δS > 0, C ∈C∞(S; R+), and h̃t : Ũ−→R
k is a family of smooth functions with t∈ [0, δS ]

such that

∣∣h̃t − h
∣∣
(b,~n,σ,v)

,
∣∣∣
∂h̃t

∂σ
− ∂h

∂σ

∣∣∣
(b,~n,σ,v)

≤ C(b)
(
|v|

1
p + t

)
∀t∈(0, δS), (b, ~n, σ, v)∈ Ũ ,

where ∂h
∂σ denotes the differential of h along the fibers of N µ.

Lemma 3.20 Let B be an open ball about 0∈R
k. If f : B−→R

k is a smooth function and

k
∣∣Df |z −Df |0

∣∣ <
∣∣(Df |0)−1

∣∣−1 ∀z∈B,

then f is injective on B.

Proof: Let fi denote the ith component of f . By the Mean Value Theorem, for all x, y∈B, there
exists zi(x, y)∈B such that

∣∣fi(x) − fi(y)
∣∣ =

∣∣Dfi|zi(x,y)

∣∣|x− y|.

Adding up these equations over all i, we obtain

i=k∑

i=1

∣∣fi(x) − fi(y)
∣∣ ≥

i=k∑

i=1

∣∣Dfi|0
∣∣|x− y| − k sup

z∈B

∣∣Df |z −Df |0
∣∣|x− y|

≥
(∣∣(Df |0)−1

∣∣−1 − k sup
z∈B

∣∣Df |z −Df |0
∣∣
)
|x− y|.

Lemma 3.21 For every precompact subset K of S, there exists ε>0 such that for all t∈(0, ε) and
(b, ~n, v)∈Ω(ε)|K , the map

{
(b, σ)∈N µ : |σ|<ε

}
−→ h̃t(b, ~n, σ, v)

is defined and injective, and its differential defines an orientation-preserving isomorphism between
N µ

b and R
k.

Proof: The map above is defined as long as

{
(b, ~n, σ, v)∈NS ⊕N µ

b ⊕ F : b∈K, (b, ~n, v)∈Ω(ε), |σ|<ε
}
⊂ Ũ .

Since K is precompact, existence of δ > 0 such that the last inclusion holds is trivial. The other
two statements follow from the third property of h and the second property of h̃t (see above);

Lemma 3.20 is needed to prove the injectivity. Note that the variation of ∂h̃t
∂σ over K can be

bounded from the variation ∂h
∂σ and the second property of h̃t.

Lemma 3.22 For every precompact subset K of S and ε> 0 sufficiently small, there exists δ > 0
such that for all t∈(0, δ) and (b, ~n, v)∈Ω(δ)|K , the image of the map

{(b, σ)∈N µ : |σ|<ε} −→ h̃t(b, ~n, σ, v)

contains 0 ∈ R
k.
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Proof: We assume ε> 0 does not exceed the number provided by Lemma 3.21. Then by precom-
pactness of K and the proof of Lemma 3.21,

ε ≡ min
{
|h(b, ~n, σ, v)| : (b, ~n, v)∈Ωε|K, (b, σ)∈N µ, |σ|= 1

2
ε
}
> 0. (3.18)

Since for each (b, ~n, v) ∈ Ω(ε)|K , the image of the map

{(b, σ)∈N µ : |σ| < ε} −→ h(b, ~n, σ, v)

contains a neighborhood of 0 in R
k and h̃t is continuous, the claim follows from the first property

of h̃t along with equation (3.18).

Corollary 3.23 For every precompact open subset K of S, there exist δ, C >0 with the following
property. For all t∈(0, δ), there exists a smooth section

ϕt ∈ Γ
(
Ω(δ)|K ;π∗N µ

)
,

where π : Ω(δ)|K −→K is the bundle projection map, such that

Ω(δ)|K −→ h̃−1
t (0), (b, ~n, v) −→

(
b, ~n, ϕt(b, ~n, v), v

)
,

is an orientation-preserving diffeomorphism. Furthermore,

∣∣ϕt(b, ~n, v)
∣∣ ≤ C

(
|v|

1
p + t+ |~n|

)
∀(b, ~n, v)∈Ω(δ)|K .

Finally, if G is a group that acts on the space S and bundles NS, N µ, and F , and preserves h,
h̃t, Ω, and K, then ϕt is G-equivariant.

Proof: With ε as provided by Lemma 3.21, let δ>0 be as provided by Lemma 3.22. Then,

Ft :
{
(b, ~n, σ, v) : (b, ~n, v)∈Ω(δ)|K , |σ|<ε

}
−→ Ω(δ)×R

k,

Ft(b, ~n, σ, v) =
(
b, ~n, v, h̃t(b, ~n, v)

)
,

is a diffeomorphism onto an open subset W of the target space. The inverse of Ft must have
the form

F−1
t (b, ~n, v, σ̃) =

(
b, ~n, φt(b, ~n, v, σ̃), v

)

for some smooth function φt. By Lemma 3.22, Ω(δ)|K×{0} ⊂W . Thus,

ϕt∈Γ
(
Ω(δ)|K ;π∗N µ

)
, ϕt(b, ~n, v) = φt(b, ~n, v, 0),

is a well-defined section, and by definition of φt,

Ω(δ)|K −→ h̃−1
t (0), (b, ~n, v) −→

(
b, ~n, ϕt(b, ~n, v), v

)
,

is a diffeomorphism. It is orientation-preserving by Lemma 3.21. The estimate on ϕt follows from
the three properties of h, the first property of h̃t, and the proof of Lemma 3.20. The final statement
of the lemma is clear, since our construction commutes with the G-action.
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3.8 The Orientation of MΣ,tν,λ(µ) and the Gluing Map

At this point, our treatments of regular and semiregular cases diverge. In this subsection, we assume
that T =(Σ, [N ], I; j, λ) is a semiregular bubble type and µ is an N -tuple of constraints in general
position as defined below. Let λ=

∑
λi as before. We recall how each element of MΣ,tν,λ(µ) is

assigned a sign and then specialize to the elements b̃tν(υ)∈MΣ,tν,λ(µ). We conclude this subsection
with Theorem 3.29 that describes the elements of MΣ,tν,λ(µ) lying near the space MT (µ).

Definition 3.24 (1) Section ν∈Γ0,1(Σ×V ; Λ0,1
J,jπ

∗
ΣT

∗Σ⊗π∗V TV ) is λ-regular if for all t∈(0, 1) and

u∈MΣ,tν,λ, the operator (DV,u−∇V
· ν) : Γ(u)−→Γ0,1(u) is surjective.

(2) If ν is λ-regular, N -tuple µ of oriented submanifolds of V is ν-regular if for all t∈(0, 1),

⊕

l∈[N ]

Tu0̂(yl)V =Im dev[N ]

∣∣
b
+

⊕

l∈[N ]

Tu0̂(yl)µl ∀ b=(Σ, [N ], {0̂}; , (0̂, y), u0̂)∈MΣ,tν,λ(µ),

where dev[N ]

∣∣
b
: ker

(
DV,u0̂

−∇V
· ν

)
⊕

⊕

l∈[N ]

Tyl
Σ−→

⊕

l∈[N ]

Tu0̂(yl)V, devl

∣∣
b

(
ξ, w[N ]

)
=ξ(yl)+du0̂

∣∣
yl
wl.

(3) If T is a (V, J)-semiregular bubble type, tuple µ of oriented submanifolds of V is T -regular if

⊕

l∈[N ]

Tujl
(yl)V = Im dev[N ]

∣∣
b
+

⊕

l∈[N ]

Tujl
(yl)µl ∀ b=(Σ, [N ], I;x, (j, y), u)∈HT (µ);

where dev[N ]

∣∣
b
: KbT −→

⊕

l∈[N ]

Tujl
(yl)V, devl

∣∣
b

(
ξI , wÎt[N ]

)
= ξjl

(yl) + dujl

∣∣
yl
wl.

(4) If T is a (V, J)-semiregular bubble type, S ⊂MT is a smooth submanifold, and S̃ ⊂M(0)
T is

the preimage of S under the quotient projection map, N -tuple µ of oriented submanifolds of V is
S-regular if

⊕

l∈[N ]

Tujl
(yl)V = dev[N ]

∣∣
b

(
KbT ∩ TbS̃

)
+

⊕

l∈[N ]

Tujl
(yl)µl ∀ b∈S̃(µ) ≡ S̃ ∩M(0)

T (µ).

Note that all four definitions above are independent of the choice of metrics on V . Throughout
this subsection, we assume that ν is λ-regular, T is semiregular, and µ is ν- and T -regular.

The space MΣ,tν,λ consists of the maps u : Σ−→V such that ∂̄u|z = tν(z, u(z)) for all z∈Σ. Thus,
the tangent space at u can be described as

TuMΣ,tν,λ =
{
ξ∈Γ(Σ;u∗TV ) : DV,uξ−tLν,uξ = 0

}
,

where Lν,uξ is defined by
{Lν,uξ}(z) = ∇V

ξ(z)ν
∣∣
(z,u(z))

.

The operator DV,u− tLν,u is independent of the choice of the connection along MΣ,tν,λ and by
assumption has no cokernel if t∈(0, 1). An orientation on MΣ,tν,λ is determined by an orientation
of the bundle Λtop

R
TMΣ,tν,λ over MΣ,tν,λ, which is the determinant line bundle of the elliptic

operator DV,u−tLν,u. Since Lν,u has order zero, the operator DV,u−tLν,u is homotopic through
elliptic operators to the operator DV,u. Thus, Λtop

R
TMΣ,tν,λ is homotopic to

det
(
DV,u

)
=

(
Λtop

R
(kerDV,u)

)
⊗

(
Λtop

R
(coker DV,u)

)
;
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see [LM]. Since DV,u commutes with J , kerDV,u and coker DV,u are both complex vector spaces
and thus have natural orientations, which induce an orientation on the determinant line bundle
of DV,u and via a homotopy of operators on the determinant bundle of DV,u−tLν,u. It follows that
MΣ,tν,λ×ΣN is naturally oriented. If µ is a ν-regular tuple of submanifold of V of total codimension

codim µ = dimMΣ,tν,λ×ΣN = ind DV,u + 2|N |
= 2

(
〈c1(V, J), λ〉 + (dimC V )

(
1 − g(Σ)

)
+ |N |

)
,

the differential of the map

ev[N ] : MΣ,tν,λ×ΣN −→
∏

l∈[N ]

V, (Σ, [N ], {0̂}; , (0̂, y), u0̂) −→
(
u0̂(yl)

)
l∈[N ]

,

i.e. dev[N ] as defined in (2) of Definition 3.24, induces an isomorphism between TMΣ,tν,λ⊕TΣN

and the normal bundle of µ in V N at each point of MΣ,tν,λ(µ). Here we identify the N -tuple µ
with the submanifold ∏

l∈[N ]

µl ⊂
∏

l∈[N ]

V ≡ V N .

Since the normal bundle of µ is oriented, the evaluation map also induces an orientation on
TMΣ,tν,λ ⊕TΣN along MΣ,tν,λ(µ). Each element b ∈ MΣ,tν,λ(µ) is assigned a plus sign or is
positively oriented if the two orientations agree, and a minus sign otherwise.

For any υ∈F (∅)T such that qυ is defined, let Lν,υ : Γ(uυ)−→Γ0,1(uυ) be given by

{Lν,υξ}(z) = ∇bυ

ξ(z)ν
∣∣
(z,f(z))

.

Denote by Γ0,1
t,+(υ) the image of Γ+(υ) under the map Dυ−tLν,υ.

Lemma 3.25 For any compact subset K of M(0)
T , there exist δ, C >0 such that for all υ∈F (∅)Tδ|K

and t∈(0, δ),
(1) ‖ξ‖υ,p,1 ≤ C‖Dυξ − tLν,υξ‖υ,p for all ξ∈Γ+(υ);

(2) Lp(υ) = Γ0,1
t,+(υ) ⊕ Γ0,1

− (υ);

(3) if D−−
υ,t and L−−

ν,υ,t are the (−,−)-components of Dυ and Lν,υ with respect to the decompositions

Lp
1(υ) = Γ+(υ) ⊕ Γ−(υ) and Lp(υ) = Γ0,1

t,+(υ) ⊕ Γ0,1
− (υ), then

πυ,− : ker
{
Dυ − tLν,υ : Lp

1(υ)−→Lp(υ)
}
−→ ker

{
D−−

υ,t − tL−−
ν,υ,t : Γ−(υ)−→Γ0,1

− (υ)
}

is an orientation-preserving isomorphism, provided one of the two operators is surjective.

Proof: (1) The first claim is immediate from (1) of Lemma 3.16 and (2) of Lemma 3.5. The second
is obtained by the same argument as in the proof of (3) of Lemma 3.16.
(2) By construction, πυ,− is an isomorphism of the two kernels of the lemma. In particular,
Dυ−tLν,υ is surjective if and only if D−−

υ,t −tL−−
ν,υ,t is. Define

Φτ : Lp
1(υ) ⊕ Γ0,1

− (υ) −→ Lp(υ) and Ψτ : Γ−(υ) ⊕ Γ0,1
− (υ) −→ Γ0,1

− (υ) by

Φτ (ξ, η) = Dυξ + τtLν,υξ + η and Ψτ (ξ, η) = τ
(
D−−

υ,t + tL−−
ν,υ,t

)
ξ + η.
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The first map is surjective for all τ ∈ [0, 1] by (2) of the lemma, while the surjectivity of the second
map is immediate from the definition. Furthermore, the maps

φτ : ker Φτ −→ Γ−(υ), φτ (ξ, η) = πυ,−ξ, and ψτ : ker Ψτ −→ Γ−(υ), ψτ (ξ, η) = ξ,

are isomorphisms such that

ψ−1
1 φ1(ξ, 0) = πυ,−ξ; if φ1(ξ, η) = ψ1(ξ

′, η′), η = η′; ψ−1
0 φ0J = Jψ−1

0 φ0.

It follows that πυ,− is an orientation-preserving map between the two kernels of the lemma.

If K is a precompact open subset of MT and δ>0 is such that b̃tν(υ) is defined for all υ∈F ∅Tδ|K
and t∈(0, δ), let M(K, δ) and M̃tν(K, δ) denote the images of F ∅Tδ|K under the maps γT and γ̃T ,tν ,
respectively. Both maps are continuous and injective; see Subsection 4.2. The smooth structure of
FT induces smooth structures on M(K, δ) and M̃tν(K, δ), with the tangent bundles described by

Tb(υ)M(K, δ) =
{
ζ ′$ =

d

dτ
ζτ$

∣∣
τ=0

: $∈TυFT
}
⊕

⊕

l∈[N ]

Tyl(υ)Σ;

Tb̃tν(υ)M̃tν(K, δ) =
{
ζ̃ ′$ =

d

dτ
ζ̃τ$

∣∣
τ=0

: $∈TυFT
}
⊕

⊕

l∈[N ]

Tyl(υ)Σ,

where TυFT denotes TυF
∅T ; see Subsection 3.4. It is easy to see that $ −→ ζ ′$ is nearly complex

linear and πυ,− is almost the identity on the first component of Tb(υ)M(K, δ); both error terms

are bounded by CK |υ|. Furthermore, by (1) of Lemma 3.6 and Corollary 4.7, $−→ ζ̃ ′$ also nearly
computes with the complex structures and Πbυ ,ξυ,tνπυ,−Π−1

bυ ,ξυ,tν
is almost the identity on the first

component of Tb̃tν(υ)M̃tν(K, δ); in the given case, the error terms are bounded by CK

(
t+ |υ|

1
p
)
.

Thus, the orientations of M(K, δ) and M̃tν(K, δ) induced by the natural orientation of FT agree
with the orientations induced from the natural orientation on Γ−(υ) ⊕ ⊕

l∈[N ]

Tyl(υ)Σ via the maps

πυ,− ⊕ id and πυ,−Π−1
bυ ,ξυ,tν

⊕id, respectively.

By the construction in Subsection 3.6,

ψ̃tν : M̃tν(K, δ) −→ Γ0,1, υ −→ tν|ũυ,tν − ∂̄ũυ,tν ∈ Γ0,1(ũυ,tν),

determines a section of the bundle ΠΓ0,1
− over M̃tν(K, δ), given by

ΠΓ0,1
− (b̃tν(υ)) = Πbυ,ξυ,tνΓ

0,1
− (υ).

Note that the zero set of this section is precisely the space (MΣ,tν,λ×ΣN)∩M̃tν(K, δ). A lineariza-
tion of this section is given by

∇ζ̃′$
(tν − ∂̄ũυ,tν) ≡ Πbυ ,ξυ,tνπ

0,1
υ,t,−∇υ

πυ,−Π−1
bυ,ξυ,tν

ζ̃′$
Π−1

bυ,ξυ,tν
(tν − ∂̄ũυ,tν)

= −Πbυ,ξυ,tν

(
D−−

υ,t − tL−−
υ,ν,t

)
πυ,−Π−1

bυ ,ξυ,tν
ζ̃ ′$,

where π0,1
υ,t,− : Lp(υ) = Γ0,1

+,t(υ) ⊕ Γ0,1
− (υ) −→ Γ0,1

− (υ) is the projection map.
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Corollary 3.26 For any compact subset K of M(0)
T , there exists δ>0 such that for all t∈ (0, δ),

the orientation of (MΣ,tν,λ×ΣN ) ∩ M̃tν(K, δ) as the zero set of the section ψ̃tν agrees with its
natural orientation.

Proof: Suppose b̃tν(υ)∈ (MΣ,tν,λ×ΣN ) ∩ M̃tν(K, δ). Since we can use any connection in ũ∗υ,tνTV
to define the natural orientation on Tũυ,tνMΣ,tν,λ, we can write

{
Dũυ,tν − tLν,ũυ,tν

}
ξ = Πbυ,ξυ,tν

{
Dυ − tLν,υ

}
Π−1

bυ ,ξυ,tν
ξ ∀ξ∈Γ(ũυ,t).

Thus, by Lemma 3.25, πυ,− ◦ Π−1
bυ,ξυ,tν

⊕ id induces an orientation-preserving isomorphism

Tb̃tν(υ)MΣ,tν,λ⊕
⊕

l∈[N ]

Tyl(υ)Σ −→ ker(D−−
υ,t −L−−

ν,υ,t)⊕
⊕

l∈[N ]

Tyl(υ)Σ,

with the natural orientations on the two spaces. By the preceding paragraph, the same is true for
the zero set of ψ̃tν .

If µ is an N -tuple of constraints as above, let

M(K, δ;µ) =
{
b(υ)∈M(K, δ) : ev[N ](b(υ))∈µ

}
,

M̃tν(K, δ;µ) =
{
b̃tν(υ)∈M̃tν(K, δ) : ev[N ](b̃tν(υ))∈µ

}
.

Then M(K, δ;µ) and M̃tν(K, δ;µ) are smooth manifolds. In fact, the smoothness of M(K, δ;µ) is
immediate from the smoothness of FT |MT (µ), which is a consequence of T -regularity of µ, while

the smoothness of M̃tν(K, δ;µ) follows from Lemma 3.28 below. Furthermore, since µ is ν-regular,
the section ψ̃tν is transversal to zero in ΠΓ0,1

− over M̃tν(K, δ;µ). By Corollary 3.26, the sign of

b̃tν(υ)∈MΣ,tν,λ(µ) defined at the beginning of this subsection is its sign as an element of the zero

set of the section ψ̃tν of ΠΓ0,1
− over M̃tν(K, δ;µ).

If b=
(
Σ, [N ], I;x, (j, y), u

)
∈M(0)

T (µ), let

Kµ
b T =

{(
ξ, wÎt[N ]

)
∈KbT : ξjl

(yl) + dujl
|yl
wl∈Tujl

(yl)µl ∀l∈ [N ]
}
.

Denote by N µ
b T the (L2, b)-orthogonal complement of Kµ

b T in KbT . Note that by (3) of Defini-
tion 3.24, ⊕

l∈[N ]

Tujl
(yl)V = dev[N ]

∣∣
b

(
N µ

b T
)
⊕

⊕

l∈[N ]

Tujl
(yl)µl.

We denote by Ñ µT the bundle over M(0)
T (µ) with fibers N µ

b T and by N µT −→ MT (µ) its quotient
by the natural GT -action.

Suppose S⊂MT is a smooth oriented submanifold such that µ is S-regular. Denote by S̃ ⊂M(0)
T the

preimage of S under the quotient projection map. Let NS−→S and NS̃−→S̃ be the normal bun-

dles. Choose an
(
A(T )nGT

)
-equivariant orientation-preserving identification φ̃S : NS̃δ−→M(0)

T of

neighborhoods of S̃ in NS̃ and M(0)
T . Let Φ̃S : π∗

N S̃
F (0)T −→F (0)T be an

(
A(T )nGT

)
-equivariant

vector-bundle isomorphism covering φ̃S such that Φ̃S is the identity on S̃. Let

φS : NSδ −→ MT and ΦS : π∗NSFT −→ FT
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be the maps induced by φ̃S and Φ̃S , respectively. Put

S(µ) = S ∩MT (µ), S̃(µ) = S̃ ∩M(0)
T (µ).

Since µ is S-regular, we can choose an
(
A(T )nGT

)
-equivariant orientation-preserving identification

φ̃µ
S : Ñ µTδ|S̃(µ)−→S̃. Let

Φ̃µ
S : π∗

ÑµT

(
NS̃ ⊕ F (0)T

)
−→ NS̃ ⊕ F (0)T

be a
(
A(T )nGT

)
-equivariant splitting-preserving vector-bundle isomorphism covering φ̃µ

S such that

Φ̃µ
S is the identity on S̃(µ). Denote by

φµ
S : N µTδ|S(µ) −→ S̃ and Φµ

S : π∗NµT

(
NS ⊕ FT

)
−→ NS ⊕ FT

the maps induced by φ̃µ
S and Φ̃µ

S , respectively.

Definition 3.27 With notation as above and in Subsection 3.4, tuple (ΦS ,Φ
µ
S) is a regularization

of S(µ) if for all b∈S̃(µ), ~n∈NbS̃δ(b), and σ∈Ñ µ
b Tδ(b), there exists $(~n, σ)∈Kφ̃S (b,~n)T such that

Φ̃SΦ̃µ
S(b, σ;~n, v) =

{
Φ̃S(b, ~n; v)

}(
$(~n, σ)

)
∀ v∈F (0)

b T .

Note that if µ is S-regular, S(µ) admits a normalization. In fact, we can start with any choice of
ΦS and Φµ

S

∣∣
π∗
NµT

NS
as in the preceding paragraph, and then choose Φµ

S

∣∣
π∗
NµT

FT
so that the triple

satisfies the requirements of the definition. In applications of Theorem 3.29 in [Z2], the exact choice
of Φµ

S does not matter, but that of ΦS does play a role.

For the purposes of Theorem 3.29, we assume that ΦS and Φµ
S also encode the lifts of φS and φµ

S

to the bundles π∗NSΓ0,1
− −→S and π∗NµT Γ0,1

− −→S(µ), respectively. Put

F (0)S = NS̃ ⊕ F (0)T , F (∅)S =
{
(b, ~n, v)∈F (0)S : v∈F (∅)

b T
}
;

FS = NS ⊕ FT , F ∅S =
{
[b, ~n, v]∈F (0)S : [b, v]∈F ∅

b T
}
.

Lemma 3.28 For any
(
A(T )nGT

)
-invariant precompact open subset K of S̃(µ), there exist an

open neighborhood UK of K in M(0)
T and δ, C > 0 with the following property. If t∈ (0, δ), there

exists a smooth
(
A(T )nGT

)
-equivariant section

ϕ̃µ
S,tν ∈ Γ

(
F (∅)Sδ|K ;π∗

F (0)SÑ
µT

)
,

such that
∥∥ϕ̃µ

S,tν(υ)‖bυ ,C0 ≤ C
(
t+|υ|

1
p
)

for all υ∈F (∅)Sδ|K and

F ∅Sδ|K −→ M̃tν(UK , δ;µ), [b, ~n, v] −→ γ̃T ,tν

(
Φ̃S

(
Φ̃µ
S ϕ̃

µ
S,tν

(
b, ~n, v)

))
,

is an orientation-preserving diffeomorphism.
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Proof: Since µ is a regular value of ev[N ]|S andK is precompact, there exists δ>0 such that the map

{
(b, ~n, v, σ)∈F (0)S⊕Ñ µT

∣∣
K

: |~n|, ‖σ‖b,C0 <δ
}
−→ F (0)T ,

(b, ~n, v, σ) −→ Φ̃SΦ̃µ
S(b, σ;~n, v),

is an
(
A(T )nGT

)
-equivariant orientation-preserving diffeomorphism onto its image. Thus, if δ>0

is sufficiently small, there exists C>0 such that, with notation as in Definition 3.27,

C−1‖σ−σ′‖b,C0 ≤
∥∥$(~n, σ) −$(~n, σ′)

∥∥
b,C0

≤ C‖σ−σ′‖b,C0

∀ b∈S̃(µ), ~n∈NbS̃δ, σ, σ
′∈Ñ µ

b T .

Then by Corollary 4.11 and definition of S′
$ in Subsection 3.4,

∣∣∣dV

(
φ̃SΦ̃µ

S(b, σ;~n), γ̃T ,tν

(
Φ̃SΦ̃µ

S(b, σ;~n, v)
))

− dV

(
φ̃SΦ̃µ

S(b, σ′;~n), γ̃T ,tν

(
Φ̃SΦ̃µ

S(b, σ′;~n, v)
))∣∣∣

≤ C
(
t+ |v|

1
p
)
‖σ−σ′‖b,C0 ∀ t∈(0, δ), b∈S̃(µ), ~n∈NbS̃δ, σ, σ

′∈Ñ µ
b T , v∈F

(∅)
b Tδ.

On a neighborhood of ev[N ](b)∈µ, we can identify the normal bundle of µ in V N gV -isometrically
with the trivial hermitian bundle of the same rank. Let π denote the projection onto the fiber.
Since µ is S-regular,

‖σ − σ′‖b,C0 ≤ C
∣∣πev[N ]

(
φ̃SΦ̃µ

S(b, σ;~n)
)
− πev[N ]

(
φ̃SΦ̃µ

S(b, σ′;~n)
)∣∣

∀b∈S̃(µ), ~n∈NbS̃δ, σ, σ
′∈Ñ µ

b T .

Thus, we can apply Corollary 3.23 to

h = π ◦ ev[N ] ◦ φ̃S ◦ Φ̃µ
S and h̃t = π ◦ ev[N ] ◦ γ̃T ,tν ◦ Φ̃S ◦ Φ̃µ

S .

We obtain δ, ε>0 and for each t∈(0, δ) a section ϕ̃µ
S,tν with the claimed bound such that the map

F (∅)Sδ|K −→
{

(b, ~n, v, σ) : ‖σ‖b,C0<ε, ev[N ]γ̃T ,tν

(
Φ̃S

(
Φ̃µ
S(b, ~n;σ, v)

))
∈µ

}
,

(
b, ~n, v

)
−→

(
b, ~n, v, ϕ̃µ

S,tν(b, ~n, v)
)
,

is an orientation-preserving diffeomorphism. Since

{
[b, ~n, v, σ] : [b, ~n, v]∈F ∅Sδ, ‖σ‖b,C0 < ε

}
−→ M̃tν(UK , δ),

[b, ~n, σ, v] −→ γ̃T ,tν

(
Φ̃S

(
Φ̃µ
S(b, ~n;σ, v)

))
,

is orientation-preserving by the discussion above and our assumptions on φ̃S , the claim follows.
Above

UK = φ̃S

(
Φ̃µ
S

({
(b, ~n, σ)∈NS̃⊕Ñ µT |K : ‖~n‖b,C0<ε, ‖σ‖b,C0<ε

}))
.

Theorem 3.29 Suppose λ∈H2(V ; Z), T =
(
Σ, [N ], I; j, λ

)
is a (V, J)-semiregular bubble type, with∑

i∈I
λi =λ and cokernel bundle Γ0,1

− −→MT , and (Γ̃−,Γ
0,1
− , R) is an obstruction bundle setup. Let

S⊂MT be a smooth oriented submanifold,

ν∈Γ0,1(Σ×V ; Λ0,1
J,jπ

∗
ΣT

∗Σ⊗π∗V TV )
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a λ-regular section, µ a ν-, T -, and S-regular N -tuple of submanifolds of V of total codimension

codim µ = 2
(
〈c1(V, J), λ〉 + (dimC V )

(
1 − g(S)

)
+ |N |

)
,

and (ΦS ,Φ
µ
S) is regularization of S(µ). Then for every precompact open subset K of S(µ), there

exist a neighborhood UK of K in C̄∞
(λ;N)(Σ;µ) and δ, ε, C >0 with the following property. For every

t∈(0, ε), there exist a section

ϕµ
S,tν ∈ Γ

(
F ∅Sδ|K ;π∗FSN µT

)
, with

∥∥ϕµ
S,tν(υ)

∥∥
bυ,C0 ≤ C

(
t+ |υ|

1
p
)
,

and a sign-preserving bijection between MΣ,tν,λ(µ)∩UK and the zero set of the section ψµ
S,tν de-

fined by

ψµ
S,tν ∈Γ

(
F ∅Sδ|K ;π∗FSΓ0,1

−

)
, Φµ

S

(
ϕµ
S,tν(υ);ψ

µ
S,tν(υ)

)
= ψS,tν

(
Φµ
S(ϕµ

S,tν(υ))
)
;

ψS,tν ∈Γ
(
F ∅Sδ

∣∣
S∩UK

;π∗FSΓ0,1
−

)
, ΦS

(
υ;ψS,tν(υ)

)
= ψT ,tν

(
ΦS(υ)

)
;

ψT ,tν ∈Γ
(
F ∅Tδ

∣∣
MT ∩UK

;π∗FT Γ0,1
−

)
, RυψT ,tν(υ) = π0,1

υ,−

(
tνυ,t−∂̄(ubυ ◦qυ)−Dυξυ,tν − η̃υ,tν

)
,

for some νυ,t, η̃υ,tν ∈Γ0,1(uυ) and ξυ,tν ∈ Γ̃+(υ), dependent smoothly on υ, such that

∥∥νυ,t − ν
∥∥

υ,2
≤ C

(
t+ |υ|

1
p
)
,

∥∥ξυ,tν

∥∥
υ,p,1

≤ C
(
t+ |υ|

1
p
)
,

∥∥η̃υ,tν

∥∥
υ,p

≤ C
(
t+ |υ|

1
p
)2
.

Furthermore, if z∈Σ and (Bbυ (uυ(z), Cδ), J, gV,bυ ) is isometric to a ball in C
n, then η̃υ,tν(z) = 0.

Remark: In specific applications, the main goal would be to express the number of zeros of ψµ
S,tν in

terms of the cohomology ring of a closure of ST (µ). One of the significant intermediate steps is to
extract the leading-order terms from the section ψµ

S,tν . If λ0̂ =0, the estimate on νυ,t given above

easily leads to a sufficiently good estimate on π0,1
υ,−νυ,t; see [I] and [Z2]. In such a case, one can also

extract the first-order term from π0,1
υ,−∂̄uυ, which suffices for the computation in [I]. A power-series

expansion for π0,1
υ,−∂̄uυ is given in [Z2], where terms of up to third degree are used. With the choice

of metrics in [Z2], the term π0,1
υ,−η̃υ,tν vanishes. The remaining term is shown to be secondary for a

good choice of the obstruction bundle setup.

Proof of Theorem 3.29: Let δ, ε > 0 be as in Lemma 3.28 and its proof. We take ϕµ
S,tν to be

the section descendent from the GT -equivariant section ϕ̃µ
S,tν . Denote by U ′

K the open set UK of

Lemma 3.28. By Corollary 4.22, there exists a neighborhood UK of K in C̄∞
(λ;N)(Σ;µ) such that

MΣ,tν,λ(µ)∩UK is contained in M̃tν(U ′
K , δ;µ). The neighborhood UK can always be chosen to

contain all the zeros of the section ψ̃tν of the bundle ΠΓ0,1
− over MΣ,tν,λ(µ)∩UK . By Corollary 3.26,

MΣ,tν,λ(µ)∩UK is precisely the oriented zero set of the section ψ̃tν . Since the map

F ∅Sδ|K −→ M̃tν(U ′
K , δ;µ), υ −→ γ̃T ,tν

(
ΦSΦµ

S

(
ϕµ
S,tν(υ)

))
,

is an orientation-preserving diffeomorphism by Lemma 3.28, it induces a sign-preserving bijection
between the zero set of ψ̃tν on M̃tν(U ′

K , δ;µ), and the zero set of the section

(γ̃T ,tνΦSΦµ
Sϕ

µ
S,tν)

∗ψ̃tν ∈ Γ
(
F ∅Sδ|K ; (γ̃T ,tνΦSΦµ

Sϕ
µ
S,tν)

∗ΠΓ0,1
−

)
.
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By equation (3.17), under the canonical identification

(γ̃T ,tνγ
−1
T )∗ΠΓ0,1

− = Γ0,1
− −→ M(U ′

K , δ),

the section (γ̃T ,tνγ
−1
T )∗ψ̃tν corresponds to the section ψtν given by

ψtν

(
b(υ)

)
= tν|uυ − ∂̄uυ − π̃0,1

υ,+ηυ,tν −Nυ,tνPυηυ,tν

= π0,1
υ,−

(
tν|uυ − ∂̄uυ − π̃0,1

υ,+ηυ,tν −Nυ,tνPυηυ,tν

)

= π0,1
υ,−

(
tνυ,ξυ,tν − ∂̄uυ − π̃0,1

υ,+ηυ,tν −NυPυηυ,tν

)
.

(3.19)

The second equality above is automatic, since ψtν

(
b(υ)

)
∈ Γ0,1

− (υ); the third follows from the
definition of Nυ,tν in Subsection 3.6. The bounds on the terms νυ,ξυ,tν , ηυ,tν , NυPυηυ,tν also follow

from Subsection 3.6. By definition of Γ0,1
− in Subsection 3.4 and equation (3.19), under the canonical

identification
γ∗T Γ0,1

− = π∗FT Γ0,1
− −→ F ∅Tδ

∣∣
U ′

K
,

the section γ∗T ψtν corresponds to the section ψT ,tν , described in the statement of the theorem.

The next proposition describes a special case of the above theorem. It is obtained by fixing a
metric g on Σ and going through the construction analogous to that in Subsection 3.6 and then
modification for constraints as above. The sign statement below follows from the fact that the
(L2, g, gV )-projection ker(DV,ub

−τtLν,ub
)−→kerDV,ub

is an isomorphism for all τ ∈ [0, 1], t suffi-
ciently small, and b∈MΣ,tν,λ∗(µ) sufficiently close to K.

Proposition 3.30 Suppose λ∈H2(V ; Z), T =
(
Σ, [N ], {0̂}; 0̂, λ

)
is a (V, J)-regular bubble type,

ν∈Γ0,1(Σ×V ; Λ0,1
J,jπ

∗
ΣT

∗Σ⊗π∗V TV )

is any section, and µ is a T -regular N -tuple of submanifolds of V of total codimension

codim µ = 2
(
〈c1(V, J), λ〉 + (dimC V )

(
1 − g(S)

)
+ |N |

)
.

Then MT (µ) is a discrete set and for every finite subset K of S(µ), there exist a neighborhood
UK of K in C̄∞

(λ;N)(Σ;µ), ε > 0, and for each t∈ (0, ε) a sign-preserving bijection between K and

MΣ,tν,λ(µ)∩UK .

3.9 Gluing Maps for Spaces Ū (0)
T (µ) and Orientations

We now consider the case T = (S2,M, I; j, λ) is a regular bubble type. However, most of the
analysis in this subsection applies to any regular bubble type T . Let µ be a generic M̃ -tuple of
submanifolds in V , as defined below. If I=

⊔
k∈K

Ik is the decomposition of I into rooted trees and

{Tk} are the corresponding simple types derived from T , the product gluing map,

(
γ̃Tk

)
k∈K

:
∏

k∈K

FTk,δk
−→

∏

k∈K

M̄〈Tk〉,

may not map the total space of the bundle over U (0)
T (µ) into Ū (0)

〈T 〉(µ). In this subsection, we remedy

this deficiency of the product gluing map. We also show that all the spaces Ū (0)
〈T 〉(µ) and Ū〈T 〉(µ) are

naturally oriented topological orbifolds and the gluing maps defined below preserve orientations.

49



Definition 3.31 If T is a (V, J)-regular bubble type, M̃ -tuple µ of oriented submanifolds of V is
T -regular if the manifolds

{
µl : l∈M̃−M

}
intersect transversally in V and

Tev(b)V ⊕
⊕

l∈M̃∩M

Tujl
(yl)V = Im dev

∣∣
b
+ Im devM̃∩M

∣∣
b
+ Tev(b)

⋂

l∈M̃−M

µl +
⊕

l∈M̃∩M

Tujl
(yl)µl

for all b=(S2,M, I;x, (j, y), u)∈BT (µ).

Let T , Tk, K, µ, and b be as above. Denote by

bk =
(
S2,Mk, Ik;x|Îk

, (j, y)|Mk
, u|Ik

)

the corresponding Tk-bubble map; see Subsection 2.5. Let N µ
b T be the (L2, b)-orthogonal comple-

ment of

K̃µ
b T =

{
(ξ, wÎtM )∈K̃bT : ξjl

(yl)+dujl
|yl
wl∈Tujl

(yl)µl ∀l∈M̃ ∩M,

ξi(∞)∈Tev(b)

⋂

l∈M̃−M

µl ∀i∈I−Î
}

in
⊕

k∈K

Kbk
Tk. Denote by Ñ µT −→BT (µ) and N µT −→U (0)

T (µ) the corresponding vector bundles. Let

N µBT = Ñ µT ⊕ (C ⊕ R)K −→ BT (µ), N µU (0)
T = N µT ⊕ (C ⊕ R)K −→ U (0)

T (µ);

F (0)T =
⊕

k∈K

F (0)Tk −→ BT , FT =
⊕

k∈K

FTk −→ U (0)
T .

The last two vector bundles carry norms induced from the norms on F (0)Tk, while we define norms
on the first two by ∣∣(b, σ, (c, r)

)∣∣ = ‖σ‖b,C0 + |(c, r)|,
if σ∈N µ

b T ⊂ ⊕
k∈K

K̃bk
Tk and (c, r)∈(C⊕R)K . If δ is sufficiently small, define

φ̃µ
T : N µBT ,δ −→

∏

k∈K

M(0)
Tk

by φ̃µ
T

(
σ, (c, r)

)
=

(
(ck, rk) ·H(0)

Tk
(σk)

)
k∈K

∈
∏

k∈K

M(0)
Tk
,

where H
(0)
Tk

is as at the end of Subsection 3.2 and (ck, rk)· denotes the action of a neighborhood of

0 ∈ C×R = C×R×{0} ⊂ C×R×R

described in Subsection 3.1. Since φ̃µ
T is

(
A(T )nG̃T

)
-equivariant, it descends to a G∗

T -equivariant
map

φµ
T : N µU (0)

T ,δ −→
∏

k∈K

MTk
.

Let Φµ
T : π∗NµUT

FT −→FT be a G∗
T -equivariant vector-bundle map covering the map φµ

T such that

Φµ
T is the identity over U (0)

T (µ). Denote by Φ̃µ
T the lift of Φµ

T to N µBT ,δ. Let Φµ
T ,k and Φ̃µ

T ,k be

kth components of Φµ
T and Φ̃µ

T , respectively.
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Lemma 3.32 With assumptions and notation as above, there exist
(
A(T )nG̃T

)
-invariant func-

tions δ, C∈C∞(BT (µ); R+) and an
(
A(T )nG̃T

)
-equivariant section

ϕ̃µ
T ∈Γ

(
F (0)Tδ;π

∗
F (0)T N

µBT ,δ

)
,

such that
∣∣ϕ̃µ

T (υ)
∣∣ ≤ C(bυ)|υ|

1
p and

FTδ −→ Ū (0)
〈T 〉(µ), υ −→

(
γ̃Tk

(
Φµ
T ,kϕ

µ
T (υ)

))
k∈K

,

is a homeomorphism onto an open neighborhood of U (0)
T (µ) in Ū (0)

〈T 〉(µ). Furthermore, the restriction

of this map to F ∅Tδ is an orientation-preserving diffeomorphism onto an open subset of U (0)
〈T 〉(µ).

Proof: Denote by NT µ the normal bundle of

XT (µ) ≡
{
xK ∈V K: xk1 =xk2 ∈µl ∀k1, k2∈K, l∈M̃−M

}
×

∏

l∈M̃∩M

µl ⊂ V K×V M̃∩M .

Let ÑT µ = NXT µ⊕(C⊕R)K . Since the G̃T -action does not change any evaluation maps and the
constraints are in general position, the differential of the map

ΨT ,M̃ :
∏

k∈K

M(0)
Tk

−→ V K × V M̃∩M × (C × R)K ,

ΨT ,M̃ =
(
(evTk

(bk))k∈K ; (evl(b))l∈M∩M̃ ; (ΨTk ,0̂Ik
(bk))k∈K

)
,

where ΨTk,0̂Ik
(bk)∈C×R is as in Subsection 3.2, induces an isomorphism between N µ

b BT and ÑT µ.

This isomorphism is orientation-preserving by definition of orientations. Thus,

φ̃µ
T : N µBT ,δ −→

∏

k∈K

M(0)
Tk

is an orientation-preserving diffeomorphism onto an open neighborhood of BT (µ) in
∏

k∈K

M(0)
Tk

,

provided δ∈C∞(BT (µ); R+) is sufficiently small. By the same argument as in Subsection 3.8, for
any simple bubble type T ′, the map

γ̃T ′ : F ∅T ′
δ −→ M〈T ′〉 = H〈T ′〉

is an orientation-preserving diffeomorphism onto an open subset of M〈T ′〉 provided δ∈C∞(MT ′ ; R+)
is sufficiently small. Along with Corollary 4.23, this implies that the product map

∏

k∈K

γ̃Tk
:

∏

k∈K

FTk,δ −→
∏

k∈K

M̄〈Tk〉

is a homeomorphism onto an open neighborhood of
∏

k∈K

MTk
in

∏
k∈K

M̄〈Tk〉 and its restriction to

the preimage of
∏

k∈K

M〈Tk〉 is an orientation-preserving diffeomorphism. The lemma now follows by

applying an argument similar to the proof of Lemma 3.28 to the functions

h(υ) = ΨT ,M̃

(
φ̃µ
T

(
σ, (c, r)

))
, h̃(υ) = h̃0(υ) = ΨT ,M̃

((
γ̃kΦ

µ
T ,k(υ)

)
k∈K

)
,
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where we write υ =
(
σ, (c, r), v

)
, with

(
σ, (c, r)

)
∈ N µBT and v ∈ F (0)T . Since BT (µ) is gen-

erally not precompact in
∏

k∈K

M(0)
Tk

, we end up with δ, C∈C∞(BT (µ); R+), instead of δ, C∈R
+.

Another difference is that h̃ is not necessarily smooth with respect to the standard smooth struc-
ture on N µBT ⊕F (0)T . However, we can put a smooth structure on the total space such that the
composite maps

N µBT ,δ ⊕ F (0)T −→ F (0)T −→ R, υ −→ Φ̃µ
T (υ), vh −→ |vh|

1
3p , h∈ Îk, k∈K,

are smooth, whenever δ ∈ C∞(BT (µ); R+) is sufficiently small. Then by Corollary 4.5, h̃ is C2,
which is sufficient for the arguments of Subsection 3.7. Finally, in the given case h̃ is defined on
all of

(
N µBT ⊕F (0)T

)
δ

and thus the second condition on h̃t in Subsection 3.7 is redundant.

Suppose T is a bubble type and µ is an M̃ -tuple of constraints in general position. By Lemma 3.32,

there exist G∗
T -invariant functions δ, C∈C∞(U (0)

T (µ); R+) and a G∗
T -equivariant section

ϕµ
T ∈

(
FTµ;π∗FT N µU (0)

T ,δ

)

such that
∣∣ϕµ

T (υ)
∣∣ ≤ C(bυ)|υ|

1
p and

γ̃µ
T : FTδ −→ Ū (0)

〈T 〉(µ), γ̃µ
T (υ) =

(
γ̃Tk

(
Φµ
T ,kϕ

µ
T (υ)

))
k∈K

,

is a homeomorphism onto a neighborhood of U (0)
T (µ) in Ū (0)

〈T 〉(µ), which is an orientation-preserving

diffeomorphism on a dense open subset of the domain. If T ′ is another regular bubble type such
that 〈T 〉=〈T ′〉 and µ is T ′-regular, it follows that

γ̃µ −1
T γ̃µ

T ′ : γ̃
µ −1
T ′

(
γ̃µ
T (FTδ)

)
−→ γ̃µ −1

T

(
γ̃µ
T ′(FT ′

δ′)
)

is a homeomorphism provided δ′ ∈ C∞(U (0)
T ′ (µ); R+) is sufficiently small. Furthermore, by the

above it is orientation-preserving on a dense open subset of its domain. It follows that γ̃µ−1
T γ̃µ

T ′ is
an orientation-preserving homeomorphism everywhere. We thus obtain

Theorem 3.33 Let T ∗ =(S2,M, I∗; j, λ∗) be a basic bubble type and µ an M̃ -tuple of constraints
such that µ is T -regular for every bubble type T ≤T ∗.

(1) The spaces Ū (0)
T ∗ (µ) and ŪT ∗(µ) are oriented topological orbifolds.

(2) Suppose T < T ∗, φµ
T : N µTδ̃ −→ U (0)

T is a GT ∗-equivariant identification of neighborhoods of

U (0)
T (µ) in N µT and in U (0)

T , and Φµ
T : π∗NµT FT −→ FT is a lift of φµ

T such that Φµ
T |U(0)

T (µ)
=1.

Then there exist GT ∗-invariant functions δ, C∈C∞
(
U (0)
T (µ); R+

)
and a GT ∗-equivariant continuous

orientation-preserving identification,

γ̃µ
T : FTδ −→ Ū (0)

T ∗ (µ),

of neighborhoods of U (0)
T (µ) in FT and in Ū (0)

T ∗ (µ), which is smooth on F ∅Tδ −→UT ∗(µ). Further-
more, for every υ∈FTδ, there exists σ(υ)∈N µT such that

‖σ(υ)‖b∗ ≤ C(b∗)|υ|
1
p and uγ̃µ

T (υ) = expV,ub′◦qΦ
µ
T

(σ(υ))
ξυ, where Φµ

T (σ(υ)) ≡ [b′, v′],

for some ξυ∈Γ
(
ub′ ◦ qΦµ

T (σ(υ))

)
with ‖ξυ‖C0 ≤ C(bυ)|υ|

1
p .
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Remark: The descriptive statement (2) of Theorem 3.33 is used in [Z2] for local excess-intersection
type of computations on the spaces ŪT ∗(µ).

4 Technical Issues

4.1 Continuity of the Gluing Map

Let T = (S,M, I; j, λ) be a simple regular bubble type and H a nonempty subset of Î. Suppose
υk∈F (∅)Tδ and the sequence υk converges to υ∗∈F (H)Tδ. In this subsection, we show that γ̃T (υk)
converges to γ̃T (υ∗) in the Gromov topology. Our main interest is the case S=S2.

It is sufficient to assume that πh(υk) = πh(υ∗) if h 6∈H. In particular, b≡ bυ∗ = bυk
. Denote by

T̃ =T (H) the bubble type of b(υ∗). For each k, define

υ̃k =
(
b̃(υ∗), (ṽk)H

)
∈ F

(0)
b(υ∗)T̃

as follows. If h∈H, put

iHh = min
{
i<h : if h′∈I & i<h′<h, h′ 6∈H

}
.

Since I is a rooted tree, iHh is well-defined. Let

ṽk,h =
∏

iHh<h′≤h

vk,h′ .

Since υk−→υ∗, υ̃k,h−→0 for all h∈H. Furthermore, by construction Συk
=Συ̃k

and qυk
=qυ∗◦qυ̃k

.
In particular, uυk

=uυ∗◦qυ̃k
.

For any h∈H and δ>0, let

Ah,δ,k = q−1
υk

({
(ιh, z) : rb,h(z)≤δ

}
∪

{
(h, z) : |q−1

S (z)|≤δ
})

⊂ Συk
,

A∗
h,δ = q−1

υ∗

({
(ιh, z) : rb,h(z)≤δ

}
∪

{
(h, z) : |q−1

S (z)|≤δ
})

⊂ Συ∗ , Σ∗
δ = Συ∗ −

⋃

h∈H

A∗
h,δ.

It is convenient to make the following definitions. If ηk ∈Lp(υk), the sequence {ηk} converges to
η∗∈Lp(υ∗) if q−1∗

υ̃k
ηk converges to η∗ in the Lp-norm on all precompact open subsets of Σ∗

υ∗ and

lim
δ−→0

lim
k−→0

‖ηk‖υk ,Lp(Ah,δ,k) = 0 ∀h∈H. (4.1)

If ξk∈Lp
1(υk), the sequence {ξk} converges to ξ∗∈Lp

1(υ
∗) if ξk ◦ q−1

υ̃k
converges to ξ∗ in the Lp

1-norm
on all precompact open subsets of Σ∗

υ∗ and

lim
δ−→0

lim
k−→0

‖ξk‖υk ,Lp
1(Ah,δ,k) = 0 ∀h∈H. (4.2)

In (4.1) and (4.2), we use the modified Sobolev norms.

Lemma 4.1 There exist C, δ∈C∞
(
M(0)

T ; R+
)

such that for any sequence {υk ∈F (∅)Tδ} converging
to υ∗ as above and ξ∈Γ+(υ∗)

∥∥πυk,−(ξ ◦ qυ̃k
)
∥∥

υk,p,1
≤ C(b)|υk−υ∗|‖ξ‖υ∗,p,1.
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Proof: Note that Γ−(υk) =
{
ξ−◦ qυ̃k

: ξ−∈Γ(υ∗)
}
. Thus, the difference q∗υ̃k

πυ∗,−−πυk,−q
∗
υ̃k

arises
entirely from the difference between the metrics q∗υ̃k

gυ∗ and gυk
. By construction, the two metrics

differ only on the annuli A
h,2|vk,h|

1
2 ,k

for h∈H. Thus, the claim follows from (2) of Lemma 3.5.

Lemma 4.2 If ηk converges to η∗, then Pυk
ηk converges to Pυ∗η∗.

Proof: (1) Let {εk}, {δk}⊂R
+ be sequences converging to zero such that

‖η∗‖υ∗,Lp(A∗
h,δk

) ≤ εk; ‖Pυ∗η∗‖υ∗,Lp
1(A∗

h,δk
) ≤ εk, lim

k−→∞
‖ηk‖υk,Lp(Ah,δk∗ ,k) < εk ∀h∈H. (4.3)

For every k∗>0, choose Nk∗ such that for all k>Nk∗

∥∥q−1∗
υ̃k

ηk − η∗
∥∥

υ∗,Lp(Σ∗
δk∗

)
≤ εk∗ and ‖ηk‖υk ,Lp(Ah,δk∗ ,k) ≤ εk∗ ∀h∈H. (4.4)

It can be assumed that 2|υk−υ∗|
1
2 ≤ δk∗, εk∗ whenever k>Nk∗. For any k>Nk∗, let η̃k∗,k ∈Lp(υ∗)

be given by

η̃k∗,k =

{
q−1∗
υ̃k

η̃k, on Σ∗
δk∗

;

0, outside of Σ∗
δk∗
.

Then ‖η̃k∗,k‖υ∗,p ≤ ‖ηk‖υk ,p. Let

P̃k∗,kηk = q∗υ̃k
Pυ∗ η̃k∗,k ∈ Lp

1(υk).

Then by Lemma 3.16 and the first assumptions of (4.3) and (4.4),

∥∥q−1∗
υ̃k

P̃k∗,kηk − Pυ∗η∗
∥∥

υ∗,Lp
1(Σ∗

δk∗
)
≤

∥∥Pυ∗ η̃k∗,k − Pυ∗η∗
∥∥

υ∗,p,1

≤ C(b)
∥∥η̃k∗,k − η∗

∥∥
υ∗,p

≤ 2C(b)εk∗ .
(4.5)

Since ‖dqυ̃k
‖C0 ≤C(b), by (4.3) and the first assumption of (4.4) for all h∈H,

∥∥P̃k∗,kηk

∥∥
υk,Lp

1(Ah,δk∗ ,k)
≤ C(b)

∥∥Pυ∗ η̃k∗,k

∥∥
υ∗,Lp

1(A∗
h,δk∗

)

≤ C(b)
(∥∥Pυ∗η∗

∥∥
υ∗,Lp

1(A∗
h,δk∗

)
+

∥∥Pυ∗ η̃k∗,k − Pυ∗η∗
∥∥

υ∗,p,1

)
≤ C ′(b)εk∗ .

(4.6)

(2) We now show that P̃k∗,kηk is close to Pυk
ηk. By Lemmas 3.16 and 4.1,

∥∥P̃k∗,kηk − Pυk
ηk

∥∥
υk ,p,1

≤ C(b)
(∥∥Dυk

P̃k∗,kηk − ηk

∥∥
υk ,p

+
∥∥πυk,−P̃k∗,kηk

∥∥
υk,p,1

)

≤ C(b)
(∥∥Dυk

P̃k∗,kηk − ηk

∥∥
υk ,p

+ |υk − υ∗|‖ηk‖υk,p

)
.

(4.7)

Since Dυ∗Pυ∗ η̃k∗,k = η̃k∗,k and qυ̃k
is holomorphic outside of the annuli Ah,δk∗ ,k,

Dυk
P̃k∗,kηk = ηk on Συk

−
⋃

h∈H

Ah,δk∗ ,k; (4.8)

By equation (4.6),

∥∥Dυk
P̃k∗,kηk

∥∥
υk,Lp(Ah,δk∗ ,k)

≤ C(b)
∥∥P̃k∗,kηk

∥∥
υk,Lp

1(Ah,δk∗ ,k)
≤ C ′(b)εk∗ . (4.9)
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Thus, from equations (4.7)-(4.9) and the second assumption of (4.4), we conclude that for all
k>Nk∗ ∥∥P̃k∗,kηk − Pυk

ηk

∥∥
υk,p,1

≤ C(b)εk∗ (1 + ‖η∗‖υ∗ ,p) . (4.10)

Since ‖dq−1
υ̃k

‖C0 ≤C(b) on Σ∗
δk∗

, by equations (4.5), (4.6), and (4.10),

∥∥q−1∗
υ̃k

Pυk
ηk − Pυ∗η∗

∥∥
υ∗,Lp

1(Σ∗
δk∗

)
≤ C(b)εk∗

(
1 + ‖η∗‖υ∗,p

)
; (4.11)

∥∥Pυk
ηk

∥∥
υk ,Lp

1(Ah,δk∗ ,k)
≤ C(b)εk∗

(
1 + ‖η∗‖υ∗,p

)
∀h∈H. (4.12)

By equations (4.11) and (4.12), Pυk
ηk converges to Pυ∗η∗.

Lemma 4.3 There exist C̃, δ∈C∞(M(0)
T ; R+) such that for all υ∗∈F (H)Tδ and h∈H,

∥∥Pυ∗ ∂̄uυ∗

∥∥
gυ∗ ,C1(A∗

h,δ(bυ∗ )
)
≤ C̃(bυ∗).

Proof: For each h∈H, this lemma is obtained by pasting

Pυ∗ ∂̄uυ∗

∣∣
Ah,δ(b∗

υ∗ )∩Συ∗,ιh

and Pυ∗ ∂̄uυ∗

∣∣
Ah,δ(b∗

υ∗ )∩Συ∗,h

onto Σbυ∗ ,ιh and Σbυ∗ ,h via a cutoff function. We then use the usual elliptic estimates and Sobolev
inequalities on Σbυ∗ ,ιh and Σbυ∗ ,h along with

∥∥Pυ∗ ∂̄uυ∗

∥∥
υ∗,p,1

≤ C(bυ∗)|υ∗|
1
p .

The bound obtained in this way is actually C(bυ∗)|υ∗|
1
p .

Corollary 4.4 There exist C, δ∈C∞(M(0)
T ; R+) such that for any sequence υk∈F (∅)Tδ converging

to υ∗∈F (H)Tδ as above,

∥∥q−1∗
υ̃k

ηυk
− ηυ∗

∥∥
υ∗,Lp(Σ∗

2|υk−υ∗|1/2
)
≤ C(b)|υk−υ∗|

1
p ;

‖ηυk
‖υk ,Lp(A

h,2|υk−υ∗|1/2,k
) ≤ C(b)|υk−υ∗|

1
p ∀h∈H.

Proof: We put

δk = 2|υk−υ∗|
1
2 and εk = (2‖β′‖C0 +C̃(b))|υk−υ∗|

1
p ,

where C̃ is the function given by Lemma 4.3. Let

η(0) = −∂̄uυ∗ , η(m+1) = −∂̄uυ∗ −Nυ∗Pυ∗η(m) m≥0;

η
(0)
k = −∂̄uυk

, η
(m+1)
k = −∂̄uυk

−Nυk
Pυk

η
(m)
k m≥0.

By Lemma 4.3 and the explicit description of ∂̄qυk
in Lemma 2.2, εk, δk, η

(0), and η
(0)
k satisfy (4.3)

and (4.4). Suppose ε
(m)
k is such that ε

(m)
k , δk, η

(m), and η
(m)
k satisfy (4.3) and (4.4). Since the map
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qυ̃k
is holomorphic on q−1

υ̃k
(Σ∗

δk
), by (4.11), (4.12), the estimates in the proof of Lemma 3.18 and

the derivation of equation (3.11) in [Z1],

∥∥q−1∗
υk

Nυk
Pυk

η
(m)
k −Nυ∗Pυ∗η(m)

∥∥
υ∗,Lp(Σ∗

δk
)
=

∥∥Nυ∗q−1∗
υk

Pυk
η

(m)
k −Nυ∗Pυ∗η(m)

∥∥
υ∗,Lp(Σ∗

δk
)

≤ C(b)
(∥∥q−1∗

υk
Pυk

η
(m)
k

∥∥
υ∗,Lp(Σ∗

δk
)
+

∥∥Pυk
η

(m)
k

∥∥
υ∗,Lp(Σ∗

δk
)

)∥∥q−1∗
υk

Pυk
η

(m)
k − Pυ∗η(m)

∥∥
υ∗,Lp(Σ∗

δk
)

≤ C ′(b)
(
ε
(m)
k∗ + |υk|

1
p
)
ε
(m)
k∗ ;

∥∥Nυk
Pυk

η
(m)
k

∥∥
υk,Lp(Ah,δk,k)

≤ C(b)|υk|
1
p
∥∥Pυk

η
(m)
k

∥∥
υk,Lp

1(Ah,δk,k)
≤ C ′(b)|υk|

1
p ε

(m)
k∗ .

Thus, we can take

ε
(m+1)
k = ε

(m)
k +C ′(b)

(
ε
(m)
k∗ +|υk|

1
p
)
ε
(m)
k∗ .

This sequence is bounded as long as |υk|
1
p is sufficiently small (depending only on b). Since ηυ∗ is

the limit in the (υ∗, p)-norm of the sequence η(m) and ηυk
is the limit in the (υk, p)-norm of the

sequence η
(m)
k , the claim follows.

Corollary 4.5 If T is a simple regular bubble type, there exist δ, C ∈C∞(MT ; R+) such that for
any sequence {υk ∈ F ∅Tδ} converging to υ∗ ∈ FHTδ, γ̃(υk) converges to γ̃(υ∗) with respect to the
Gromov topology. Furthermore,

dV

(
ev(γ̃(υ∗)), ev(γ̃(υk))

)
≤ C(bυ∗)|υk−υ∗|

1
p if S=S2;

dV

(
evl(γ̃(υ∗)), evl(γ̃(υk))

)
≤ C(bυ∗)|υk−υ∗|

1
p ∀ l∈M ;

∣∣∣Ψ〈T 〉,0̂

(
γ̃(υk)

)
− ΨT (υ∗),0̂

(
γ̃(υ∗)

)∣∣∣ ≤ C(bυ∗)|υk−υ∗|
1
p if S=S2.

Proof: It is sufficient to consider the case πh(υk) = πh(υ∗) for all h 6∈H if υ∗ ∈ F (H)Tδ. In such
a case, qυ̃k

maps the marked points of Συk
to the marked points of Συ∗ and uυk

= uυ∗ ◦qυk
. By

construction,
ũυk

= expbυ∗ ,uυk
Pυk

ηυk
, ũυk

= expbυ∗ ,uυ∗ Pυ∗ηυ∗ .

By Corollary 4.5 and the proof of Lemma 4.2,

∥∥q−1∗
υ̃k

Pυk
ηυk

− Pυ∗ηυ∗

∥∥
υ∗,Lp

1(Σ∗

2|υk−υ∗|1/2
)
≤ C(bυ∗)|υk − υ∗|

1
p ; (4.13)

‖Pυk
ηυk

‖υk ,Lp
1(A

h,2|υk−υ∗|1/2,k
) ≤ C(bυ∗)|υk − υ∗|

1
p ∀h∈H. (4.14)

Let ζk∈Γ(Σ∗; ũυ∗) be given by

expbυ∗ ,ũυ∗ ζk = ũυk
◦ qυ̃k

, ‖ζk‖C0 < inj gV,bυ∗ .

By equation (4.13) and the proof of (2) of Lemma 3.5,

‖ζk‖C0(Σ∗

2|υk−υ∗|1/2
) ≤ C(bυ∗)‖ζk‖υ∗,Lp

1(Σ∗

2|υk−υ∗|1/2
) ≤ C ′(bυ∗)|υk − υ∗|

1
p . (4.15)

On the other hand, by (4.14) and by the same argument as in (3) of the proof of Lemma 5.12, the

variations of Pυ∗ηυ∗ on A∗
h,2|υk−υ∗|1/2 and Pυk

ηυk
on A∗

h,2|υk−υ∗|1/2,k
are bounded C(bυ)|υk−υ∗|

1
p .
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This can be seen from equation (5.33); observe that an argument similar to the proof Lemma 4.3

shows that we can take δ to be any small number bigger than 2|υk−υ∗|
1
2 . Equation (4.15) and the

small variation on the annuli imply that

sup
z∈Συk

dV

(
ũυ∗(qυ̃k

(z)), ũυk
(z)

)
≤ C(bυ∗)|υk − υ∗|

1
p .

It follows that γ̃T (υk) converges to γ̃T (υ∗) in the Gromov topology. The estimate on the evalu-
ation maps is immediate from the above bound. The last estimate follows from equations (4.13)
and (4.14), along with a Sobolev estimate on a neighborhood of ∞∈Συ∗,0̂ which implies that the

C1-norm of ζk there is bounded by C(bυ∗)|υk−υ∗|
1
p .

4.2 Injectivity of the Gluing Map

The goal of this subsection is to prove that the gluing maps of (3.15) and (3.16) are injective,

as long as δ ∈ C∞(M(0)
T ; R+) is sufficiently small. We start by showing local injectivity on the

subspaces FHTδ of FTδ, where H is a subset of Î.

If T is regular, we are only interested in the case t= 0. If T is semiregular, we only consider the
case H = ∅. We use the same notation as in Subsection 3.4. If ‖$‖υ is sufficiently small, define
ζ̃$,tν ∈Γ(ũυ,tν) by

expbυ ,ũυ,tν
ζ̃$,tν = u$,tν , ‖ζ̃$,tν‖bυ ,C0 < inj gV,b.

Lemma 4.6 There exist δ, C ∈C∞(M(0)
T ; R+) such that for all υ ∈ F (H)Tδ, where H = ∅ if T is

semiregular, and $∈ T̃υF
HTδ(bυ),

(1)
∥∥S$N$,tνR$ξ−Nυ,tνξ

∥∥
υ,p

≤C(bυ)‖$‖υ‖ξ‖2
υ,p,1 for all ξ∈Γ(uυ) with ‖ξ‖υ,p,1≤δ(bυ) and t∈ [0, 1];

(2)
∥∥S$π̃$,±R$ξ − π̃υ,±ξ

∥∥
υ,p,1

≤ C(bυ)‖$‖υ‖ξ‖υ,p,1 for all ξ∈Γ(uυ);

(3)
∥∥S$P$R$η − Pυη

∥∥
υ,p,1

≤ C(bυ)‖$‖υ‖η‖υ,p for all ξ∈Γ0,1(uυ).

Proof: Claim (1) follows from (2) of Lemma 3.6 and Riemannian geometry estimates such as in [Z1].
Claim (2) is a consequence of (5) of Lemma 3.6 and (b) of Definition 3.11. Finally, (3) is obtained
from (1), (2), Definitions 3.11 and 3.13, and Lemmas 3.6 and 3.16 as follows. Writing 4$P for
S$P$R$ − Pυ, etc.,

4$P = Pυπ
0,1
υ,+Dυπ̃υ,+4$P+π̃υ,−S$P$R$

= Pυπ
0,1
υ,+Dυ4$P−

(
Pυπ

0,1
υ,+Dυ−1

)
4$ π̃·,+S$P$R$

= Pυπ
0,1
υ,+4$ π̃

0,1
·,+ −

(
Pυπ

0,1
υ,+4$D +

(
Pυπ

0,1
υ,+Dυ − 1

)
4$ π̃·,+

)
S$P$R$

= −Pυ4$π
0,1
·,+S$π̃

0,1
$,+R$ −

(
Pυπ

0,1
υ,+4$D +

(
Pυπ

0,1
υ,+Dυ − 1

)
4$ π̃$,+S$P$R$

)
.

Corollary 4.7 There exist δ, C ∈C∞(M(0)
T ; R+) such that for all t∈ [0; δ(bυ)], υ∈F (H)Tδ, where

H=∅ if T is semiregular, and $∈ T̃υF
HTδ(bυ),

C(bυ)−1‖$‖υ ≤ ‖ζ̃$,tν‖υ,p,1 +
∑

h∈H

|wh($)|gυ +
∑

l∈M

|wl($)|gυ ≤ C(bυ)‖$‖υ .

Furthermore,
∥∥S$ξ$,tν − ξυ,tν

∥∥
υ,p,1

≤ C(bυ)
(
t+ |υ|

1
p
)
‖$‖υ.
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Proof: The first claim of the lemma is immediate from the second and (1) of Lemma 3.6. On the
other hand, by construction in Subsection 3.6,

ξ$,tν = tP$ν − P$∂̄u$ − P$N$,tνξ$,tν .

Thus, if t and |υ| are sufficiently small (depending on bυ), the second claim follows from Lem-
mas 3.6, 4.6, Corollary 3.19, and equation (3.11).

Corollary 4.8 If T is a simple bubble type and K is an open subset of MT with compact closure,
there exists δ>0 such that for any t∈ [0, δ], the map

γ̃T ,tν : F ∅Tδ|K −→ C∞
(λ;M)(S;V ), γ̃T ,tν(υ) = b̃tν(υ),

is a differentiable embedding.

Proof: We first deduce from Corollary 4.7 that γ̃T ,tν is injective if δ is sufficiently small. Suppose
not, i.e. there exist sequences υk, υk′ ∈F ∅Tδ|K such that

υk−→b∈K̄, υ′k −→ b′∈K̄, and b̃tν(υk)= b̃tν(υ′k).

It follows that b = b′, after possibly modifying the sequence {υk′} the action of an element of(
A(T )nGT

)
. If for some k, υ′k = υk($k) with ‖$k‖υk

sufficiently small, then by Corollary 4.7,
υ′k = υk. Otherwise, the difference between qυk

and qυ′
k

is uniformly bounded below outside of the
preimage of the zeroth component and the necks Aυk,h. Thus, the bubble maps b(υk) and b(υ′k) are
far apart unless b has an automorphism. In the latter case, υ′k can be replaced by an equivalent
element of F ∅Tδ. In the former case, ũυk

and ũυ′
k

cannot be the same because

∥∥Pυk
ηυk,tν

∥∥
C0 ≤ C

(
t+ |υk|

1
p
)
≤ C ′δ

1
p and

∥∥Pυ′
k
ηυ′

k,tν

∥∥
C0 ≤ C

(
t+ |υ′k|

1
p
)
δ

1
p .

Thus, γ̃T ,tν is injective on F ∅Tδ|K provided δ is sufficiently small (depending on K). The smooth-
ness of γ̃T ,tν follows from the smooth dependence of solutions of equation (3.12) on the parameters.
Finally, the differential of γ̃T ,tν is nondegenerate by Corollary 4.7.

Corollary 4.9 If T is regular, there exists δ∈C∞ (MT ; R+) such that for all m, the map

γ̃T :
⋃

|H|=m

FHTδ −→
⋃

|H|=m

MT (H), γ̃T (υ) = b̃(υ),

is injective.

Proof: The same argument as in the proof of Corollary 4.8 shows that map

γ̃T : FHTδ −→ HT (H)

is an embedding if δ is sufficiently small. It remains to see that γ̃
(0)
T (υ) 6=g·γ̃(0)

T (υ′) for any g∈GT (H)

whenever [υ] 6=[υ′]. For each υ∈F (H)Tδ and i∈H, we construct
(
ci(υ), ri(υ)

)
∈C×R such that

(
c(υ), r(υ)

)
· γ̃(0)

T (υ) ∈ M(0)
T (H).
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We define ci(υ)∈C and ri(υ)∈R by

Ψ̃
(
(ci(υ), 0) · ũυ,i

)
+

∑

ιh(υ)=i

dh

(
T (H)

)(
xh(υ) + ci(υ)

)
+

∑

jl(υ)=i

(
yl(υ) + ci(υ)

)
= 0;

Ψ(3)
(
(ci(υ), ri(υ)) · ũυ,i

)
+

∑

ιh(υ)=i

dh

(
T (H)

)
β
(
(1 + ri(υ))|xh(υ) + ci(υ)|

)

+
∑

jl(υ)=i

β
(
(1 + ri(υ))|yl(υ) + ci(υ)|

)
=

1

2
.

Since the metric gυ,i for i > 0 agrees with the standard metric on S2 on a neighborhood of the
south pole and ΨT ,i(bυ)=0, by Corollary 4.7 for any $∈TυF

HT with ‖$‖υ sufficiently small,

∣∣ci($) − ci(υ)
∣∣ ≤ C(bυ)|υ|

1
p ‖$‖υ,

∣∣ri($) − ri(υ)
∣∣ ≤ C(bυ)|υ|

1
p ‖$‖υ . (4.16)

Let b̄(υ)=
(
c(υ), r(υ)

)
· b̃(υ). Write

b̄(υ) =
(
S,M,H∪{0̂}; x̄(υ), (j(υ), ȳ), ūυ

)
.

If ‖$‖υ is sufficiently small, define ζ̄$∈Γ(ūυ) by

expbυ,ūυ
ζ̄$ = u$, ‖ζ̄$‖bυ ,C0 < inj gV,bυ .

Similarly, for h∈H and l∈M , define w̄h($)∈Tx̄h(υ)Συ,ιh(υ) and w̄l($)∈Tȳl
Συ,jl(υ) by

expgυ,x̄h(υ) w̄h($) = x̄h($), |w̄h($)| ≡ |w̄h($)|gυ < inj(gυ , xh(υ));

expgυ,ȳl(υ) w̄l($) = ȳl($), |w̄l($)| ≡ |w̄l($)|gυ < inj(gυ , yl(υ)).

Then by equation (4.16) and Corollary 4.7,

C ′′(bυ)−1‖$‖υ ≤ ‖ζ̄$‖υ,p,1 +
∑

h∈H

|w̄h($)| +
∑

l∈M

|w̄l($)| ≤ C(bυ)‖$‖υ . (4.17)

It follows that the map

FHTδ −→ M(0)
T (H), υ −→ b̄(υ),

is a local embedding. By the same argument as in the proof of Lemma 4.8, we can conclude

that this map is injective as long as δ ∈ C∞(M(0)
T ; R+) is sufficiently small. Since this map is

GT (H)-equivariant by construction, it follows that the induced map on the quotient, i.e. the map
of Corollary 4.9, is injective.

Corollary 4.10 If S=S2, there exists δ∈C∞ (MT ; R+) such that the map

γ̃T : FTδ

∣∣
MT

−→ M̄〈T 〉

is injective. Furthermore, the restriction

γ̃T : F ∅Tδ

∣∣
MT

−→ M〈T 〉

is a differentiable embedding.
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In order to adjust the gluing procedure in the presence of constraints, below we state the analogue
of Corollary 4.7 for $∈KbυT ⊂TυF

∅T . It is obtained in the same way as Corollary 4.7, except the
analogue of Lemma 4.6 would make use of Lemma 3.8, instead of Lemma 3.6, and of (b-ii), instead
of (b-i), of Definitions 3.11 and 3.13. We also use (3) of Lemma 3.5.

Corollary 4.11 There exist δ, C ∈C∞(M(0)
T ; R+) such that for all t ∈ [0; δ(bυ)], υ ∈ F (∅)Tδ, and

$∈KbυTδ(bυ),

C(bυ)−1‖$‖ ≤ ‖ζ̃$,tν‖υ,p,1 +
∑

l∈M

|wl($)|gυ ≤ C(bυ)‖$‖.

Furthermore,
∥∥S′

$ξ$,tν − ξυ,tν

∥∥
υ,C0 ≤ C(bυ)

(
t+|υ|

1
p
)
‖$‖.

4.3 The Basic Gluing Map and the Space of Balanced Maps

Our next goal is to show that the gluing map of Subsection 3.6 is surjective in the appropriate sense.
More precisely, if T is a regular bubble type, we show that the image of γ̃T contains a neighborhood
of MT in M̄〈T 〉. If T is a semiregular, we show that all elements in MΣ,tν,λ that are close to any
given compact subset of MT are in the image of the gluing map γ̃T ,tν if t is sufficiently small. The
major difficulty in doing this is the following. If υ∈FT , a small change in the singular points of bυ
may lead to a very large change in the map uυ. This is precisely the reason we used the norm ‖$‖υ

on TυF
HT instead of just ‖$‖ in Subsection 3.4. In order to deal with this issue, we need Corol-

lary 4.13, which is proved in this subsection. We continue to assume that T is a simple bubble type.

Recall that HT is the set of tuples b=
(
S,M, I;x, (j, y), u

)
such that uιh(xh)=uh(∞) for all h∈ Î

and ∂̄ui =0 for all i∈I. Furthermore, M(0)
T is the subset of HT consisting of the tuples b such that

ΨT ,h(b) = 0 for all h∈ Î. It is convenient to make the following definitions. If H is a subset of Î
and ε≥0, let

M(H)
T ,ε =

{
b=

(
S,M, I;x, (j, y), u

)
: ∂̄ui =0 ∀i∈I; dV

(
uιh(xh), uh(∞)

)
≤ε ∀h∈ Î;

∣∣ΨT ,h(b)
∣∣≤ε ∀h∈ Î−H

}
.

Lemma 4.12 There exist δ, C ∈ C∞
(
M(0)

T ; R+
)

with the following property. Suppose b∗∈M(0)
T ,

ε<δ(b∗), b∈M(H)
T ,ε is such that d(b∗, b)≤δ(b∗), and υ=(b, vÎ)∈F

(H)
b Tδ(b∗). Then there exist

b̃ ∈ M(H)
T ,ε2

and υ̃ =
(
b̃, ṽÎ

)
∈ F

(H)

b̃
T

such that
(1) d(b, b̃)≤C(b∗)ε and |ṽh−vh|b ≤ C(b∗)ε|vh|b for all h∈ Î;
(2) if qυ(z) ∈ ΣT ,i, rb,h

(
qυz

)
≥ 2|vh|

1
2 for all h ∈ Î−H such that ιh = i and

∣∣q−1
S (qυz)

∣∣≥2|vi|
1
2 if

i ∈ Î −H, then db

(
qυ(z), qυ̃(z)

)
≤ δ(b∗)ε.

Proof: (1) Let b=
(
S,M, I;x, (j, y), u

)
. If δ is sufficiently small, by Proposition 3.3, we can choose

ξi∈Γ(ui) such that ‖ξi‖gb,i,C1 ≤ C(b∗)ε and

b′ ≡
(
S,M, I;x, (j, y), u′

)
∈ HT ,
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where u′i =expui
ξi. The C1-bound on ξi and the assumption b∈M(H)

T ,ε imply that |ΨT ,h(b′)|≤C ′(b∗)ε

for all h∈ Î−H.
(2) We now define b̃′ ≡

(
S,M, I; x̃′, (j, ỹ′), ũ′

)
∈HT and υ̃′ = (b̃′, ṽ′

Î
) as follows. Suppose i∗∈I and

for all i∈ Î with i>i∗, h∈ Î with ιh = i, and l∈M with jl = i, we have constructed
(i) (ci, ri)∈C×R such that |(ci, ri)| ≤ C(b∗)ε;
(ii) x̃′h, ỹ

′
l∈ΣT ,i such that |rb,h(x̃′h)| ≤ C(b∗)ε and |φyl

ỹ′l| ≤ C(b∗)ε;
(iii) ṽ′h∈C such that |ṽ′h−vh| ≤ C(b∗)ε|vh|;
(iv) if xi∈S2, x̄i∈S2, such that |rb,i(x̄i)| ≤ C(b∗)ε|vi|;
(v) if xi∈S2, v̄i∈C such that |v̄i−vi| ≤ C(b∗)ε|vi|,

such that
(I1) if i 6∈H, ΨT ,i(b̃

′)=0 where ũ′i = (ci, ri) · u′i;
(I2) if ΣT ,ιi =S

2, z∈ΣT ,ιi , and
∣∣φx̄h

qi,(xi,vi)(z)
∣∣ ≤ 2

3 |v̄h|
1
2 for some h∈ Î−H, then

∣∣∣φx̃′
h
qi,(x̄i,v̄i)(z)

∣∣∣ ≤ |ṽ′h|
1
2 and qh,(x̃′

h,ṽ′h)

(
qi,(x̄i,v̄i)(z)

)
= qh,(x̄h,v̄h)

(
qi,(xi,vi)(z)

)
,

where qi,(xi,vi), etc., are the maps defined in Subsection 2.2.

Note that while we have not defined b̃′ completely yet, (I1) is still a well-defined statement. The
function ΨT ,i depends only the ith bubble component of b̃′, which has already been constructed
by the induction assumptions.

If i∗∈H, we take ci∗ =0 and ri∗ =0. If i∗∈ Î−H, let (ci∗ , ri∗)∈C×R be given by

Ψ̃
(
(ci∗ , 0)u

′
i∗

)
+

∑

ιh=i∗

dh(T )(x̄h+ci∗) +
∑

jl=i∗

(yl+ci∗) = 0;

Ψ(3)
(
(ci∗ , ri∗)u

′
i∗

)
+

∑

ιh=i∗

dh(T )β
(
(1+ri∗)|x̄h+ci∗ |

)
+

∑

jl=i∗

β
(
(1+ri∗)|yl+ci∗ |

)
=

1

2
.

If ε is sufficiently small, by the proof of Lemma 3.3 such (ci∗ , ri∗) ∈ C×R exists and satisfies
|ci∗ |, |ri∗ |≤C(b∗)ε. For all h∈ Î with ιh = i∗ and l∈M with jl = i

∗, put

x̃′h = (1 + ri∗) (x̄h + ci∗) , ṽ′h = (1 + ri∗)v̄h, ỹ′l = (1 + ri∗) (yl + ci∗) ;

x̄i∗ = xi∗ − ci∗vi, v̄i∗ = (1 + ri∗)
−1vi if xi∗ ∈S2.

Continuing in this way, for all i ∈ Î, h∈ Î with ιh = i, and l ∈M with jl = i, we obtain elements
(i)-(v) satisfying (I1),(I2). Let ũ′

0̂
=u′

0̂
. If l∈M and jl =0̂, take ỹ′l =yl.

(3) If S=S2, let (x̃′h, ṽ
′
h)=(x̄h, v̄h) if ιh =0̂, b̃= b̃′, and υ̃= υ̃′. By the inductive construction, b̃ and

υ̃ satisfy the requirements of the lemma. In fact, b̃∈M(H)
T ,0 . If S= Σ, we could extend the above

construction to the principal component Σ as we did for S=S2 if qυ̃′ were defined using the metric
gb,0̂ on Σ, which may differ slightly from gb̃′,0̂. This problem is fixed below.

(4) If l∈M and jl =0̂, we take ỹl =yl as before. For all h∈ Î with ιh =0̂, let x̃h∈Σ, ṽh∈Tx̃h
Σ, and

Θh : B
2|vh|

−1
2

b

(0; C)−→C be such that

(Σ0̂1) db (xh, x̃h) ≤ C(b∗)ε|vh|,
∣∣|ṽh|b̃ − |vh|b

∣∣ ≤ C(b∗)ε|vh|b;
(Σ0̂2) for all z∈Bb

(
xh, 2|vh|

1
2
b

)
,

φb̃,hz

ṽh
=

(
1 + rh

){
ch +

φb,hz

vh
+ Θh

(φb,hz

vh

)}
;
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(Σ0̂3) Θh is holomorphic, Θh(0)=0, Θ′
h(0)=0, and ‖Θ′′

h‖C0 ≤ C(b∗)|υ|2ε.
Note that even though we have not defined b̃ completely yet, (Σ0̂1) and (Σ0̂2) are still well-defined
statements, since the metric gb̃,0̂ on Σ depends only on the singular points {x̃h : ιh = 0̂} on Σ.
Existence of such x̃h, ṽh, and Θh follows from Corollary 5.5, provided δ is sufficiently small.

If ιi =0̂ and jl = i, let (i, ỹl)=qυ̃,iq
−1
υ,i (i, yl). The map qυ̃,i is well-defined even though υ̃ has not been

defined completely yet. By (Σ0̂2),

ỹl = qυ̃,iq
−1
υ,i (yl) =

φb̃,x̃i
φ−1

b,xi
(ylvi)

ṽi
=

(
1 + ri

){
ci + yl + Θi(yl)

}
. (4.18)

Since ỹ′l =(1+ri)(yl+ci), |ỹl−ỹ′l| ≤ C(b∗)|υ|2ε by (Σ0̂3).

Suppose h∈ Î, ιh∈ Î, and for every i∈ Î with i<h and j∈M with jl = i, we have defined

x̃i ∈ ΣT ,ιi , ỹl ∈ ΣT ,i, ṽi ∈
{
Tx̃iΣ, if ιi =0̂;

C, if ιi 6=0̂;
c̃i ∈ C, Θi : B

2|vi|
−1

2
b

(0; C) −→ C

such that
(Σ1) |φb̃′,ix̃i|b̃′ ≤ C(b∗)|υ|2ε if ιi 6=0̂ and |φb̃′,ỹ′

l
ỹl|b̃′ ≤ C(b∗)|υ|2ε;

(Σ2)
∣∣|ṽi|b̃ − |vi|b

∣∣ ≤ C(b∗)ε|vi|b;
(Σ3) |c̃i − ci| ≤ C(b∗)|υ|2ε;
(Σ4) for all z∈Σ such that rb,iqυ,ιi(z) ≤ 2|vi|

1
2
b ,

φb̃,iqυ̃,ιiz

ṽi
=

(
1 + ri

){
c̃i +

φb,iqυ,ιiz

vi
+ Θi

(φb,iqυ,ιiz

vi

)}

(Σ5) Θi is holomorphic, Θi(0)=0, Θ′
i(0)=0, and ‖Θ′′

i ‖C0 ≤ C(b∗)|υ|2ε.
If h∈H, we take x̃h = x̃′h, ṽh = ṽ′h =0, ỹl = ỹ

′
l if jl =h, c̃h =ch =0, and Φh(z)=0. If h 6∈H, let

(ιh, x̃h) = qυ̃,ιhq
−1
υ,ιh

(h, x̄h).

By an argument similar to (4.18), from (Σ4) we obtain

x̃h =
(
1 + rιh

){
c̃ιh + x̄h + Θιh(x̄h)

}
. (4.19)

Since x̃′h = (1+ rιh)(x̄h + cιh), (4.19), (Σ3), and (Σ5) imply the first part of (Σ1) with i = h.
Furthermore, by assumption (Σ4),

φb̃,hqυ̃,ιh(z) = qυ̃,ιh(z) − x̃h =
φb̃,ιh

qυ̃,ιιh
(z)

ṽιh

− x̃h

=
(
1 + rιh

){(φb,ιhqυ,ιιh
(z)

vιh

− x̄h

)
+

(
Θιh

(φb,ιhqυ,ιιh
(z)

vιh

)
− Θιh

(
x̄h

))}
.

(4.20)

Since Θιh is holomorphic, and

φb,ιhqυ,ιιh
(z)

vιh

− x̄h = φb,hqυ,ιh(z) + chvh,
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we can rewrite (4.20) as

φb̃,hqυ̃,ιh(z) =
(
1 + rιh

)(
1 + ah

)
vh

{
c̃h +

φb,hqυ,ιh(z)

vh
+ Θh

(φb,hqυ,ιh(z)

vh

)}
, (4.21)

where the complex numbers ah, c̃h∈C and the holomorphic function

Θh : B
2|vh|

− 1
2
(0,C) −→ C

are given by

ah =
d

dz
Θιh(z)

∣∣∣
z=xh

,
(
1 + ah

)
c̃h = ch +

Θιh (xh) − Θιh (xh − chvh)

vh
, (4.22)

Θh(z) =
Θιh (vhz + xh) − vhzΘ

′
ιh

(xh) − Θιh (xh)

(1 + ah)vh
. (4.23)

By (4.23), Θh(0)=0 and Θ′
h(0)=0. By our assumptions on Θιh and (4.22), (4.23),

|ah| ≤ C(b∗)|υ|2ε|xιh | ≤ C ′(b∗)|υ|2ε; (4.24)

|c̃h − ch| ≤ C(b∗)
(
ε|ah| + |vh|−1|υ|2ε|chvh|

)
≤ C ′(b∗)|υ|2ε, (4.25)

‖Θ′′
h‖C0 ≤ C(b∗)|vh|−1|υ|2ε|vh|2 ≤ C ′(b∗)|υ|2ε. (4.26)

We now take
ṽh = (1 + ah)ṽ′h = (1 + ah)(1 + rιh)(1 + rh)−1vh.

It follows from (4.24)-(4.26) that the induction hypotheses (Σ2)-(Σ5) with i= h are satisfied. If
jl =h, let (h, ỹl)= qυ̃,hq

−1
υ,h(h, yl). By the same argument as in the case ιh = 0̂ above, (Σ3)-(Σ5) of

the i = ιh case imply that the second part of (Σ1) with i=h is satisfied. Continuing in this way,
we obtain tuples

b̃ =
(
Σ,M, I; x̃, (j, ỹ), ũ′

)
, c̃ = cÎ , υ̃ =

(
b̃, ṽÎ

)
,

satisfying (Σ1)-(Σ5). Since b̃′∈M(H)
T ,0 , by (Σ1) b̃∈M(H)

T ,ε if δ is sufficiently small. Finally, (Σ1)-(Σ5)

along with (I1) and (I2) show that b̃ and υ̃ satisfy the two requirements of the lemma.

Corollary 4.13 If T is a simple bubble type, there exist δ, C ∈ C∞(M(0)
T ; R+) with the fol-

lowing property. Suppose b∗ ∈ M(0)
T , ε < δ(b∗), b ∈ M(H)

T ,ε is such that d(b∗, b) ≤ δ(b∗), and

υ=(b, vÎ)∈F
(H)
b Tδ(b∗). Then there exist b̃∈M(H)

T ,0 and υ̃=(b̃, ṽÎ)∈F
(H)

b̃
T such that

(1) d(b, b̃) ≤ C(b∗)ε and |ṽh−vh| ≤ C(b∗)ε|vh| for all h∈ Î;
(2) if qυ(z) ∈ ΣT ,i, rb,h

(
qυz

)
≥ 3|vh|

1
2 for all h ∈ Î−H such that ιh = i and

∣∣q−1
S (qυz)

∣∣≥3|vi|
1
2 if

i∈ Î−H, then db

(
qυ(z), qυ̃(z)

)
≤ ε.

Proof: If S=S2, the tuples b̃ and υ̃ constructed in the first half of the proof of Lemma 4.12 satisfy
the requirements of the corollary. In fact, db (qυ(z), qυ̃(z)) = 0 if z is as in (2) above. If S = Σ, let

ε̃ = ε2
∏

h∈[I]−H

|vh|2b > 0.
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If C(b∗)δ(b∗) is sufficiently small, by repeated applications of Lemma 4.12, we can replace the tuples

b and υ by b′∈M(H)
T ,ε̃ and υ′=(b′, v′

Î
)∈F (H)T such that

(1) d(b, b′) ≤ C ′(b∗)ε and |v′h−vh| ≤ C ′(b∗)ε|vh|b for all h∈ Î;
(2) if qυ(z) ∈ ΣT ,i, rb,h

(
qυz

)
≥ 5

2 |vh|
1
2 for all h ∈ Î−H such that ιh = i and

∣∣q−1
S (qυz)

∣∣≥ 5
2 |vi|

1
2 if

i∈ Î−H, then db

(
qυ(z), qυ̃(z)

)
≤ 2δ(b)ε.

Applying the construction of the first half of the proof of Lemma 4.12 to the tuples b′ and υ′, we

obtain tuples b̃∈M(0)
T and υ̃=(b̃, ṽÎ)∈F

(H)

b̃
T such that

d(b′, b̃) ≤ C(b∗)ε̃ and |ṽh − v′h| ≤ C(b∗)ε̃|v′h|b′ ∀h ∈ Î .

Then if z is as in the requirement (2) of the corollary,

db′
(
qυ′(z), qυ̃(z)

)
≤ C(b∗)ε̃

( ∏

h∈Î−H

|v′h|
)−1

≤ ε2

if δ is sufficiently small. Thus, the tuples b̃ and υ̃ satisfy both requirements of the corollary.

4.4 Gromov Convergence and the Lp-norm of the Differential

Let bk =
(
S,M, I;x, (j, yk), uk

)
be a sequence of smooth maps converging to

b∗ =
(
S,M, I∗;x∗, (j∗, y∗), u∗

)
∈ M(0)

T ∗

with respect to the Gromov topology such that ∂̄uk,0̂ = tkν with tk−→0 and ∂̄uk,h =0 if h∈ Î. We
assume that T ∗ is a simple bubble type. In the next subsection, it is proved that bk lies in the
image of the gluing map γ̃T ,tkν for some k. In this subsection, we show the differentials of duk,i

satisfy a certain condition which holds for all bubble maps in the image of γ̃T ,tkν .

By definition of convergence, for all k sufficiently large, we can choose
(a) curves Ck =

(
S,M, I∗;x′k, (j

∗, y∗)
)

with lim
k−→∞

x′k,h = x∗h for all h∈ Î∗, and

(b) vectors (vk)∈F (0)
Ck

with 16|vk|gb
≤ rCk

gb,

such that lim
k−→∞

|υk| = 0, C(υk) =
(
S,M, I;xk, (jk, y(υk))

)
, and

lim
k−→∞

sup
z∈ΣC(υk)

dV (ub∗(qυk
(z)), ubk

(z)) = 0, lim
k−→∞

qυk
(jk,l, yk,l) = (j∗l , y

∗
l ) ∀l∈M,

where υk =(Ck, (vk)Î∗) and gb denotes the standard metric on ΣCk
if S=S2. Let

φk,h =

{
φx′

k,h
, if x′k,h∈S2;

φgb,0̂,x′
k,h
, if x′k,h∈Σ;

rk,h =

{
rx′

k,h
, if x′k,h∈S2;

rgb,0̂,x′
k,h
, if x′k,h∈Σ.

Let gυk
be the metric on Σbk

=Συk
defined as in Subsection 3.3, using the metric gb,0̂ on Σ if S=Σ.

For any element in the image γ̃T ,tν that lies near b∗, the modified (Lp, gυk
)-norm of dũυ is bounded

above by a constant dependent only on b∗. Furthermore, as υ −→ 0 and the size of the necks is
reduced, the modified (Lp, gυ)-norm of dũυ on such necks tends to zero. The modified (Lp, gυ)-norm
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is bounded above by the usual (L2p, gυ)-norm times some constant dependent only on b∗. In this
subsection, we show that the (L2p, gυk

)-norm of dubk
is uniformly bounded and tends to zero on

the “necks.” Instead of using our usual cutoff function β, we will use the family of cutoff functions
provided by the following lemma. The proof can be found in [MS, p166]. The statement below is
somewhat sharper than in [MS], but the proof in [MS] suffices.

Lemma 4.14 For every ε > 0, there exists a smooth function β̃ε : R−→ [0, 1] such that

β̃ε(r) =

{
1, if r≥1;

0, if r≤e−1/ε;

∫

C

|β̃′ε(r)|2rdrdθ ≤ 8ε, and ‖dβ̃ε‖C0 ≤ e1/ε.

Given r>0, we denote by β̃ε,r the cutoff function defined by β̃ε,r(t)= β̃ε(r
− 1

2 t).

We now define nearly holomorphic maps fk,i ∈C∞(ΣCk ,i;V ). In order to simplify computations,
we fix a finite family of J-invariant metrics on V such that for some fixed ε > 0 and for every
q∈V there exists a metric gV,q in this family such that

(
BgV,q

(q, ε), J, gV,q

)
is isomorphic to a ball

in C
n. Since V is compact and the family of metrics is finite, all estimates below that depend on a

particular metric gV,q will involve bounds dependent only on V . We denote by expq the exponential
map of (the Levi-Civita connection of) the metric gV,q and by Bq(ε) the gV,q-geodesic ball about q
of radius ε. If δ>0 and h∈I∗−I, let

B+
h,k(δ) =

{
(ι∗h, z)∈ΣCk ,ι∗h

: rk,h(ι∗h, z)≤δ
}
,

B−
h,k(δ) =

{
(h, z)∈ΣCk ,h : |q−1

S (z)| ≤δ
}
.

(4.27)

Choose a sequence εk ∈ R
+ converging to zero. Let rk =

(
2

∑
i∈I∗

‖du∗i ‖b∗,C2

)−1
εk. By taking a

subsequence if necessary, it can be assumed that

|tk| ≤ εk, dV

(
ub∗(qυk

(z)), ubk
(z)

)
≤ εk ∀z∈Σbk

,

rb∗,h(ι∗h, x
′
k,h) ≤ rk, e

2p
εk |vk,h|

1
2
b∗ ≤ rk.

(4.28)

Let qh =u∗h(∞) and

Ã±
h,k = B±

h,k

(
|vk,h|

1
2
b∗

)
−B±

h,k

(
e
− 1

εk |vk,h|
1
2
b∗

)
.

By (4.28), ubk

(
q−1
υk

(
B±

h,k(e
1

εk |vk,h|
1
2
b )

))
⊂Bqh

(C(b∗)εk). Thus, we can define ξ±k,h∈C∞
(
Ã±

h,k;Tqh
V

)
by

expqh,qh
ξ+k,h(z) = ubk

(
q−1
υk,ι∗h

(ι∗h, z)
)
, |ξ+k,h(z)|gV,qh

< ε;

expqh,qh
ξ−k,h(z) = ubk

(
q−1
υk,ι∗h

(
ι∗h, φ

−1
k,h(zvk,h)

))
, |ξ−k,h(z)|gV,qh

< ε,
(4.29)

provided k is sufficiently large (depending on b∗). Let ξ̄±k,h∈Tqh
V be given by

ξ̄±k,h =
1

Area(Ã±
k,h)

∫

Ã±
k,h

ξ±k,h, (4.30)
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where the area and the integral are computed using the metric gb∗,ι∗h
on Σb∗,ι∗h

and gb∗,h on Σb∗,h.
Define fk,i∈C∞(Σb∗,i;V ) by

fk,i(z) =






expqh,qh

{
ξ̄+k,h + β̃εk,|vk,h|b∗

(
rk,h(z)

)(
ξ+k,h(z) − ξ̄+k,h

)}
, if rk,h(z) ≤ |vk,h|

1
2
b∗ ;

expqi,qi

{
ξ̄−k,i + β̃εk,|vk,i|b∗

(
|q−1

S (z)|
)(
ξ−k,i(z) − ξ̄−k,i

)}
, if i∈I∗−I & |q−1

S (z)| ≤ |vk,i|
1
2
b∗ ;

ubk

(
q−1
υk

(i, z)
)
, otherwise.

Let ζ ′k,i∈Γ(u∗i ) be given by

expb∗,u∗
i
ζ ′k,i = fk,i, ‖ζ ′k,i‖b∗,C0 < inj gV,b∗ .

Lemma 4.15 There exists C>0 such that for all k sufficiently large and i∈I∗,

‖ζ ′k,i‖b∗,C0 ≤ Cεk, ‖∂̄fk,i‖gb∗,i,2p ≤ Cε
1
2p

k

(
‖dfk,i‖gb∗,i,2p + 1

)
.

Proof: The first statement is clear from (4.28) and the construction of fk,i above. Suppose z∈Σb∗,i.

If z 6∈B+
h,k

(
|vk,h|

1
2
b∗

)
for all h∈I∗−I and z 6∈B−

i,k

(
|vk,i|

1
2
b∗

)
if i∈I∗−I, then

|∂̄fk,i|gb∗,i,z ≤ Cνtk ≤ Cνεk. (4.31)

Suppose z∈ Ã+
h,k with h∈I∗−I. Since the metric gPn,qh

is flat near qh,

∂̄fk,i

∣∣
z

= d expqh,qh
∂̄
{
ξ̄+k,h + β̃εk,|vk,h|b∗ (rk,h(·))

(
ξ+k,h − ξ̄+k,h

)}

z
. (4.32)

It follows from (4.32) that

|∂̄fk,i|gb∗,i,z ≤ C
(
|vk,h|

− 1
2

b∗ |dβ̃ε|
|vk,h|

− 1
2

b∗
rk,h(z)

∣∣ξ+k,h − ξ̄+k,h

∣∣
z
+

∣∣∂̄ξ+k,h

∣∣
z

)
(4.33)

By Lemma 4.14 and Poincare Lemma (see Lemma 2.6 in [Z1] applied with r = |vh,k|
1
2
b∗ and 2p

instead of p), and the last assumption in (4.28),

∥∥∥|vk,h|
− 1

2
b∗ |dβ̃εk

|
|vk,h|

−1
2

b∗
rk,h(·)

∣∣ξ+k,h − ξ̄+k,h

∣∣
∥∥∥

gb∗,i,L
2p(Ã+

h,k)

≤ |vk,h|
− p−1

2p

b∗ e
2p−2
2p·εk

∥∥∥|vk,h|
− 1

2
b∗ |dβ̃εk

|
|vk,h|

− 1
2

b∗
rk,h(·)

∥∥∥
1/p

gb∗,i,L
2(Ã+

h,k)

∥∥ξ+k,h − ξ̄+k,h

∥∥
b∗,C0

≤ C|vk,h|
− p−1

2p

b∗ e
2p−2
2p·εk |vk,h|

2p−2
2p

b∗

∥∥dξ+k,h

∥∥
gb∗,i,L

2p(Ã+
h,k)

≤ C ′ε
1
2p

k

∥∥dξ+k,h

∥∥
gb∗,i,L

2p(Ã+
h,k)

≤ C ′ε
1
2p

k ‖dfk,h‖gb∗,i,2p .

The last two equations give

‖∂̄fk,i‖gb∗,i,L
2p(Ã+

h,k) ≤ C
(
ε

1
2p

k

∥∥∥df+
k,h

∥∥∥
gb∗,i,2p

+ εk
)
. (4.34)
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The same estimate applies to
∥∥∂̄fk,i

∥∥
gb∗,i,L

2p(Ã−
i,k)

if i∈ I∗−I. Here the exponent of 2p
εk

in (4.28) is

crucial:

‖∂̄ξ−k,i‖
2p

gb∗,i,L
2p(Ã−

i,k)
≤

∫

|vk,i|
− 1

2
b∗

≤r≤e
1

εk |vi|
−1

2
b∗

t2p
k |ν ◦ dq−1

υk ,ι∗i
|2p
gb∗,ι∗

i

|vk,i|2p
b∗ (1 + r2)2p−2rdrdθ

≤ Ct2p
k |vk,i|2p

b∗

(
|vk,i|−

1
2 e

1
εk

)4p−2 ≤ Ct2p
k .

(4.35)

Since fk,i is constant on B+
h,k

(
e
− 1

εk |vk,h|
1
2
b∗

)
for h ∈ I∗−I with ι∗h = i and on B−

i,k

(
e
− 1

εk |vk,i|
1
2
b∗

)
if

i∈I∗−I, the second claim is proved.

Corollary 4.16 There exists C>0 such that for all k sufficiently large,

‖dfk,i‖gb∗,i,2p ≤ C and ‖ζ ′k,i‖gb∗,i,2p,1 ≤ Cε
1
2p

k .

Proof: By the quadratic expansion of ∂̄u∗
i
ζ ′k,i as in Subsection 3.6,

Db∗,u∗
i
ζ ′k,i +N∂̄,u∗

i
ζ ′k,i = ∂̄u∗

i
ζ ′k,i, (4.36)

where

‖∂̄u∗
i
ζ ′k,i‖gb∗,i,2p ≤ Cε

1
2p

k

(
‖dfk,i‖gb∗,i,2p + 1

)
(4.37)

by Lemma 4.15 and

‖N∂̄,u∗
i
ζ ′k,i‖gb∗,i,2p ≤ C‖ζ ′k,i‖C0‖ζ ′k,i‖gb∗,i,2p,1 ≤ Cεk‖ζ ′k,i‖gb∗,i,2p,1, (4.38)

by Proposition 2.11 in [Z1] and Lemma 4.15. Thus, by standard elliptic estimates for ub∗ and
(4.36)-(4.38),

‖ζ ′k,i‖gb∗,i,2p,1 ≤ C
(
‖Db∗,ui

ζ ′k,i‖gb∗,i,2p + ‖ζ ′k,i‖gb∗,i,2p

)

≤ C ′ε
1
2p

k

(
‖ζ ′k,i‖gb∗,i,2p,1 + ‖dfk,i‖gb∗,i,2p + 1

)
.

(4.39)

On the other hand, since fk,i = expb∗,u∗
i
ζ ′k,i,

‖dfk,i‖gb∗,i,2p ≤ C
(
‖du∗i ‖gb∗,i,2p + ‖ζ ′k,i‖gb∗,i,2p,1

)
. (4.40)

If εk is sufficiently small, the claim follows from equations (4.39) and (4.40).

Corollary 4.17 There exists C>0 such that for all k sufficiently large, h∈ Î∗, and δ>0,

‖dubk
‖gυk

,L2p(q−1
υk

(B±
h,k(δ))) ≤ C

(
ε

1
2p

k + δ
1
p
)
.

Proof: If h ∈ Î, the statement is immediate from Corollary 4.16; so we assume h ∈ I∗−I. The
metric gυ on q−1

υk
(B+

h,k(δ)) differs by a bounded factor from the metric q∗υk,ι∗h
gb∗,i. Thus,

‖dubk
‖gυk

,L2p(q−1
υk

(B+
h,k(δ))) ≤ C

∥∥d(fk ◦ q−1
υk,ι∗h

)
∥∥

gb∗,ι∗
h
,L2p

(
B+

h,k(δ)−B+
h,k(|vk,h|

1
2
b∗

)

)

= C
∥∥dfk,ι∗h

∥∥
gb∗,ι∗

h
,L2p

(
B+

h,k(δ)−B+
h,k(|vk,h|

1
2
b∗

)

)

≤ C
∥∥dfk,ι∗h

∥∥
gb∗,ι∗

h
,L2p(B+

h,k(δ)).

(4.41)
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Since fk,ι∗h
=expb∗,uι∗

h

ζ ′k,ι∗h
, by Corollary 4.16,

∥∥dfk,ι∗h

∥∥
gb∗,ι∗

h
,L2p(B+

h,k(δ)) ≤ C
(∥∥du∗ι∗h

∥∥
gb∗,ι∗

h
,L2p(B+

h,k(δ)) +
∥∥ζ ′k,ι∗h

∥∥
gb∗,ι∗

h
,2p,1

)

≤ C ′
(
δ

1
p + ε

1
2p

)
.

(4.42)

The claim for B+
h,k(δ) follows from (4.41) and (4.42). The metric gυ on q−1

υk
(B−

h,k(δ)) differs by a
bounded factor from the metric which is the pullback of the metric gb∗,h by the map

z −→ qN

(φk,hqυk,ι∗h
(z)

vk,h

)
.

Thus, similarly to the above,

‖dubk
‖gυk

,L2p(q−1
υk

(B−
h,k(δ))) ≤ C ‖dfk,h‖gb∗,h,L2p(B−

h,k(δ)) ; (4.43)

‖dfk,h‖gb∗,h,L2p(B−
h,k(δ)) ≤ C

(
δ

1
p + ε

1
2p

)
. (4.44)

The claim for B−
h,k(δ) follows from (4.43) and (4.44).

4.5 Surjectivity of the Gluing Map

We continue with the notation of Subsection 4.4. In this subsection, for k sufficiently large, we use
Corollary 4.13 to construct

υ̃k =
(
b̃k, (ṽk)Î∗

)
∈ F (0)Tδ

and ζ̃k ∈Γ(uυ̃k
) such that b̃k is very close to b in M(0)

T , ‖ζ̃k‖υ̃k ,p,1 is small, and ubk
=expυ̃k

ζ̃k. We

then look at the elements of F (0)Tδ near υ̃k to find υ̃′k and ζ̃k∈ Γ̃+(υ̃′k) such that ubk
=expυ̃′

k
ζ̃ ′k. If

T is semiregular, we consider only the case Î=∅; if T is regular, we assume t=0.

Let H= Î⊂ Î∗. If δ>0 and i∈I∗, put

Σi,δ =
{
(i, z)∈Σb∗ ,i : rb∗,h(i, z)≤δ ∀h∈ Î∗−H s.t. ιh = i, |q−1

S (z)|≥δ if i∈ Î∗−H
}
.

In addition to (4.28), we can assume that our sequence satisfies

‖ζk,i‖gb∗,i,C
2(Σi,rk

) ≤ εk. (4.45)

Let b′k =
(
S,M, I∗;x′k, (j

∗, y∗), u∗
)
. By the second assumption in (4.28),

d(b∗, b′k)≤Cεk =⇒ b′k∈M(H)
T ∗,Cεk

,

since b∗ ∈M(0)
T ∗ , where C > 0 depends only on b∗. By the last assumption of (4.28), |υk|b′k ≤Cεk.

Thus, if εk>0 is sufficiently small, by Corollary 4.13, there exist

b̃k ∈ M(H)
T ∗ and υ̃k =

(
b̃k, (ṽk)Î∗

)
∈ F (H)T ∗

such that
(1) d(b, b̃) ≤ C ′εk and |ṽk,h−vk,h| ≤ C ′εk|vk,h|b for all h∈ Î∗;
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(2) if qυk
(z)∈ΣT ∗,i, rb∗,h

(
qυk

z
)
≥3|vk,h|

1
2 for all h∈ Î∗−H such that ι∗h = i and

∣∣q−1
S qυk

(z)
∣∣≥3|vk,i|

1
2

if i∈I∗−H, then db

(
qυk

(z), qυ̃k
(z)

)
≤ εk.

It then follows from the second and third assumptions of (4.28) that there exist ζ̃k ∈ Γ(uυ̃k
),

w̃k,h∈Txh(υ̃k)Συ̃k,ιh for h∈H, and w̃k,l∈Tyl(υ̃k)Συ̃k,jl
for l∈M such that

expυ̃k
ζ̃k = ubk

, expgυ̃k
,xk,h(υ̃k) w̃k,h = xk,h, expgυ̃k

,yk,l(υ̃k) w̃k,l = yk,l;

‖ζ̃k‖b∗,C0 , |w̃k,h|gυ̃k
,xk,h(υ̃k)|w̃k,l|gυ̃k

,yk,l(υ̃k) ≤ C ′εk.

Lemma 4.18 There exists C>0 such that for all k,

‖ζ̃k‖υ̃k ,p,1 ≤ Cε
1
2p

k .

Proof: By (4.45), (1), and (2), ‖ζ̃k‖gυ,C1 ≤Cεk outside of the necks

Ãk,h = q−1
υk

(
B+

k,h(rk) ∪B−
k,h(rk)

)
.

On the other hand, ‖duυ̃k
‖υ̃k ,C0 ≤C by Lemma 3.5 and

‖duυ̃k
‖υ̃k,Lp(Ãk,h) ≤ C(ε

1
2p

k + r
1
p

k ) ≤ C ′ε
1
2p

k

by Corollary 4.17. The three estimates imply the claim.

Suppose Î=∅ and thus H=∅. If k is sufficiently large and $∈Tυ̃k
F ∅T ∗ is such that 2‖$‖υ̃k

<δ(b∗),
where δ is as in Lemmas 3.6 and 4.6, let

b̃k($) = b̃tν
(
υ̃k($)

)
=

(
S,M, {0̂}; , (0̂, ȳ($)), ũ$,tν

)

be the tuple defined as in Subsections 3.4 and 3.6. Let ζ̃k($)∈Γ(ũ$,tν) and w̃k,l($)∈Tyl($)Σ$,jl

for l∈M be given by

expυ̃k($) ζ̃k($) = ubk
, and expgυ̃k($),yk,l($) w̃k,l($) = yk,l,

and ‖ζ̃k($)‖b∗,C0, |w̃k,l($)|gυ̃k
,yk,l($) ≤ 2C ′εk.

We need to find $ such that π̃$,−ζ̃k($)=0 and yl($)=yk,l, or equivalently

S$π̃$,−ζ̃k($) = 0 and S$w̃k,l($) = 0, (4.46)

where S$w̃k,l($) denotes the parallel transport of w̃k,l($) back to yl(υ̃k) along the gυ-geodesic

s−→expyl(υ̃k) swl($).

Lemma 4.19 There exists C>0 such that for all k sufficiently large and $,$′∈Tυ̃k
F (∅)T ∗ with

2‖$‖υ̃k
<δ(b∗),

S$π̃$,−ζ̃k($) = π̃υ,−ζ̃k + Ñ (0)(ζ̃k,$) − π̃υ,−ζ$ +N (0)($),

S$w̃k,l($) = w̃k,l + Ñ (l)(w̃k,l,$) − wl($) +N (l)($) ∀l∈M,
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where ζ$ is as in Subsection 3.4 and Ñ (l) and N (l) satisfy

∥∥Ñ (0)(ζ̃k,$) − Ñ (0)(ζ̃k,$
′)
∥∥

υ̃k,2
≤ C‖ζ̃k‖υ̃k ,2‖$ −$′‖υ̃k

;
∣∣Ñ (l)($, w̃k,l) − Ñ (l)($′, w̃k,l)

∣∣
gυ̃k

,yl(υ̃k)
≤ C‖w̃k,l‖gυk

,yl(υ̃k)‖$ −$′‖υ̃k
∀l∈M ;

‖N (0)($) −N (0)($′)‖υ̃k ,2 ≤ C
(
‖$‖υ̃k

+ ‖$′‖υ̃k

)
‖$ −$′‖υ̃k

;
∣∣N (l)($) −N (l)($′)

∣∣
gυ̃k

,yl(υ̃k)
≤ C

(
‖$‖υ̃k

+ ‖$′‖υ̃k

)
‖$ −$′‖υ̃k

∀l∈M.

(4.47)

Proof: This lemma follows from a pointwise Riemannian geometry estimate on S$ ζ̃k($)−(ζ̃k− ζ̃$)
and the fact that all statements in Lemmas 3.6 and 4.6 can be written in a form similar to (4.47),
e.g. for all ξ ∈ Γ(υ̃k)

∥∥S$π̃$,−R$ξ − S$′π̃$′,−R$′ξ
∥∥

υ̃k ,2
≤ C‖$ −$′‖υ̃k ,2‖ξ‖υ̃k ,2.

The latter fact can be seen from the two lemmas and the definitions of R$ and S$ in Subsection 3.4.

Lemma 4.20 There exist C, δ ∈C∞(M(0)
T ∗ ,R+) such that for all υ ∈ F (H)T ∗

δ and $ ∈ TυF
(H)T ∗

δ

with ‖$‖υ̃k
≤δ(b),

‖ζ$‖υ,2 ≤ C(b)‖π̃υ,−ζ$‖υ,2.

Proof: It can be seen directly from the definitions that

‖ζ$‖υ,2 ≤
(
1 + C(bυ

)
|υ|

)
‖πυ,−ζ$‖υ,2.

The claim then follows from the proof of (2b) of Lemma 3.12.

Corollary 4.21 There exist a neighborhood U of b∗ in M(0)
T ∗ and δ, ε>0 such that for all υ∈F (∅)T ∗

δ |U,
ξ∈ Γ̃−(υ) with ‖ξ‖υ,2<δ, and wl∈Tyl(υ)Συ,jl

for l∈M with |wl|gυ,yl(υ)<δ, the system of equations

π̃υ,−ζ$ −N (0)($) = ξ, wl($) −N (l)($) = wl ∀l∈M,

has a (unique) solution $∈TυF
(∅)T with ‖$‖υ<ε.

Proof: By Lemmas 3.6 and 4.20,

C−1‖$‖υ ≤ ‖π̃υ,−ξ‖υ,2 +
∑

l∈M

|wl($)|gυ ,yl(υ) ≤ C‖$‖υ.

whenever bυ lies near b∗. Thus, the claim follows from (4.47) by the usual contraction-principle
argument.

Corollary 4.22 Let T ∗=(S,M, I∗; j∗, λ∗) be a simple bubble type. If T ∗ is regular, the map

γ̃T ∗ : FT ∗
δ −→ M̄〈T ∗〉

contains a neighborhood of MT ∗ in M̄〈T ∗〉. If T ∗ is semiregular, H=∅, and k is sufficiently large,

there exists υ̃k∈F (∅)T ∗
δ such that bk = γ̃T ∗,tkν(υ̃k).
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Proof: The second statement is immediate from Lemmas 4.18 and 4.19 and Corollary 4.21. If
T ∗ is regular, what we have shown is that the image of γ̃T ∗ contains a neighborhood of MT ∗ in
M〈T ∗〉 ∪MT ∗ . Furthermore, there exists a sequence of neighborhoods U1⊃U2⊃ . . . of b∗ in M̄〈T ∗〉

such that
⋂
Uk ={[b∗]}. If [bk]∈MT is a sequence of bubble maps converging to [b∗]∈MT ∗ , it can

be assumed that [bk]∈Uk. By the above statement applied to T , we can choose sequences

{[bkr]} ⊂ M〈T ∗〉 = M〈T 〉

such that for each fixed k the sequence {[bkr]} converges to [bk]. Since Uk is an open neighborhood
of [bk], it can be assumed that [bkr]∈Uk for all r. By the above, the image of γ̃T ∗ |FT ∗

δ/2
contains

Uk∩M〈T ∗〉 if k is sufficiently large. Thus, for all r there exists υkr∈FT ∗
δ/2 such that γ̃T ∗(υkr)=[bkr].

Let υ̃k ∈FT ∗
δ be the limit of the sequence υkr with k fixed. Then, by continuity of the map γ̃T ∗ ,

see Corollary 4.5,
γ̃T ∗(υ̃k) = lim

r−→∞
γ̃T ∗(υ̃kr) = lim

r−→∞
[bkr] = [bk].

Thus, the image of γ̃T ∗ contains a neighborhood of MT ∗ in M̄〈T ∗〉.

Corollary 4.23 If T ∗=(S,M, I∗; j∗, λ∗) is a simple regular bubble type, the map

γ̃T ∗ : FT ∗
δ −→ M̄〈T ∗〉

is a homeomorphism onto an open neighborhood of MT ∗ in M̄〈T ∗〉 provided δ∈C∞(MT ∗ ; R+) is
sufficiently small.

Proof: By Corollaries 4.5, 4.10, 4.22, the map γ̃T ∗ : FT ∗
δ −→M̄〈T ∗〉 is a continuous bijection onto

a neighborhood of MT ∗ in M̄〈T ∗〉. In addition, the proof of Corollary 4.22 shows that γ̃T ∗ is an
open map.

5 Appendix

5.1 Properties of Smooth Families of Metrics on Σ

Let m be a positive integer and

ℵ =
{
x=x[m] : xh∈Σ, xh 6=xl if h 6= l

}
.

Suppose {gx : x∈ℵ} is a smooth family of metrics on Σ such that for any x=x[m] ∈ℵ the metric
gx is flat on a neighborhood of xh in Σ for all h∈ [m]. If x = x[m] ∈ ℵ and v∈TyΣ, let

Txℵ =
⊕

h∈[m]

Txh
Σ, |v|x = |v|gx,y.

If w=w[m]∈Txℵ, let |w| denote
∑

h∈[m]

|wh|x. Define x(w)∈Σm by

x(w) =
(
x1(w), . . . , xm(w)

)
=

(
expgx,x1

w1, . . . , expgx,xm
wm

)
.

We denote by φx,y the map φgx,y and by Bx(y, δ) the set Bgx(y, δ) described in Subsection 1.3. If
δ : ℵ−→R, let

Tℵδ =
{
(x,w) : x∈ℵ; w∈Txℵ, |w|x<δ(x)

}
.
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Lemma 5.1 There exist δ∈C∞(ℵ; R+) and a smooth families of holomorphic maps

{
p̃h,(x,w) : {z∈Bx(xh, δ(x))} −→ Σ | (x,w)∈Tℵδ

}
,

such that each map p̃h,(x,w) is a (gx, gx(w))-isometry,

dφx,xh

∣∣
xh(w)

φx(w),xh(w)p̃h,(x,w)(z) = φx,xh
(z), (5.1)

and dgx

(
z, p̃h,(x,w)(z)

)
≤ 2|w|x ∀z∈Bx

(
xh, δ(x)

)
.

In particular, both sides of (5.1) are defined.

Proof: We choose δ such that if w∈Txℵ and |w|≤4δ(x), then x(w)∈ℵ and the metric gx(w) is flat
on Bx

(
xh, 2δ(x)

)
. This choice of δ insures that both sides of (5.1) are defined. Equation (5.1) is

equivalent to

φx(w),xh(w)p̃h,(x,w)(z) = d expgx,xh

∣∣
wh
φx,xh

(z) = φx,xh(w)z + d expgx,xh

∣∣
wh
wh, (5.2)

since the metric gx is flat on Bx

(
xh, 2δ(x)

)
. This equation defines the required map p̃h,(x,w).

Since the metrics gx and gx(w) are flat on Bx

(
xh, 2δ(x)

)
, the maps φx,xh(w)z and φx(w),xh(w) are

holomorphic, and thus p̃h,(x,w) is holomorphic. Taking the differential of (5.2), we obtain

dφx(w),xh(w)

∣∣
p̃h,(x,w)(z)

◦ dp̃h,(x,w)

∣∣
z

= dφx,xh(w)

∣∣
z
. (5.3)

Since φx(w),xh(w) and φx,xh(w) are (gx(w), gx(w))- and (gx, gx)-isometries, respectively, onBx

(
xh, 2δ(x)

)
,

it follows that p̃h,(x,w) is a (gx, gx(w))-isometry on Bx

(
xh, 2δ(x)

)
. By (5.2),

dgx

(
z, p̃h,(x,w)(z)

)
≤ |wh|x +

∣∣(φx(w),xh(w) − φx,xh(w)

)
p̃h,(x,w)(z)

∣∣
x

≤ |wh|x + C(x)|w|δ(x),
(5.4)

since the family of metrics is smooth. If C(x)δ(x)< 1, the remaining claim of the lemma follows
from (5.4).

Lemma 5.2 There exist δ, Ck ∈C∞(ℵ; R+), where k is a positive integer, αh ∈C∞(Tℵδ; C), and
smooth families of maps

{
Θw,h : {v∈Txh

Σ: |v|x<δ(x)} −→ Txh
Σ | (x,w)∈Tℵδ

}

such that every map Θw,h is holomorphic,

Θw,h(0)=0, Θ′
w,h(0)=0, ‖Θ〈k〉

w,h‖C0 ≤Ck(x)|w|, |αh(w)|≤C0(x)|w|, and

dφx,xh

∣∣
xh(w)

dφx(w),xh(w)

∣∣
xh

(
φx(w),xh

z
)

=
(
1 + αh(w)

)
φx,xh

z + Θw,h

(
φx,xh

z
)

∀ z∈Bx

(
xh, δ(x)

)
.

(5.5)

In particular, both sides of (5.5) are defined.
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Proof: We choose δ such that if w ∈ Txℵ and |w| ≤ 4δ(x), then x(w) ∈ ℵ and the metric gx(w) is
flat on Bx

(
xh, 4δ(x)

)
. This choice of δ insures that both side of (5.5) are defined. If w and z are

as in the statement of the lemma, by the flatness of the metric gx(w) near xh, C-linearity of the
differential of the exponential map near zero, and the smoothness of the family of the metrics

dφx,xh

∣∣
xh(w)

dφx(w),xh(w)

∣∣
xh

(
φx(w),xh

z
)

=
(
1 + ah(w)

)(
φx(w),xh

z
)
, (5.6)

for some ah∈C∞(Tℵδ; C) such that ah(0)=0. Note that if gx(w) =gx, ah(w)=0, since the metric gx

is flat on Bx

(
xh, |w|

)
. The map

{v∈Txh
Σ: |v|x<2δ(x)} −→ Txh

Σ, v −→ φx(w),xh
φ−1

x,xh
v − v,

is holomorphic since φx(w),xh
and φx,xh

are, and vanishes at 0. Thus,

φx(w),xh
φ−1

x,xh
v =

(
1 + bh(w)

)
v + Θw,h(v), (5.7)

for some bh(w)∈C and holomorphic function Θw,h such that Θw,h(0),Θ′
w,h(0)=0. Equation (5.5)

follows from (5.6) and (5.7). Smoothness of bh and Θ·,h in w follows from the smoothness of the
family of the metrics. The bounds on αh and the derivatives of Θw,h follow from their smoothness
and compactness of the fibers of

{
w∈Txℵ : |w|≤δ(x)

}
−→ ℵ.

Lemma 5.3 There exist δ, C∈C∞(ℵ; R+) and smooth families of maps

Nh :
{
(x,w) : x∈ℵ; (x,w)∈Tℵδ

}
−→ Tℵ

such that |Nh(w,wh)|x ≤ C(x)|w||wh| and

dφx,xh

∣∣
xh(w)

(
φx(w),xh(w)xh

)
= −wh +Nh(w,wh). (5.8)

In particular, the left-hand side of (5.8) is defined.

Proof: We take δ as in Lemma 5.2. Then, the left-hand side of (5.8) is defined and

dφx,xh

∣∣
xh(w)

(
φx(w),xh(w)xh

)

= dφx,xh

∣∣
xh(w)

(
φx,xh(w)xh

)
+ dφx,xh

∣∣
xh(w)

{
(φx(w),xh(w)xh) − (φx,xh(w)xh)

}

= −wh +Nh(w,wh),

(5.9)

where N(·, ·) is some smooth function of both variables, that vanishes if either input is zero. Equa-
tion (5.8) is thus proved, while the bound on Nh is obtained from its smoothness and compactness
of the fibers as in the proof of Lemma 5.2.

Lemma 5.4 There exists δ ∈ C∞(ℵ; R+) such that for all x∈ℵ, v∈Txℵ with |v|<δ(x), and
c=c[m]∈C

m with |c||v| < δ(x), there exists w ∈ Tℵ with |wh|x < 2|ch||vh|x such that for all

z∈Bx

(
xh, 4δ(x)

1
2

)
,

dφx,xh

∣∣
xh(w)

(
φx(w),xh(w)z

)
=

(
1+αh(w)

)(
chvh+φx,xh

z
)
+Θw,h(φx,xh

z), (5.10)

where αh(w) and Θw,h are as in Lemma 5.2. In particular, both sides of (5.10) are defined.

73



Proof: We start by choosing δ so that 8δ
1
2 is smaller that the function δ of Lemmas 5.2 and 5.3.

By flatness of the metric gx(w) on B
(
xh, 8δ(x)

1
2

)
for w∈Txℵ with |w|<δ(x)

φx(w),xh(w)z = dφx(w),xh(w)

∣∣
xh
φx(w),xh

z + φx(w),xh(w)xh (5.11)

for any z ∈B
(
xh, 4δ(x)

1
2

)
. Taking dφx,xh

∣∣
xh(w)

of both sides of (5.11) and applying Lemmas 5.2

and 5.3, we obtain

dφx,xh

∣∣
xh(w)

(
φx(w),xh(w)z

)
=

(
1 + αh(w)

)
φx,xh

z + Θw,h (φx,xh
z) −wh +Nh(w,wh). (5.12)

Thus, we need to solve the equations

−wh +Nh(w,wh) =
(
1 + αh(w)

)
chvh. (5.13)

Let Ψh(w)=Nh(w,wh)−
(
1+αh(w)

)
chvh. If |w| ≤ 2|ch||vh|, then by Lemmas 5.2 and 5.3,

|Ψ(w)| ≤ C(x)|c||v|
(
2|c||v| + 1

)
≤ 2|c||v|,

|Ψ(w) − Ψ(w′)| ≤ C(x)|c||v||w − w′| ≤ 1

2
|w − w′|,

(5.14)

provided 4C(x)δ(x)<1. In such a case, Ψ is a contracting operator, and thus (5.13) has a unique
solution w∈Txℵ with |w|<2|c||v|. The estimate |wh|<2|ch||vh| follows directly from (5.13) if δ(x)
is sufficiently small.

Corollary 5.5 There exist δ, Ck ∈ C∞(ℵ; R+), where k is a positive integer, such that for any
x∈ℵ, v ∈ Txℵ with |v|< δ(x), c= c[m] ∈ C

m with |c|< δ(x), and r= r[m] ∈ R
m with |r|< 1

2 , there
exists x̃∈ℵ and ṽ∈Tx̃ℵ such that
(1) x̃h∈Bx

(
xh, 2|ch||vh|

)
,
∣∣ gx̃
gx

− 1
∣∣ ≤ C1(x)|c||v|,

∣∣|ṽh|x̃ − |vh|x
∣∣ ≤ C1(x)

(
|c||v| + |rh|

)
|vh|;

(2) for any z∈Bx

(
xh, 4δ(x)

1/2
)
,

φx̃,x̃h
z

ṽh
= (1 + rh)

{
ch +

φx,xh
z

vh
+ Θv,c,r,h

(φx,xh
z

vh

)}
, (5.15)

where Θv,c,r,h is a holomorphic function, varying smoothly with the parameters, such that

Θv,c,r,h(0) = 0, Θ′
v,c,r,h(0) = 0,

∥∥Θ
〈k〉
v,c,r,h

∥∥
C0 ≤ Ck(x)|c||v||vh|k−1.

Proof: Let δ be as in Lemma 5.4. Given v and c as in the statement of the lemma, let w∈Txℵ be
the element provided by Lemma 5.4. Take

x̃h = xh(w), ṽh = (1 + rh)−1
(
1 + ah(w)

)
dφ−1

x,xh
|wh

vh.

The estimates in (1) are immediate from Lemma 5.4, provided δ is sufficiently small. The inequal-
ities in (2) arise from the smooth dependence of w on x, v, and c in Lemma 5.4, and the fact that
w is zero if either v=0 or c=0.
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5.2 Sobolev Inequalities for the Metrics gυ

In this subsection, we prove (3) of Lemma 3.5. The reason this estimate holds is that (Συ, gυ) can
be written as a union of the surfaces (Σbυ,i, gυ) with small disks missing and annuli (Ã±

υ,h, gυ) that

are uniformly equivalent to annuli in R
2 with the smaller radius less than half of the larger.

Suppose T =(S,M, I; j, λ) is a bubble type and

υ =
(
b, vÎ

)
=

(
(S,M, I;x, (j, y), u), vÎ

)
∈ F (0)Tδ.

For any h∈ Î and i∈I, put

Ã−
υ,h = q−1

υ,ih

({
(ιh, z)∈Σbυ ,ιh : (2δT (bυ))−1|vh|b≤rb,h(z)≤|vh|

1
2
b

})
;

Ã+
υ,h = q−1

υ,ih

({
(ιh, z)∈Σbυ ,ιh : |vh|

1
2
b ≤rb,h(z)≤2δT (bυ)

})
;

Sυ,i = q−1
υ,i

({
(i, z)∈Sbυ ,i : rb,h(z)≥δT (bυ) if ιh = i; |q−1

S (z)|≥δT (bυ) if i>0
})
.

Let Ãυ,h denote Ã−
υ,h ∪ Ã+

υ,h.

Lemma 5.6 For any p>2, there exists Cp∈C∞(M(0)
T ; R) such that for any υ∈F (0)Tδ and h∈ Î,

ξ ∈ Γ̃c(Ãυ,h;u∗υTV ) =⇒ ‖ξ‖C0 ≤ Cp(bυ)‖ξ‖gυ ,p,1.

Proof: By construction of the metric gυ, gυ|Ãυ,h
is the pullback of the metric gυ,ιh on qυ,ιh(Ãυ,h)

by the map qυ,ιh . Furthermore, the metric gυ,ιh on qυ(Ã±
υ,h) differs from the standard metric on

the annulus B
2δT (bυ),|vh|

1
2
⊂ R

2 by factors bounded by C(bυ). Since ‖duυ‖gυ ,p ≤Cp(bυ) by (1) of

Lemma 3.5, the claim follows from Proposition 3.7 in [Z1].

Proposition 5.7 For any p>2, there exists Cp∈C∞(M(0)
T ; R) such that for all υ∈F (0)Tδ,

‖ξ‖C0 ≤ Cp(bυ)‖ξ‖gυ ,p,1 for all ξ∈Γ(uυ).

Proof: (1) Note that gυ |Sυ,i is the pull-back of the metric gbυ ,i on qυ,i(Sυ,i) by the map qυ,i. Thus,
by Proposition 3.7 in [Z1], if ξ∈Γc(Sυ,i;u

∗
υTV ),

‖ξ‖C0 = ‖ξ ◦ qυ,i‖C0 ≤ Cp(‖duυ ◦ qυ,i‖gbυ,i,p)‖ξ ◦ qυ,i‖gbυ,i,p,1 = Cp(bυ)‖ξ‖gυ ,p,1,

since ξ vanishes outside of Sυ,i.
(2) We now define a partition of unity subordinate to {Sυ,i, Ãυ,h : i∈I, h∈ Î}. Put

η+
υ,h(z) =

{
1 − βδ2

T (bυ)

(
rbυ ,h(qυ,ιh(z))

)
, if qυ,ιh(z)∈Σbυ ,ιh ;

1, otherwise;

η−υ,h(z) =

{
1 − βδ2

T (bυ)

(∣∣q−1
S qυ(z)

∣∣), if qυ,h(z)∈Σbυ ,h;

1, otherwise;
η̃υ(z) = 1 −

∏

h∈Î

η−υ,h(z)η+
υ,h(z).
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Note that dη±υ,h is supported in Ã±
υ,h. It follows from the definition of gυ that

‖dη±υ,h‖gυ,C1 = ‖d(η±υ,h ◦ q−1
υ,ih

)‖gυ,ih
,C1 ≤ C(bυ).

Thus, if ξ∈Γ(uυ) by (1) and Lemma 5.6,

‖ξ‖C0 ≤
∑

i∈I

‖η̃ξ‖C0(Sυ,i) +
∑

h∈Î

‖η−υ,hη
+
υ,hξ‖C0 ≤ Cp(bυ)

(
‖η̃ξ‖gυ,p,1 +

∑

h∈Î

‖η−υ,hη
+
υ,hξ‖gυ,p,1

)

≤ Cp(bυ)
(
|I|‖ξ‖gυ ,p,1 + 2

∑

h∈Î

‖η−υ,hη
+
υ,h‖gυ ,C1‖ξ‖gυ ,p

)
≤ C ′

p(bυ)‖ξ‖gυ ,p,1.

5.3 Elliptic Estimates for the Metrics gυ

This subsection contains the proof of (4) of Lemma 3.5, the main elliptic estimate for the opera-
tors Dυ and the modified Sobolev norms. This estimate does not hold for the standard Sobolev
norms. The argument is essentially the same as in [LT], but we do include all of the details, based
on [Z1], and state a sharper estimate.

Let T , υ, Ãυ,h = Ã−
υ,h ∪ Ã+

υ,h, and Sυ,i be as in Subsection 5.2. If ιh = 0̂, the metric gbυ ,0̂ is flat

on Bbυ ,h(δT (bυ)
1
2 ). Thus, for any h∈ Î, we can choose conformal polar coordinates (r, θ) on Ãυ,h

such that r(z)=rb,υ
(
qυ,ιh(z)

)
. Since gυ|Ãυ,h

is the pullback of the metric gυ,ιh on qυ,ιh(Ãυ,h) by the
map qυ,ιh ,

gυ =
{(

1 − β|vh|(2r)
) 2C(bυ)

|vh| + |vh|−1r2
+ β|vh|(r)

}(
dr2 + r2dθ2

)
on Ãυ,h. (5.16)

Similarly, since ρυ =ρυ,ιh ◦qυ,ιh ,

ρυ = r2 +
|vh|2
r2

on Ãυ,h. (5.17)

Lemma 5.8 For all p>1, there exists Cp∈C∞(M(0)
T ; R) such that for all υ∈F (0)Tδ and h∈ Î,

ξ∈Γc(Ãυ,h;u∗υTV ) =⇒
( ∫

Ãυ,h

ρ
− p−2

p
υ |∇bυξ|2

) 1
2 ≤ Cp(bυ)

(
‖Dυξ‖υ,p + ‖ξ‖υ,p

)
.

Proof: (1) Let ε1 and ε2 denote
(
2δT (bυ)

)−1|vh| and 2δT (bυ), respectively. Note that the integral
on the left-hand side in the statement of the lemma is conformally invariant. With respect to the
metric dr2+r2dθ2,

∣∣Dυξ
∣∣
(r,θ)

=
∣∣∣
D

dr
ξ + Jr−1 D

dθ
ξ
∣∣∣
(r,θ)

,

where D
dr and D

dθ denote covariant differentiation with respect to the connection ∇bυ and the norms
are taken with respect to the metric gV,b on V . Thus,

a2
h ≡

∫

Ãυ,h

ρ
− p−2

p
υ |∇bυξ|2 ≤ ‖Dυξ‖2

υ,p − 2

∫ 2π

0

∫ ε2

ε1

ρ
− p−2

p
υ

〈D
dr
ξ, J

D

dθ
ξ
〉
drdθ. (5.18)
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Since ∇bυJ=0, using integration by parts twice, we obtain

∫ 2π

0

∫ ε2

ε1

ρ
− p−2

p
υ

〈D
dr
ξ, J

D

dθ
ξ
〉
drdθ = −

∫ 2π

0

∫ ε2

ε1

ρ
− p−2

p
υ

〈D
dθ

D

dr
ξ, Jξ

〉
drdθ

= −
∫ 2π

0

∫ ε2

ε1

ρ
− p−2

p
υ

(〈D
dr

D

dθ
ξ, Jξ

〉
−

〈
R(ur, uθ)ξ, Jξ

〉)
drdθ (5.19)

=

∫ 2π

0

∫ ε2

ε1

ρ
− p−2

p
υ

(〈D
dθ
ξ, J

D

dr
ξ
〉
− (p−2)

p

ρ′υ(r)

ρυ(r)

〈D
dθ
ξ, Jξ

〉
+

〈
Rbυ(ur, uθ)ξ, Jξ

〉)
drdθ,

where ur and uθ denote d
druυ and d

dθuυ, respectively, and Rbυ is the curvature tensor of the
connection ∇bυ . Since 〈D

dθ
ξ, J

D

dr
ξ
〉

= −
〈D
dr
ξ, J

D

dθ
ξ
〉
,

by (5.19) and (1) of Lemma 3.5,

∣∣∣
∫ 2π

0

∫ ε2

ε1

ρ
− p−2

p
υ

〈D
dr
ξ, J

D

dθ
ξ
〉
drdrθ

∣∣∣

≤ |p−2|
2p

∣∣∣
∫ ε2

ε1

ρ
− p−2

p
υ

ρ′υ(r)

ρυ(r)

∫ 2π

0

〈D
dθ
ξ, Jξ

〉
dθdr

∣∣∣ + C(bυ)‖ξ‖2
υ,p.

(5.20)

(2) By Poincare Lemma, see Proposition 2.5 in [Z1], for every circle with r fixed,

∣∣∣
∫ 2π

0

〈D
dθ
ξ, Jξ

〉
dθ

∣∣∣ ≤
∫ 2π

0

∣∣∣
D

dθ
ξ
∣∣∣
2
dθ + C(gbυ )

{(∫ 2π

0
|uθ|2dθ

)( ∫ 2π

0
|ξ|2dθ

)

+
(∫ 2π

0
|uθ|dθ

)(∫ 2π

0
|ξ|2dθ

) 1
2
(∫ 2π

0

∣∣∣
D

dθ
ξ
∣∣∣
2
dθ

)1
2

}
.

(5.21)

Since
∣∣ρ′υ(r)
ρυ(r)

∣∣≤2r−1 on Ãυ,h, by Holder’s inequality and the first part of Lemma 3.5,

1

2

∫ ε2

ε1

ρ
− p−2

p
υ

∣∣∣
rρ′υ(r)

ρυ(r)

∣∣∣
( ∫ 2π

0
r−1|uθ|dθ

)( ∫ 2π

0
|ξ|2dθ

) 1
2
( ∫ 2π

0
r−2

∣∣∣
D

dθ
ξ
∣∣∣
2
dθ

) 1
2
rdr

≤ C‖ξ‖υ,p

(∫

Ãυ,h

ρ
− p−2

p
υ r−2

∣∣∣
D

dθ
ξ
∣∣∣
2) 1

2
.

(5.22)

Similarly,

1

2

∫ ε2

ε1

ρ
− p−2

p
υ

∣∣∣
rρ′υ(r)

ρυ(r)

∣∣∣
( ∫ 2π

0
r−2|uθ|2dθ

)( ∫ 2π

0
|ξ|2dθ

)
rdrdθ ≤ C(bυ)‖ξ‖2

υ,p. (5.23)

Combining equations (5.21)-(5.23), we obtain

1

2

∣∣∣
∫ ε2

ε1

ρ
− p−2

p
υ

ρ′υ(r)

ρυ(r)

∫ 2π

0

〈D
dθ
ξ, Jξ

〉
dθdr

∣∣∣

≤
∫ 2π

0

∫ ε2

ε1

ρ
− p−2

p
υ r−2

∣∣∣
D

dθ
ξ
∣∣∣
2
rdrdθ +C(bυ)

(
‖ξ‖2

υ,p + ‖ξ‖pah

)
.

(5.24)
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Note that

∫ 2π

0

∫ ε2

ε1

ρ
− p−2

p
υ r−2

∣∣∣
D

dθ
ξ
∣∣∣
2
rdrdθ

=
1

2

∫

Ãυ,h

ρ
− p−2

p
υ

(
r−2

∣∣∣
D

dθ
ξ
∣∣∣
2
+

∣∣∣
(D
dr
ξ+Jr−1 D

dθ
ξ
)
− D

dr
ξ
∣∣∣
2)

≤ 1+ε

2
a2

h + Cε‖Dυξ‖2
υ,p

(5.25)

for any ε>0. Combining equations (5.18), (5.20), (5.24) and (5.25), we obtain

a2
h ≤ |p−2|

p
(1+ε)a2

h +
(
C(bυ) + Cε

)(
‖Dυξ‖2

υ,p + ‖ξ‖2
υ,p + ‖ξ‖υ,pah

)
.

Since |p−2|
p <1, the claim follows by choosing ε sufficiently small.

Lemma 5.9 For all p≥1, there exists Cp∈C∞(M(0)
T ; R) such that for all υ∈F (0)Tδ and h∈ Î,

ξ ∈ Γc(Ãυ,h|u∗υTV ) =⇒ ‖∇bυξ‖gυ,p ≤ Cp(bυ)
(
‖Dυξ‖υ,p + ‖ξ‖υ,p +

(∫

Ãυ,h

ρ
− p−2

2p
υ |∇ξ|2

) 1
2
)
.

Proof: Choose a sequence

δ0 > . . . > δN+1 > 0 such that δ0 = ε2, δN+1 = ε1,
1

3
≤ δl+1

δl
≤ 1

2
.

For each l=1, . . . , N−1, let gl denote the metric

gl =
(
δ2l +

|vh|2
δ2l

)−1
gυ on Ãl =

{
(r, θ)∈ Ãυ,h : δl+2 ≤ r ≤ δl−1

}
.

Let ρl = δ2l +|vh|2δ−2
l and denote by Al the annulus {(r, θ)∈ Ãυ,h : δl+1 ≤ r≤ δl}. The pullback of

the metric gl on Ãl to the annulus (
δl+2

δl
,

δl−1

δl
)×S1 ⊂R

2 by the map (r, θ)−→ (δlr, θ) differs from
the Eucledian metric by a conformal factor bounded by C(bυ), since

1

100
≤

{(
1 − β|vh|(δlr)

) 2

|vh| + |vh|−1δ2l r
2

+ β|vh|(δlr)
}(
δ2l +

|vh|2
δ2l

)− 1
2
δl ≤ 200,

whenever r∈(1
9 , 3) and δl∈(|vh|, 1). Thus, by Proposition 3.10 in [Z1],

‖∇bυξ‖gl,Lp(Al) ≤ C
(
‖Dυξ‖gl,Lp(Ãl)

+ ‖∇bυξ‖gl,Lp(Ãl)
+ ‖ξdu‖gl,Lp(Ãl)

)
, (5.26)

or equivalently

‖∇bυξ‖gυ,Lp(Al) ≤ C
(
‖Dυξ‖gυ,Lp(Ãl)

+ ‖ρ−
p−2
2p

l ∇bυξ‖L2(Ãl)
+ ‖ξdu‖gυ ,Lp(Ãl)

)
. (5.27)

Since ρυ(r)
ρl

∈ [ 1
81 , 81] when r∈ [δl+2, δl−1], (5.27) is equivalent to

(∫

Al

|∇bυξ|p
) 1

p ≤ Cp(bυ)
(( ∫

Ãl

|Dυξ|p
) 1

p
+

(∫

Ãl

ρ
− p−2

p
υ |∇bυξ|2

) 1
2

+ ‖ξduυ‖gυ,Lp(Ãl)

)
.
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The claim follows by summing up the last inequality over all l and using (1) of Lemma 3.5.

Remark: The above proof does not quite apply to the two outermost annuli A1 and AN . However,
since ξ is compactly supported in Ãυ,h, the proof of Proposition 3.10 in [Z1] can be applied to A1

with A1∪A2 replacing Ã1 to (5.26), and similarly for AN . Alternatively, for the purposes of proving
Proposition 5.11 below, it is sufficient to prove Lemma 5.9 and Corollary 5.10 for ξ that vanish on
A1 and AN .

Corollary 5.10 For all p>1, there exists Cp∈C∞(M(0)
T ; R) such that for all υ∈F (0)Tδ and h∈ Î

ξ∈Γc(Ãυ,h;u∗TV ) =⇒ ‖ξ‖υ,p,1 ≤ Cp(bυ)
(
‖Dυξ‖υ,p + ‖ξ‖υ,p

)
.

Proof: This corollary follows immediately from Lemmas 5.10 and 5.10.

Proposition 5.11 For all p>1, there exists Cp∈C∞(M(0)
T ; R) such that for all υ∈F (0)Tδ,

‖ξ‖υ,p,1 ≤ Cp(bυ)
(
‖Dυξ‖υ,p + ‖ξ‖υ,p

)
∀ξ∈Γ(uυ).

Proof: This proposition follows from Corollary 5.10 and Proposition 3.12 in [Z1] by taking a
partition of unity as in the proof of Proposition 5.7.

5.4 Fiber-Uniform Inverse for the Operator Dυ

Lemma 5.12 Let {υk} be a sequence in F (0)Tδ that converges to b∗ ∈M(0)
T . Suppose ξk ∈Γ(uυk

)
is such that ‖ξk‖υk ,p,1 ≤ 1 for all k, while ‖Dυk

ξk‖υk ,p −→ 0 as k −→∞ for some p > 2. Then a
subsequence of {ξk} C0-converges ξ∗∈Γ−(b∗). Furthermore, ‖ξk‖υk ,C0 converges to ‖ξ∗‖b∗,C0.

Proof: (1) Write b∗=
(
S,M, I;x∗, (j, y∗), u

)
and

υk = (bk, vk) =
(
(S,M, I;xk, (j, yk), uk), (vk)Î

)
.

For each i∈I and δ>0, put

S∗
i,δ =

{
z∈Σb,i : rb∗,h(z)≥δ ∀h∈ Î; |q−1

S (z)|≥δ if i>0
}
.

For i∈I and all k sufficiently large (depending on δ), define ζk,i, ξ
′
k,i∈Γ(u∗i |S∗

i,δ
) by

expb∗,u∗
i (z) ζk,i(z) = uυk

(q−1
υk

(z)), ‖ζk,i‖b∗,C0 < inj gV,b∗ ; Πb∗,ζk,i(z)ξ
′
k,i(z) = ξk(q

−1
υk

(z)).

Since ‖∇b∗ζk,i‖b∗,C0 ≤C for k sufficiently large, (1) of Lemma 3.5 and by Corollary 2.3 in [Z1],

‖ξ′k,i‖b∗,p,1 ≤ (1 + εk)‖ξk‖υk,p,1 + εk‖ξk‖υk ,C0,

‖Db,ui
ξ′k,i‖b∗,p ≤ (1 + εk)‖Dυk

ξk‖υk ,p + εk‖ξk‖υk,C0 ,
(5.28)

where εk−→0 as k−→∞. Since ‖ξk‖υk ,p,1≤1, (2) of Lemma 3.5 applied to (5.28),

‖ξ′k,i‖b∗,p,1 ≤ (1 + ε̃k)‖ξk‖υk ,p,1 + ε̃k, ‖Db,ui
ξ′k,i‖b∗,p ≤ (1 + ε̃k)‖Dυk

ξk‖υk ,p + ε̃k, (5.29)
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where ε̃k−→0 as k−→∞. Sobolev’s embedding theorem then implies that ξ′k,i converges to a vector

field ξ∗i ∈Γ(ui|Σ∗
b∗,i

) in the C0-norm on the compact subsets of Σ∗
b∗,i. Furthermore, ‖ξ∗i ‖b∗,C0<∞,

since
‖ξ′k,i‖b∗,C0 ≤ (1 + εk)‖ξk‖υk ,C0 ≤ C.

(2) We will now show that Db∗,u∗
i
ξ∗i =0 weakly, i.e. 〈〈ξ∗i ,D∗

b∗,u∗
i
η〉〉b∗ =0 for any η∈Γ0,1(u∗i ). We have

〈〈ξ∗i ,D∗
b∗,u∗

i
η〉〉b∗ = lim

δ−→0

∫

S∗
i,δ

〈ξ∗i ,D∗
b∗,u∗

i
η〉b∗ = lim

δ−→0
lim

k−→∞

∫

S∗
i,δ

〈ξ′k,i,D
∗
b∗,u∗

i
η〉b∗ , (5.30)

since ξ′k,i −→ ξ∗i in the C0-norm on Si,δ. By integration by parts,

∣∣∣
∫

S∗
i,δ

〈ξ′k,i,D
∗
b∗,u∗

i
η〉b∗ −

∫

S∗
i,δ

〈Db∗,u∗
i
ξ′k,i, η〉b∗

∣∣∣ ≤ C

∫

∂S∗
i,δ

|ξ′k,i||η| ≤ C ′‖ξ′k,i‖b∗,C0‖η‖b∗ ,C0δ. (5.31)

Since ‖Db∗,ui∗ξ
′
k,i‖b∗,p−→0 as k−→∞ on S∗

i,δ and ‖ξ′k,i‖b∗,C0 ≤C, by (5.30) and (5.31),

〈〈ξ∗i ,D∗
b∗,u∗

i
η〉〉b∗ = 0 ∀η∈Γ0,1(u∗i ).

(3) Since Db∗,u∗
i
ξ∗i =0 weakly on Si and Db∗,u∗

i
is an elliptic operator, it follows that ξ∗i is smooth

and Db∗,u∗
i
ξ∗i = 0. It will now be shown that ξ∗ιh(x∗h)= ξ∗h(∞) for all h∈ Î, i.e. ξ∗≡ξ∗I ∈Γ(b∗). For

each h∈ Î, let Ah,δ,k ⊂S denote the small cylinder connecting q−1
υk

(S∗
h,δ) and q−1

υk
(S∗

ιh,δ). Let ε>0
be any small number. Choose small δ>0 such that uh(Bb∗,h(∞, 2δ)) and u∗ιh(Bb∗,ι∗h

(x∗h, 2δ)) lie in
Bb∗(u

∗
h(∞), ε). Then we can write

u∗b∗(z) = expb∗,u∗
b∗

(x∗
h) ūb∗(z), |ūb∗(z)| < inj gV,b∗ ; ξ̄′k(z) ≡ Π−1

b∗,ūb(z)ξ
′
k(z)

for z∈Bb∗,h(∞, δ) ∪Bb∗,ι∗h
(x∗h, δ). Similarly, put

ξ̄∗h(z) = Π−1
b∗,ūb∗(z)ξ

∗
h(z) and ξ̄∗ιh(z) = Π−1

b∗,ūb∗(z)ξ
∗
ιh

(z)

for z in Bb∗,h(∞, δ) and in Bb∗,ih(x∗h, δ), respectively. We can also assume that δ is so small that∣∣ξ̄∗h−ξ∗h(∞)
∣∣
b∗

and
∣∣ξ̄∗ιh −ξ∗ih(x∗h)

∣∣
b∗

do not exceed ε on Bb∗,h(∞, δ) and on Bb∗,ιh(x∗h, δ), respectively.
Choose large k∗ such that all k>k∗

‖ξ∗ − ξ′k‖C0(S∗
h,δ∪S∗

ιh,δ) ≤ ε.

It can be assumed that uk(Ah,2δ,k) lies in Bb∗(u
∗(x∗h); 2ε) for k>k∗. Thus, we can write

uk(z) = expb∗,u(x∗
h) ūk(z), |ūk(z)|b∗ < inj gV,b∗ ; ξ̄k(z) ≡ Π−1

b∗,ūk(z)ξk(z)

if z∈Ah,δ,k. Pick points z1 and z2, one on each component of the boundary of Ah,δ,k. Then

∣∣ξ∗h(∞) − ξ∗ιh(x∗h)
∣∣
b∗

≤ 2
(
ε+

∣∣ξ̄∗h(qυk
(z1)) − ξ̄∗ιh(qυk

(z2))
∣∣
b∗

)

≤ 4
(
ε+

∣∣ξ̄′k,h(qυk
(z1)) − ξ̄′k,ih

(qυk
(z2))

∣∣
b∗

)

≤ C
(
ε+

∣∣ξ̄k(z1) − ξ̄k(z2)
∣∣
b∗

+ ‖ζk‖b∗,C0(S∗
h,δ∪S∗

ih,δ)‖ξ̄k‖b∗,C0(Ah,δ,k)

)
.

(5.32)
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Since Ah,δ,k is uniformly equivalent to the union of two annuli with the larger radius bounded
above by δ and the smaller radius less than half of the larger, by Lemma 3.1 in [Z1] and Holder’s
inequality,

∣∣ξ̄k(z1) − ξ̄k(z2)
∣∣
b∗

≤ C
∣∣ξ̄k(z1) − ξ̄k(z2)

∣∣
bk

≤ C ′δ
2(p−2)

p ‖dξ̄k‖υk ,Lp(Ah,δ,k). (5.33)

By Corollary 2.3 in [Z1] and Proposition 5.11,

‖dξ̄k‖υk ,Lp(Ah,δ,k) ≤ ‖ξk‖υk ,p,1 + ‖duυk
‖υk ,p‖ξk‖υk ,C0 ≤ C. (5.34)

Combining equations (5.32)-(5.34), we obtain

∣∣ξ∗h(∞) − ξ∗ιh(x∗h)
∣∣
b∗

≤ C
(
ε+ δ

2(p−2)
p + ‖ζk‖b∗,C0(S∗

h,δ∪S∗
ιh,δ)

)
. (5.35)

Since the last term in (5.35) tends to zero as k−→∞ and ε and δ can be chosen to be arbitrarily
small, it follows ξ∗h(∞)=ξ∗ιh(x∗h).

Proposition 5.13 For any simple bubble type T , there exist C, δ∈C∞(M(0)
T ; R) such that for all

υ∈F (0)Tδ if T is regular and υ∈F (∅)Tδ if T is semiregular,

‖ξ‖υ,p,1 ≤ Cp(bυ)‖Dυξ‖υ,p ∀ξ∈Γ+(υ) and ∀ξ∈ Γ̃+(υ).

Proof: If not, we can choose a sequence υk ∈F (0)Tδ, converging to some b∈M(0)
T and vector fields

ξk∈Γ+(υk) (or ξk ∈ Γ̃+(υk)) such that ‖ξk‖υk,p,1 = 1, while ‖Dυk
ξ‖υk,p −→ 0. If ξk ∈Γ+(υk), note

that {Γ−(υk)} C0-converges to V ≡Γ−(b). If ξk ∈ Γ̃+(υk), by Definition 3.11, a subsequence of
{Γ̃−(υk)} C0-converges to a subspace V ⊂Lp

1(b) such that πb,− : V −→ Γ−(b) is an isomorphism.
In either case, by the first statement of Lemma 5.12, a subsequence of {ξk} C0-converges to a
vector field ξ∗ ∈Γ−(b). By the second statement of Lemma 5.12, ξ∗ must be orthogonal V , since
ξk ∈Γ+(υk) (or ξk ∈ Γ̃+(υk)). Thus, ξ∗ = 0. On the other hand, by Proposition 5.11, there exists
ε > 0 such that ‖ξk‖υk,p ≥ ε for all k sufficiently large. However, by Lemma 5.12, ‖ξk‖υk,C0 −→0,
which is a contradiction.
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