Some Comments on my Paper A Sharp Compactness Theorem for Genus-One Pseudo-Holomorphic Maps

Jingchen Niu (my student) has pointed out that the justification of the two estimates in (4.8),

$$
\begin{equation*}
\left\|\mathrm{d} u_{v}\right\|_{v, p} \leq C(b)\left\|\mathrm{d} \widetilde{u}_{v_{1}}\right\|_{v_{1}, p} \quad \text { and } \quad\left\|\bar{\partial}_{\widetilde{J}} u_{v}\right\|_{v, p} \leq C(b) \sum_{h \in I_{1}}\left\|\left.\mathrm{~d} \widetilde{u}_{v_{1}}\right|_{\mathcal{A}_{v, h}^{-}}\right\|_{v_{1}, p}\left|v_{h}\right|^{\frac{p-2}{p}} \tag{4.8}
\end{equation*}
$$

requires more care than implied. The reasoning in [3, Subsection 3.3], which I cite, does not apply directly because the map $\widetilde{u}_{v_{1}}$ now depends on the smoothing parameter v_{1}. While my reasoning behind these two inequalities 12 years might indeed have been off, both inequalities are correct and not difficult to justify. This is done below.

In (4.8),

$$
\widetilde{u}_{v_{1}}: \Sigma_{v_{1}} \longrightarrow X, \quad u_{v}=\widetilde{u}_{v_{1}} \circ \widetilde{q}_{v_{0} ; 2}: \Sigma_{v} \longrightarrow X, \quad \text { and } \quad \widetilde{q}_{v_{0} ; 2}: \Sigma_{v} \longrightarrow \Sigma_{v_{1}}
$$

are smooth maps, $(X, \omega, \widetilde{J})$ is a compact symplectic manifold with a tame almost complex structure, $\Sigma_{v_{1}}$ and Σ_{v} are compact nodal Riemann surfaces endowed with compatible metrics $g_{v_{1}}$ and g_{v}, respectively, and $p>2$. The norms $\|\cdot\|_{v_{1}, p}$ and $\|\cdot\|_{v, p}$ on

$$
\Gamma\left(\Sigma_{v_{1}} ; T^{*} \Sigma_{v_{1}} \otimes_{\mathbb{R}} \widetilde{u}_{v_{1}}^{*} T X\right) \quad \text { and } \quad \Gamma\left(\Sigma_{v} ; T^{*} \Sigma_{v} \otimes_{\mathbb{R}} u_{v}^{*} T X\right)
$$

are the modified Sobolev norms of [1, Section 3]. They are the sums of the usual L^{p}-Sobolev norms with respect to the metrics $g_{v_{1}}$ and g_{v} and of weighted L^{2}-norms with respect to these metrics.

The map $\widetilde{u}_{v_{1}}$ is \widetilde{J}-holomorphic. The map $\widetilde{q}_{v_{0} ; 2}$ is a holomorphic isometry and commutes with the L^{2}-weights outside of certain annuli $\widetilde{\mathcal{A}}_{b, h}$ with $h \in \aleph$ and $\widetilde{\mathcal{A}}_{b, h}^{ \pm}$with $h \in I_{1}$, where \aleph is the set of the nodes of the principal component $\Sigma_{v_{1} ; P}$ of $\Sigma_{v_{1}}$ and I_{1} is the set of the nodes of $\Sigma_{v_{1}}$ shared between $\Sigma_{v_{1} ; P}$ and other components of $\Sigma_{v_{1}}$ (there is an inconsequential miswording of this statement below (4.6)). Since the map $\widetilde{u}_{v_{1}}$ is constant on $\widetilde{q}_{v_{0} ; 2}\left(\widetilde{\mathcal{A}}_{b, h}\right)$ and $\widetilde{q}_{v_{0} ; 2}\left(\widetilde{\mathcal{A}}_{b, h}^{+}\right)$,

$$
\begin{equation*}
\left\|\mathrm{d} u_{v}\right\|_{v, p} \leq\left\|\mathrm{d} \widetilde{u}_{v_{1}}\right\|_{v_{1}, p}+\sum_{h \in I_{1}}\left\|\left.\mathrm{~d} u_{v}\right|_{\widetilde{\mathcal{A}}_{b, h}^{-}}\right\|_{v, p}, \quad\left\|\bar{\partial}_{\widetilde{J}} u_{v}\right\|_{v, p} \leq \sum_{h \in I_{1}}\left\|\left.\mathrm{~d} u_{v}\right|_{\widetilde{\mathcal{A}}_{b, h}^{-}}\right\|_{v, p} . \tag{1}
\end{equation*}
$$

For each $h \in I_{1}, \widetilde{\mathcal{A}}_{b, h}^{-} \subset \Sigma_{v_{1} ; P}$ is the annulus of radii $\sqrt{\delta_{K}} / 2$ and $\sqrt{\delta_{K}}$ centered at a nodal point $x_{h}\left(v_{\aleph}\right)$ of $\Sigma_{v_{1}}$ and

$$
\mathcal{A}_{v, h}^{-} \equiv \widetilde{q}_{v_{0} ; 2}\left(\widetilde{\mathcal{A}}_{b, h}^{-}\right) \subset \Sigma_{v_{1} ; h}
$$

is the disk of radius $2\left|v_{h}\right| \leq 2 \delta_{K}$ centered at the same nodal point $\infty \in \Sigma_{v_{1} ; h}$ of the other component sharing this node. Let

$$
\mathcal{A}_{v, h ; 0}^{-}, \mathcal{A}_{v, h ; 1}^{-} \subset \mathcal{A}_{v, h}^{-}
$$

denote the disk of radius $2\left|v_{h}\right|$ with the same center and its complement.
By the construction of $\widetilde{q}_{v_{0} ; 2}$, there exists $C \in \mathbb{R}^{+}$such that

$$
\begin{equation*}
\left|\mathrm{d}_{z} \widetilde{q}_{v_{0} ; 2}\right|_{g_{v_{1}}, g_{v}} \leq C\left|v_{h}\right| \quad \forall z \in \widetilde{\mathcal{A}}_{b, h}^{-}, \quad\left|\operatorname{Jac}\left(\mathrm{d}_{z} \widetilde{q}_{v_{0} ; 2}\right)\right|_{g_{v_{1}}, g_{v}} \geq C^{-p}\left|v_{h}\right|^{2} \quad \forall z \in \widetilde{q}_{v_{0} ; 2}^{-1}\left(\mathcal{A}_{v, h ; 1}^{-}\right) \tag{2}
\end{equation*}
$$

The constant C does not depend on the smoothing parameter v, but does depend on the choice of the cutoff function β and the number δ_{K} used in constructing $\widetilde{q}_{v_{0} ; 2}$. By (2),

$$
\begin{align*}
& \left(\int_{\widetilde{q}_{v_{0} ; 2}^{-1}\left(\mathcal{A}_{v, h ; 1}^{-}\right)}\left|\mathrm{d} u_{v}\right|_{g_{v}}^{p}\right)^{\frac{1}{p}}=\left(\int_{\widetilde{q}_{v_{0} ; 2}\left(\mathcal{A}_{v, h ; 1}^{-}\right)}\left|\mathrm{d}_{\widetilde{q}_{v_{0} ; 2}} \widetilde{u}_{v_{1}}\right|_{g_{v_{1}}}^{p}\left|\mathrm{~d} \widetilde{q}_{v_{0} ; 2}\right|_{g_{v_{1}}, g_{v}}^{p}\right)^{\frac{1}{p}} \tag{3}\\
& \quad \leq C\left|v_{h}\right|\left(\int_{\mathcal{A}_{v, h ; 1}^{-}}\left|\mathrm{d} \widetilde{u}_{v_{1}}\right|_{g_{v_{1}}}^{p}\left|\operatorname{Jac}\left(\mathrm{~d}_{\widetilde{q}_{v_{0} ; 2}^{-1} ;} \widetilde{q}_{v_{0} ; 2}\right)\right|^{-1}\right)^{\frac{1}{p}} \leq C^{2}\left|v_{h}\right|^{\frac{p-2}{p}}\left(\int_{\mathcal{A}_{v, h ; 1}^{-}}\left|\mathrm{d} \widetilde{u}_{v_{1}}\right|_{g_{v_{1}}}^{p}\right)^{\frac{1}{p}} .
\end{align*}
$$

By the Mean Value Inequality [2, Lemma 4.3.1(1)] and Hölder's Inequality, there exists $C_{X} \in \mathbb{R}^{+}$ such that

$$
\begin{equation*}
\left|\mathrm{d}_{z} \widetilde{u}_{v_{1}}\right|_{g_{v_{1}}} \leq \frac{C_{X}}{\left|v_{h}\right|}\left(\int_{\mathcal{A}_{v, h}^{-}}\left|\mathrm{d} \widetilde{u}_{v_{1}}\right|_{g_{v_{1}}}^{2}\right)^{\frac{1}{2}} \leq C_{X} \pi^{\frac{p-2}{2 p}}\left|v_{h}\right|^{-\frac{2}{p}}\left(\int_{\mathcal{A}_{v, h}^{-}}\left|\mathrm{d} \widetilde{u}_{v_{1}}\right|_{g_{v_{1}}}^{p}\right)^{\frac{1}{p}} \quad \forall z \in \mathcal{A}_{v, h ; 0} \tag{4}
\end{equation*}
$$

By (2) and (4),

$$
\begin{align*}
& \left(\int_{\widetilde{q}_{v_{0} ; 2}^{-1}\left(\mathcal{A}_{v, h ; 0}^{-}\right)}\left|\mathrm{d} u_{v}\right|_{g_{v}}^{p}\right)^{\frac{1}{p}}=\left(\int_{\widetilde{q}_{v_{0} ; 2}^{-1}\left(\mathcal{A}_{v, h ; 0}^{-}\right)}\left|\mathrm{d}_{\widetilde{q}_{v_{0} ;}} \widetilde{u}_{v_{1}}\right|_{g_{v_{1}}}^{p}\left|\mathrm{~d} \widetilde{q}_{v_{0} ; 2}\right|_{g_{v_{1}}, g_{v}}^{p}\right)^{\frac{1}{p}} \\
& \quad \leq C^{\prime}\left|v_{h}\right|^{\frac{p-2}{p}}\left(\int_{\mathcal{A}_{v, h}^{-}}\left|\mathrm{d} \widetilde{u}_{v_{1}}\right|_{g_{v_{1}}}^{p}\right)^{\frac{1}{p}}\left(\int_{\widetilde{v}_{v_{0} ; 2}^{-1}\left(\mathcal{A}_{v, h ; 0}^{-}\right)} 1\right)^{\frac{1}{p}} \leq C^{\prime \prime}\left|v_{h}\right|^{\frac{p-2}{p}}\left(\int_{\mathcal{A}_{v, h}^{-}}\left|\mathrm{d} \widetilde{u}_{v_{1}}\right|_{g_{v_{1}}}^{p}\right)^{\frac{1}{p}} . \tag{5}
\end{align*}
$$

Since the L^{2}-weights of $\left[1\right.$, Section 3] are bounded on the annuli $\widetilde{\mathcal{A}}_{b, h}^{-}$independently of $v,(3)$ and (5) give

$$
\left\|\left.\mathrm{d} u_{v}\right|_{\widetilde{\mathcal{A}}_{b, h}^{-}}\right\|_{v, p} \leq C\left|v_{h}\right|^{\frac{p-2}{p}}\left\|\left.\mathrm{~d} \widetilde{u}_{v_{1}}\right|_{\mathcal{A}_{v, h}^{-}}\right\|_{v_{1}, p} \quad \forall h \in I_{1} .
$$

Combined with (1), this establishes (4.8).
Aleksey, May 10, 2016

References

[1] J. Li and G. Tian, Virtual moduli cycles and Gromov-Witten invariants of general symplectic manifolds, Topics in Symplectic 4-Manifolds, 47-83, First Int. Press Lect. Ser., I, Internat. Press, 1998
[2] D. McDuff and D. Salamon, J-Holomorphic Curves and Symplectic Topology, AMS Colloquium Publications 52, 2012
[3] A. Zinger, Enumerative vs. symplectic invariants and obstruction bundles, J. Symplectic Geom. 2 (2004), no. 4, 445-543

