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Abstract

We give a formula computing the number of one-nodal rational curves that pass through an
appropriate collection of constraints in a complex projective space. The formula involves in-
tersections of tautological classes on moduli spaces of stable rational maps. We combine the
methods and results from three different papers.

Contents

1 Introduction 1

2 Background 6

2.1 Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 A Structural Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Computations 16

3.1 Summary and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 A Tree of Chern Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Combinatorics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Comparison of n
(1)
d (µ) and n1,d(µ) 29

4.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Dimension Counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 A Property of Limits in M1,N (Pn, d) . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1 Introduction

Enumerative algebraic geometry is a field of mathematics that dates back to the nineteenth century.
However, many of its most fundamental problems remained unsolved until the early 1990s. For
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example, let d be a positive integer and µ= (µ1, . . . , µN ) an N -tuple of linear subspaces of Pn of
codimension at least two such that

codimCµ ≡
l=N
∑

l=1

codimCµl −N = d(n+ 1) + n− 3.

If the constraints µ are in general position, denote by nd(µ) the number of rational degree-d curves
that pass through µ1, . . . , µN . This number is finite and depends only on the homology classes
of the constraints. If d= 1, it can be computed using Schubert calculus; see [GH]. All but very-
low-degree numbers nd(µ) remained unknown until [KM] and [RT] derived a recursive formula for
these numbers. In this paper, we prove

Theorem 1.1 Suppose n ≥ 3, d ≥ 1, and µ = (µ1, . . . , µN ) is an N -tuple of proper subvarieties
of Pn in general position such that

codimCµ ≡
l=N
∑

l=1

codimCµl −N = d(n+ 1) − 1. (1.1)

Then the number of degree-d rational curves that have a simple node and pass through the con-
straints µ is given by

n
(1)
d (µ) =

1

2

(

RT1,d(µ1;µ2, . . . , µN ) −CR1(µ)
)

, where

CR1(µ) =

2k≤n+1
∑

k=1

(−1)k−1(k−1)!

n+1−2k
∑

l=0

(

n+1

l

)

〈

alηn+1−2k−l,
[

V̄k(µ)
]〉

.

The symplectic invariant RT1,d(·; ·) and the top intersections
〈

alηn+1−2k−l,
[

V̄k(µ)
]〉

are computable
via algorithms described elsewhere.

n 3 4 5 5 6

d 4 4 4 6 6

µ (5,5) (5,1,4) (5,1,0,4) (2,1,1,7) (2,1,1,1,6)

n
(1)
d (µ) 1,800 1,800 1,800 20,340 20,340

Table 1: The Number n
(1)
d (µ) of One-Nodal Degree-d Rational Curves in Pn

For the purposes of this table, we assume that the constraints µ1, . . . , µN are linear subspaces of Pn

of codimension at least two. We describe such a tuple µ of constraints by listing the number of
linear subspaces of codimension 2, . . . , n among µ1, . . . , µN . For example, the triple (5, 1, 4) in the
third column indicates that the tuple µ consists of 5 two-planes, 1 line, and 4 points in general
position in P4.

In the statement of Theorem 1.1, RT1,d(·; ·) denotes the genus-one degree-d symplectic invariant
of Pn defined in [RT]. This invariant can be expressed in terms of the numbers nd(·); see [RT]. In
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particular, it is computable. Brief remarks concerning the meaning of RT1,d(·; ·) can be found at
the beginning of Section 3.

The compact oriented topological manifold V̄k(µ) consists of unordered k-tuples of stable rational
maps of total degree d. Each map comes with a special marked point (i,∞). All these marked
points are mapped to the same point in Pn. In particular, there is a well-defined evaluation map

ev: V̄k(µ) −→ Pn,

which sends each tuple of stable maps to the value at one of the special marked points. We also
require that the union of the images of the maps in each tuple intersect each of the constraints
µ1, . . . , µN . In fact, the elements in the tuple carry a total of N marked points, y1, . . . , yN , in addi-
tion to the k special marked points. These marked points are mapped to the constraints µ1, . . . , µN ,
respectively. Roughly speaking, each element of V̄k(µ) corresponds to a degree-d rational curve
in Pn, which has at least k irreducible components, and k of the components meet at the same
point in Pn. The precise definition of the spaces V̄k(µ) can be found in Subsection 2.2.

The cohomology classes a and ηl are tautological classes in V̄k(µ). In fact,

a = ev∗c1
(

OPn(1)
)

.

Let V̄ ′
k(µ) be the oriented topological manifold defined as V̄k(µ), except without specifying the

marked points y1, . . . , yN mapped to the constraints µ1, . . . , µN . Then, there is well-defined forget-
ful map,

π : V̄k(µ) −→ V̄ ′
k(µ),

which drops the marked points y1, . . . , yN and contracts the unstable components. The cohomology
class ηl∈H

2l(V̄k(µ)) is the sum of all degree-l monomials in the elements of the set

{

π∗ψ(1,∞), . . . , π
∗ψ(k,∞)

}

⊂ H2
(

V̄k(µ)
)

.

As common in algebraic geometry, ψ(i,∞) denotes the first chern class of the universal cotangent
line bundle for the marked point (i,∞). In Subsection 2.2, we give a definition of ηl that does not
involve the projection map π. An algorithm for computing the intersection numbers involved in the
statement of Theorem 1.1 is given in Subsection 5.7 of [Z2]. It is closely related to the algorithm
of [P2] for computing intersections of tautological classes in moduli spaces of stable rational maps
into Pn.

If n=2, we denote by n
(1)
d (µ) the number of rational degree-d curves passing through the constraints

counted with a choice of the node on each curve. The formula of Theorem 1.1 gives

n
(1)
d (µ) =

(

d−1

2

)

nd(µ). (1.2)

This identity is clear, since the arithmetic genus of every degree-d curve in P2 is
(d−1

2

)

. Equa-
tion (1.2) is used in [P1] to count genus-one plane curves with complex structure fixed. More
precisely, if µ is a tuple of constraints in Pn satisfying condition (1.1), let n1,d(µ) denote the num-
ber of genus-one degree-d curves that pass through the constraints µ and have a fixed generic
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complex structure on the normalization, i.e. its j-invariant is different from 0 and 1728. The key
step in [P1] is to show that

n1,d(µ) = n
(1)
d (µ), (1.3)

if µ is a tuple of 3d−1 points in P2. One of the main ingredients in proving Theorem 1.1 is Propo-
sition 4.1, which states that (1.3) is valid for any tuple µ that satisfies condition (1.1). Note that
the numbers listed in Table 1 are consistent with (1.3) and facts of classical algebraic geometry. In
particular, the image of every degree-4 map from a genus-one curve to Pn lies in a P3 and the image
of every degree-6 map lies in a P5; see [ACGH, p116]. Thus, the first three numbers in the table
should be the same, and the last two numbers should be the same. The proof of Proposition 4.1
extends the degeneration argument of [P1] and builds up on modifications described in [Z1]. We
work with the moduli space M1,N (Pn, d) of stable degree-d maps from genus-one N -pointed curves
into Pn and study what happens in the limit to the maps that pass through the constraints µ as
the j-invariant of the domain tends infinity, i.e. the domain degenerates to a rational curve with
two points identified.

Proposition 4.1 is not useful for determining the numbers n1,d(µ) in Pn if n≥3, since the right-hand
side of (1.3) is unknown. Computation of n1,d(µ) for all projective spaces is the subject of [I], where
an entirely different approach is taken. The main step in computing these numbers is showing that

2n1,d(µ) = RT1,d(µ1;µ2, . . . , µN ) − CR1(µ),

where CR1(µ) is the number of zeros of an explicit affine map between vector bundles over V̄ ′
1(µ);

see Proposition 3.2. The remaining step is to express this number of zeros topologically. In general,
if the linear part of an affine map ψ does not vanish, it is easy to determine the signed cardinality
of ψ−1(0); see Lemma 2.5. The approach of [I] is to replace the linear part α of the affine map
under consideration by a nonvanishing linear map over a space obtained from V̄ ′

1(µ) by a sequence
of blowups and then to express the resulting intersection number in terms of intersection numbers
on the spaces V̄ ′

k(µ). The main problem with this approach is that the new linear map is not
described in [I] and it is not clear how to construct it in general. In addition, the normal bundles
of certain spaces needed for the second part of this approach are given incorrectly; see Lemma 2.8
or equation (2.27) in [I] for example. Both of these statements can be corrected without affecting
the computability of the intersection numbers, but presumably with a change in the final result.
If n=2, no blowup is needed. If n=3, 4, the zero set of α is a complex manifold and the “deriva-
tive” of α in the normal direction along α−1(0) is nondegenerate. In such cases, only one blowup is
needed and a linear map with the required properties can be constructed fairly easily. Furthermore,
Lemma 2.8 of [I] requires no correction in the n=2, 3, 4 cases, while equation (2.27) is never used.
If n=2, 3, CR1(µ) and n1,d(µ) are then expressed in terms of the numbers nd′(µ

′), with d′≤d and
µ′ related to µ. Several numbers n1,d(µ) for P4 are given in [I] as well. However, no topological
formula, like that of Theorem 1.1, is given for CR1(µ) or n1,d(µ) for Pn with n≥4 and no number
n1,d(µ) is given for Pn with n≥5.

We obtain the expression of Theorem 1.1 for the number CR1(µ) in Section 3; see Proposition 3.1.
Our approach involves no blowups and requires relatively little understanding of the global struc-
ture of the spaces V̄k(µ). Instead we describe CR1(µ) as the euler class of a bundle minus the sum
of contributions to the euler class from smooth, but usually noncompact, strata of the zero set of
the linear part α1,0 of the affine map. Computation of these contributions in good cases involves
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counting the zeros of affine maps again, but with the rank of the target bundle reduced by one; see
Subsection 2.1. Of course, if we are to have any hope of computing these contributions, we need
to understand the behavior of α1,0 near the smooth strata of its zero set. Proposition 2.7 describes
the behavior of α1,0 and of related linear maps near the boundary strata of V̄k(µ).

Theorem 1.1 follows immediately from Propositions 3.1 and 4.1. Their proofs are mutually inde-
pendent. Section 4 uses some of the notation defined in Subsection 2.2. The topological tools of
Subsection 2.1, the descriptive notation of Subsection 2.2, and the structure theorem of Subsec-
tion 2.3 are integral to the computations of Section 3.

In brief, we enumerate one-nodal rational curves from genus-one fixed-complex-structure invariants.
Can a similar approach be used with higher-genera enumerative invariants? Let µ be an N -tuple
of proper subvarieties of Pn in general position such that

codimCµ = d(n+ 1) − n.

Denote by n2,d(µ) the number of genus-two degree-d curves that pass through the constraints µ

and have a fixed generic complex structure on the normalization. Let n
(3)
d (µ), τd(µ), and Td(µ)

denote the number of rational two-component curves connected at three nodes, of rational curves

with a triple point, and of rational curves with a tacnode, respectively. If n= 2, we take n
(3)
d (µ)

to be the number of two-component rational curves with a choice of three nodes common to both
components. In all cases, the curves have degree-d and pass through the constraints µ. Completing
the degeneration argument of [KQR], it is shown in [Z1] that

n2,d(µ) = 6
(

n
(3)
d (µ) + τd(µ) + Td(µ)

)

, (1.4)

if µ is a tuple of 3d−2 points in P2. The arguments of [KQR] and [Z1] should extend to show
that equation (1.4) is valid for arbitrary constraints µ in all projective spaces. On the other hand,
n2,d(µ) for P3 is computed in [Z2] and the method extends at least to P4. Thus, in those two cases,

we should be able to express the sum of the numbers n
(3)
d (µ), τd(µ), and Td(µ) in terms of inter-

section numbers of the spaces V̄k(µ). The relation (1.4) is obtained by considering a degeneration
to a specific singular genus-two curve. Perhaps, different relations can be obtained by considering
degeneration to other singular genus-two curves. With enough different relations, we would be able

to compute the numbers n
(3)
d (µ), τd(µ), and Td(µ) at least for P3 and P4.

Since the initial submission of this paper, a formula for the numbers n
(1)
d (µ) in P3, i.e. the lowest-

dimensional case of Theorem 1.1, has also appeared in [R]. The approach of [R] is completely
unrelated to the one presented here; it uses more classical tools of algebraic geometry, instead of
the moduli space of stable maps.

The author thanks T. Mrowka for many useful discussions and E. Ionel for comments on the original
version of this paper.
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2 Background

2.1 Topology

We begin by describing the topological tools used in the next section. In particular, we review the
notion of contribution to the euler class of a vector bundle from a (not necessarily closed) subset of
the zero set of a section. We also recall how one can enumerate the zeros of an affine map between
vector bundles. These concepts are closely intertwined. Details can be found in Section 3 of [Z2],
where these concepts are presented in a greater generality.

Throughout this paper, all vector bundles are assumed to be complex and normed. If F −→M is
a smooth vector bundle, closed subset Y of F is small if it contains no fiber of F and is preserved
under scalar multiplication. If Z is a compact oriented zero-dimensional manifold, we denote the
signed cardinality of Z by ±|Z|. If k is an integer, we write [k] for the set of positive integers not
exceeding k.

Definition 2.1 Suppose F,O −→M are smooth vector bundles, Ω is an open subset of F , and
φ : Ω−→O is a smooth bundle map.
(1) Bundle map α : F −→O is a dominant term of φ if there exists ε∈C0(F ;R) such that

∣

∣φ(υ) − α(υ)
∣

∣ ≤ ε(υ)|α(υ)| ∀υ∈Ω and lim
υ−→0

ε(υ) = 0.

(2) The dominant term α : F −→O of φ is the resolvent of φ if α : F −→O is linear map which is
injective on every fiber of F .
(3) The bundle map φ : Ω−→O is hollow if there exist a vector bundle F̃ −→M of rank less than
the rank of F , a smooth bundle map ρ : F −→ F̃ , and a linear map α : F̃ −→O, which is injective
on every fiber, such that α◦ρ is a dominant term of φ.

If F −→ M is a vector bundle, we denote by γF −→ PF the tautological line bundle and by
πPF :PF −→M the bundle projection map. If α is a section of the bundle Hom(F,O), let α̃ be the
section of Hom(γF , π

∗
PFO) induced by α.

The base spaces we work with in the next two sections are closely related to spaces of rational
maps into Pn of total degree d that pass through the N constraints µ1, . . . , µN . From the algebraic
geometry point of view, spaces of rational maps are algebraic stacks, but with a fairly obscure local
structure. We view these spaces as mostly smooth, or ms-, manifolds: compact oriented topological
manifolds stratified by smooth manifolds, such that the boundary strata have (real) codimension at
least two. Subsection 2.3 gives explicit descriptions of neighborhoods of boundary strata and of the
behavior of certain bundle sections near such strata. We call the main stratum M of ms-manifold
M̄ the smooth base of M̄. Definition 3.7 in [Z2] also introduces the natural notions of ms-maps
between ms-manifolds, ms-bundles over ms-manifolds, and ms-sections of ms-bundles.

Definition 2.2 Let M̄=Mn t
⊔n−2

i=0 Mi =Mt
⊔n−2

i=0 Mi be an ms-manifold of dimension n.
(1) If Z⊂Mi is a smooth oriented submanifold, a normal-bundle model for Z is a tuple (F, Y, ϑ),
where
(1a) F −→Z is a smooth vector bundle and Y is a small subset of F ;
(1b) for some δ∈C∞(Z;R+), ϑ : Fδ−(Y −Z) −→M̄ is a continuous map such that
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(1b-i) ϑ : Fδ−(Y −Z)−→M̄ is a homeomorphism onto an open neighborhood of Z in M∪Z;
(1b-ii) ϑ|Z is the identity map, and ϑ : Fδ−Y−Z−→M is an orientation-preserving diffeomorphism
on an open subset of M.
(2) A closure of normal-bundle model (F, Y, ϑ) for Z is a tuple (Z̄ , F ′, π), where
(2a) Z̄ is an ms-manifold with smooth base Z;
(2b) π : Z̄ −→M̄ is an ms-map such that π|Z is the identity map;
(2c) F ′−→Z̄ is an ms-bundle such that F ′|Z =F .

We use a normal-bundle model for Z to describe the behavior of bundle sections over M̄ near Z.
Each section we encounter in this paper exhibits one of the two kinds of behavior described by
Definition 2.3.

Definition 2.3 Suppose M̄ is an ms-manifold, V −→ M̄ is an ms-bundle, s ∈ Γ(M̄;V ), and
Z⊂s−1(0).
(1) Z is s-hollow if there exist a normal-bundle model (F, Y, ϑ) for Z and a bundle isomorphism
ϑV : ϑ∗V −→π∗FV , covering the identity on Fδ−(Y −Z), such that
(1a) ϑV |Fδ−Y −Z is smooth and ϑV |Z is the identity;
(1b) the map φ ≡ ϑV ◦ ϑ∗s : Fδ−(Y −Z)−→V is hollow.
(2) Z is s-regular if there exist a normal-bundle model (F, Y, ϑ) for Z with closure (Z̄ , F ′, π),
section α∈Γ(Z̄,Hom(F ′, π∗V )), and a bundle isomorphism ϑV : ϑ∗V −→π∗FV covering the identity
on Fδ−(Y −Z), such that
(2a) ϑV |Fδ−Y −Z is smooth and ϑV |Z is the identity;
(2b) α|Z is nondegenerate and is the resolvent for φ≡ϑV ◦ϑ∗s : Fδ−(Y −Z)−→V ;
(2c) the space PF ′ admits a decomposition into subspaces {Zi} such that each spaces Zi is either
α̃-hollow or satisfies (2a) and (2b) with s replaced by α̃.

If M̄ is a smooth manifold and Z is a smooth compact submanifold of M̄ such that s vanishes
along Z, but the derivative of s in the normal direction along Z is nondegenerate, Z is s-regular.
The full-rank linear map α is the derivative of the section s in the normal direction along Z.
However, if the derivative of s in the normal direction does not have full rank, Z may not be
s-hollow. For example, if s is the section of the trivial line bundle over C given by s(z)= z2, the
submanifold {0} is not s-hollow. In fact, {0} is s-regular in the sense of Section 3 in [Z2]. On the
other hand, if s is the section of the trivial rank-two bundle over C×C given by

C×C −→ C×C, s(z,w)=(zw, zw2),

{0} is s-hollow, while the submanifold {0}×C∗ is s-regular. In contrast, the submanifold {0}×C
is not s-regular.

We call s∈Γ(M̄;V ) a regular section if M̄ can be composed into s-hollow and s-regular subspaces.
We call

α∈Γ
(

Z̄; Hom(F ′,O)
)

a regular linear map if α satisfies the requirements of (2c) of Definitions 2.3.

If α∈Γ(M̄; Hom(E,O)) is a linear map and rkE+ 1
2 dimM̄=rkO, the zero set of the affine map

ψα,ν̄ : E −→ O, ψα,ν̄(υ) = ν̄υ + α(υ),
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is a zero-dimensional oriented submanifold of E|M, if ν̄ ∈ Γ(M̄;O) is a generic section; see
Lemma 3.10 in [Z2]. If α is a regular linear map, ψ−1

α,ν̄(0) is a finite set for a generic choice
of ν̄, and the number

N(α) ≡±
∣

∣ψ−1
α,ν̄(0)

∣

∣

is independent of such a choice of ν̄.

We are now ready to state the first part of the computational method of this paper, Proposition 2.4.
The second part is Lemma 2.5.

Proposition 2.4 Let V −→M̄ be an ms-bundle of rank n over an ms-manifold of dimension 2n.
Suppose U is an open subset of M and s∈Γ(M̄;V ) is such that s|U is transversal to the zero set.
(1) If s−1(0) ∩ U is a finite set, ±|s−1(0) ∩ U| = 〈e(V ), [M̄]〉 − CM̄−U (s).

(2) If M̄ − U =
i=k
⊔

i=1
Zi, where each Zi is s-regular or s-hollow, then s−1(0) ∩ U is finite, and

±
∣

∣s−1(0) ∩ U
∣

∣ =
〈

e(V ), [M̄]
〉

− CM̄−U (s) =
〈

e(V ), [M̄]
〉

−
i=k
∑

i=1

CZi
(s).

If Zi is s-hollow, CZi
(s)=0. If Zi is s-regular and αi : F

′
i −→π∗i V is the corresponding linear map,

CZi
(s) = N(αi).

Finally, if αi∈Γ(Z̄i;Hom(F ′
i , π

∗
i V ) has full-rank rank over all of Z̄i,

CZi
(s) =

〈

π∗i c(V ) · c(F ′
i )

−1, [Z̄i]
〉

.

This proposition is a special case of Corollary 3.13 in [Z2]. Proposition 2.4 reduces the prob-
lem of computing CZi

(s) for an s-regular manifold Zi to counting the zeros of an affine map
between two vector bundles. The general setting for the latter problem is the following. Suppose
E,O−→M̄ are ms-bundles, such that rkE+ 1

2 dimM̄= rkO, and α : E−→O is a regular linear
map. Let ν̄∈Γ(M̄;O) be such that the map

ψα,ν̄ ≡ ν̄+α : E−→O

is transversal to the zero set in O on E|M, and all its zeros are contained in E|M. Then
N(α)≡± |ψ−1

α,ν̄(0)| depends only on α. If the rank of E is zero, then clearly

N(α) =±
∣

∣ψ−1
α,ν̄(0)

∣

∣ =
〈

e(O), [M̄]
〉

.

If the rank of E is positive and ν̄ is generic, the section ν̄ does not vanish and thus determines a
trivial line subbundle Cν̄ of O. Let O⊥ =O/Cν̄ and denote by α⊥ the composition of α with the
quotient projection map. If E is a line bundle and α is a linear map,

N(α) =±
∣

∣ψ−1
α,ν̄(0)

∣

∣ =
〈

e(E∗⊗O⊥), [M̄]
〉

− Cα−1(0)(α
⊥).

By Proposition 2.4, computation of Cα−1(0)(α
⊥) again involves counting the zeros of affine maps,

but with the rank of the new target bundle, i.e. E∗⊗O⊥, one less than the rank of the original one,
i.e. O. On the other hand, if the rank of E is bigger than one, N(α) =N(α̃); see Subsection 3.3
in [Z2]. Thus, at least in reasonably good cases, the number N(α) can be determined in finitely
many steps.

The next lemma summarizes the results of Subsection 3.3 in [Z2]. Let λE =c1(γ
∗
E)∈H2(PE).
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Figure 1: A Rooted Tree

Lemma 2.5 Suppose M̄ is an ms-manifold and E,O −→ M̄ are ms-bundles such that

rkE +
1

2
dimM̄ = rkO.

If α∈Γ(M̄;Hom(E,O)) and ν̄∈Γ(M̄;O) are such that α is regular, ν̄ has no zeros, the map

ψα,ν̄ ≡ ν̄+α : E −→ O

is transversal to the zero set on E|M, and all its zeros are contained in E|M, then ψ−1
α,ν̄(0) is a

finite set, ±|ψ−1
α,ν̄(0)| depends only on α, and

N(α) ≡± |ψ−1
α,ν̄(0)| =

〈

c(O)c(E)−1, [M̄)]
〉

− Cα̃−1(0)(α̃
⊥).

Furthermore, if n=rkE,

λn
E +

k=n
∑

k=1

ck(E)λn−k
E = 0 ∈ H2n(PE) and

〈

µλn−1
E , [PE]

〉

=
〈

µ, [M̄]
〉

∀µ∈H2m−2n(M̄). (2.1)

2.2 Notation

In this subsection, we describe the most important notation used in this paper. Some of the nota-
tion is only sketched; see Section 2 in [Z3] for more details.

Let qN : C−→S2⊂R3 be the stereographic projection mapping the origin in C to the north pole.
We identify C with S2−{∞} via the map qN , where

∞ = (0, 0,−1) ∈ S2 ⊂ R3.

Let e∞=(1, 0, 0)∈T∞S
2.

Definition 2.6 A finite partially ordered set I is a linearly ordered set if for all i1, i2, h∈I such
that i1, i2<h, either i1≤ i2 or i2≤ i1.
A linearly ordered set I is a rooted tree if I has a unique minimal element, i.e. there exists 0̂∈I
such that 0̂≤ i for all i∈I.

In Figure 1, the dots denote the elements of a rooted tree I and the arrows describe the partial
ordering. If I is a linearly ordered set, let Î be the subset of the non-minimal elements of I. For
every h∈ Î, denote by ιh∈I the largest element of I which is smaller than h; see Figure 1. Suppose
I=

⊔

k∈K

Ik is the splitting of I into rooted trees such that k is the minimal element of Ik. If 1̂ 6∈ I,

9



k1 k2 k1

1̂

k2

Figure 2: Linearly Ordered Sets I and I+k1 1̂

we define the linearly ordered set I+k1̂ to be the set I+1̂ with all partial-order relations of I along
with the relations

k< 1̂ and 1̂<h if h∈ Îk;

see Figure 2.

If S is a (possibly singular) complex curve and M is a finite set, a Pn-valued bubble map with
M -marked points is a tuple

b =
(

S,M, I;x, (j, y), u
)

,

where I is a linearly ordered set, and

x : Î−→S ∪ S2, j : M−→I, y : M−→S ∪ S2, and u : I−→C∞(S;Pn) ∪C∞(S2;Pn)

are maps such that

xh ∈

{

S2−{∞}, if ιh∈ Î;

S, if ιh 6∈ Î;
yl ∈

{

S2−{∞}, if jl∈ Î;

S, if jl 6∈ Î;
ui ∈

{

C∞(S2;Pn), if i∈ Î;

C∞(S;Pn), if i 6∈ Î;

and uh(∞)=uιh(xh) for all h∈ Î. We associate such a tuple with Riemann surface

Σb =
(

⊔

i∈I

Σb,i

)/

∼, where Σb,i =

{

{i}×S2, if i∈ Î;

{i}×S, if i 6∈ Î ,
and (h,∞) ∼ (ιh, xh) ∀h∈ Î ,

with marked points (jl, yl) ∈ Σb,jl
, and continuous map ub : Σb −→ Pn, given by ub|Σb,i = ui for

all i∈I. We require that all the singular points of Σb and all the marked points be distinct. Fur-
thermore, if S = S2, all these points are to be different from each of the special marked points
(i,∞)∈Σb,i, where i is a minimal element of I, i.e. one of the elements of the set I−Î. In addition,
if Σb,i =S

2 and ui∗[S
2]=0∈H2(Pn;Z), then Σb,i must contain at least two singular and/or marked

points of Σb other than (i,∞). If S 6= S2, but S is unstable, ui must satisfy a similar stability
condition whenever Σb,i =S. In particular, if S is a torus or a circle of spheres and the restriction
of ui to a component Sh of S is homologically zero, Sh contains at least one marked point of Σb.
Two bubble maps b and b′ are equivalent if there exists a homeomorphism φ : Σb−→Σb′ such that
ub =ub′ ◦ φ, φ(jl, yl)= (j′l , y

′
l) for all l∈M , φ|Σb,i

is holomorphic for all i∈I, and φ(Σb,i)⊂Σb,i′ for

some i′∈I ′−Î ′ if i′∈I−Î.

The general structure of bubble maps is described by tuples T =(S,M, I; j, d), with di∈Z specifying
the degree of the map ub on Σb,i. We call such tuples bubble types. Bubble type T is simple if I is a

rooted tree; T is basic if Î=∅ and di 6=0 for all i∈I; T is semiprimitive if ιh 6∈ Î, dιh =0, and dh 6=0
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for all h ∈ Î. The above equivalence relation on the set of bubble maps induces an equivalence
relation on the set of bubble types. For each h, i∈I, let

DiT = {h∈ Î : i<h}, D̄iT = DiT ∪ {i}, HiT = {h∈ Î : ιh = i}, MiT = {l∈M : jl = i},

χT h =











0, if ∀i∈I s.t. h∈D̄iT , di =0;

1, if ∀i∈I s.t. h∈DiT , di =0, but dh 6=0;

2, otherwise;

χ(T ) =
{

h∈I : χT h=1
}

.

Denote by HT the space of all holomorphic bubble maps with structure T .

The automorphism group of every bubble type T we encounter in the next two sections is trivial.
Thus, every bubble type discussed below is presumed to be automorphism-free.

If S is a circle of spheres, we denote by MT the set of equivalence classes of bubble maps in HT .
For each bubble type T = (S2,M, I; j, d), let

UT =
{

[b] : b=
(

S2,M, I;x, (j, y), u
)

∈HT , ui1(∞) = ui2(∞) ∀i1, i2∈I−Î
}

.

Then there exists BT ⊂HT such that UT is the quotient of a subset BT of HT by a G̃T ≡(S1)I -

action. Denote by U
(0)
T the quotient of BT by GT ≡(S1)Î ⊂G̃T . Then UT is the quotient of U

(0)
T

by the residual G∗
T ≡ (S1)I−Î ⊂ G̃T action. Corresponding to these quotients, we obtain line

orbi-bundles
{

LiT −→UT : i∈I
}

. Let

FT =
⊕

h∈Î

FhT −→ UT , where FhT = LhT ⊗ L∗
ιh
T .

Denote by F∅T the open subset of FT consisting of vectors with all components nonzero.

The Gromov-convergence topology on the space of equivalence classes of bubble maps induces a
partial ordering on the set of bubble types and their equivalence classes such that the spaces

Ū
(0)
T =

⋃

T ′≤T

U
(0)
T ′ and ŪT =

⋃

T ′≤T

UT ′

are compact and Hausdorff. The G∗
T -action on U

(0)
T extends to an action on Ū

(0)
T , and thus the

line orbi-bundles LiT −→UT with i∈ I− Î extend over ŪT . These bundles can be identified with
the universal tangent line bundles for appropriate sections of the universal bundle over ŪT . The
evaluation maps

evl : HT −→ Pn, evl

(

(S,M, I;x, (j, y), u)
)

= ujl
(yl),

descend to all the quotients and induce continuous maps on ŪT and Ū
(0)
T . If µ=µM is an M -tuple

of subvarieties of Pn, let
MT (µ) =

{

b∈MT : evl(b)∈µl ∀l∈M
}

and define spaces UT (µ), ŪT (µ), etc. in a similar way. If S = S2, we define another evaluation map,

ev : BT −→ Pn by ev
(

(S2,M, I;x, (j, y), u)
)

= u0̂(∞),

11



k k

l2

l1

Figure 3: The Domains of Elements of UT and UT (M0)

where 0̂ is any minimal element of I. This map descends to U
(0)
T and UT . If µ=µM̃ is an M̃ -tuple

of constraints, let

UT (µ) =
{

b∈UT : evl(b)∈µl ∀l∈M ∩ M̃, ev(b)∈µl ∀l∈M−M̃
}

and define U
(0)
T (µ), etc. similarly.

Suppose T =(S2,M, I; j, d) is a bubble type, k∈I−Î, and M0 is nonempty subset of MkT . Let

T /M0 =
(

S2, I,M−M0; j|(M−M0), d
)

.

Define T (M0) ≡ (S2,M, I +k 1̂; j′, d′) by

j′l =











k, if l∈M0;

1̂, if l∈MkT −M0;

jl, otherwise;

d′i =











0, if i=k;

dk, if i=1̂;

di, otherwise.

The tuples T /M0 and T (M0) are bubble types as long as dk 6=0 or M0 6=MkT . In Figure 3, we show
the domain of an element of the space UT , where I={k} is a single-element set, and the domain of
an element of the space UT (M0), where M0 ={l1, l2} is a two-element set. In this and later figures,
we denote each component of the domain by a disk and shade the component(s) on which the map
into Pn is nonconstant. We indicate marked points on the ghost components, i.e. the components
on which the map is constant, by putting small dots on the boundary of the corresponding disk.
The point labeled by k, i.e. the same way as the component, is the special marked point (k,∞).
Proposition 2.7 and Lemma 2.8, as well as the decomposition (2.4), show that it is crucial to clearly
distinguish between ghost and non-ghost components.

Note that
ŪT (M0)(µ) = M{1̂}tM0

× ŪT /M0
(µ), (2.2)

where M{1̂}tM0
denotes the Deligne-Mumford moduli space of rational curves with ({0̂, 1̂} tM0)-

marked points. If T is a basic bubble type, let

c1(L
∗
kT ) ≡ c1(L

∗
kT ) −

∑

∅6=M0⊂MkT

PDŪT (µ)

[

ŪT (M0)(µ)
]

∈ H2
(

ŪT (µ)
)

. (2.3)

This cohomology class is well-defined; see Subsection 5.2 in [Z2]. Whenever the bubble type T is
clear from context, we will write c1(L

∗
k) and c1(L

∗
k) for c1(L

∗
kT ) and c1(L

∗
kT ), respectively. We

illustrate definition (2.3) in Figure 4 in the case I = {k} is a single-element set. In this figure,
as well in the future ones, we denote spaces of tuples of stable maps by drawing a picture of the

12



c1(L
∗
k) ∩

k

= c1(L
∗
k) ∩

k

−
∑

∅6=MkT
k

M0

Figure 4: An Example of Definition (2.3)

domain of a typical element of such a space.

We are now ready to explain the claim of Theorem 1.1. Let n, d, N , and µ be as in the statement
of the theorem. If k≥1 and m≥1, denote by V̄k,m(µ) the disjoint union of the spaces ŪT (µ) taken
over equivalence classes of basic bubble types T =(S2, [N ]−M0, I; j, d) with |M0| = m, |I| = k,
di>0, and

∑

di =d. Let V̄k(µ)= V̄k,0(µ). We define the spaces Vk,m(µ) similarly. Let

{

c1(L
∗
i ) : i∈ [k]

}

,
{

c1(L
∗
i ) : i∈ [k]

}

⊂ H2
(

V̄k,m(µ);Z
)

be given by

{

c1(L
∗
i )

∣

∣ŪT (µ) : i∈ [k]
}

=
{

c1(L
∗
i T ) : i∈I

}

,
{

c1(L
∗
i )

∣

∣ŪT (µ) : i∈ [k]
}

=
{

c1(L
∗
i T ) : i∈I

}

,

where T is as above and [k] = {1, . . . , k}. We denote by ηl, η̃l ∈ H
2l

(

V̄k,m(µ);Z
)

the sum of all
degree-l monomials in

{

c1(L
∗
i ) : i∈ [k]

}

and in
{

c1(L
∗
i ) : i∈ [k]

}

, respectively. For example,

η3 = c31(L
∗
1) + c21(L

∗
1)c1(L

∗
2) + c1(L

∗
1)c

2
1(L

∗
2) + c31(L

∗
2) ∈ H

6
(

V̄2,m(µ);Z
)

.

Finally, let a=ev∗c1(γ
∗
Pn)∈H2

(

V̄k,m(µ);Z
)

, where γPn −→Pn denotes the tautological line bundle.

We next describe a generalization of the splitting (2.2) which is used in computations in Section 3.
If T =(S2, I, [N ]−M0; j, d) is a bubble type, let

T̄ =
(

S2, Ī, [N ]−M̄0; j|([N ]−M̄0), d|Ī
)

, where Ī = I−
{

i∈I−Î : di =0
}

, M̄0 = M0 ∪
⋃

i∈I−Ī

MiT .

Note that if T is semiprimitive, T̄ is basic. Furthermore,

UT (µ) =
∏

i∈I−Ī

MHiT tMiT × UT̄ (µ), (2.4)

ŪT (µ) =
∏

i∈I−Ī

MHiT tMiT × ŪT̄ (µ), (2.5)

where MHiT tMiT denotes the main stratum of MHiT tMiT . If i∈ I− Ī, by definition, the bundle
LiT −→ŪT (µ) is the pullback by the projection map of the bundle

L0̂T
(0)
i −→ MHiT tMiT = Ū

T
(0)

i

, where T
(0)
i =

(

S2,HiT +MiT , {0̂}; 0̂, 0
)

.

We call the latter bundle the tautological line bundle over MHiT tMiT . This is the universal tangent
line at the marked point 0̂∈MHiT tMiT . The decomposition (2.4) for the bubble T (M0) of Figure 3
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k

l2

l1
≈ M{1̂,l1,l2}

×

k, l1, l2

Figure 5: An Example of the Decomposition (2.4)

is illustrated in Figure 5.

Finally, if X is any space, F −→X is a normed vector bundle, and δ : X−→R is any function, let

Fδ =
{

(b, v)∈F : |v|b < δ(b)
}

.

Similarly, if Ω is a subset of F , let Ωδ = Fδ ∩Ω. If υ=(b, v)∈F , denote by bυ the image of υ under
the bundle projection map, i.e. b in this case.

2.3 A Structural Description

We now describe the structure of the spaces V̄k,m(µ) and the behavior of certain bundle sections
over V̄k,m(µ) near the boundary strata.

If b=
(

S2,M, I;x, (j, y), u
)

∈BT and k∈I, let

DT ,kb = duk

∣

∣

∞
e∞.

If T̃ is a basic bubble type, the maps DT ,k with T ≤T̃ and k∈I−Î induce a continuous section of

ev∗TPn over Ū
(0)

T̃
and a continuous section of the bundle L∗

kT̃ ⊗ev∗TPn over ŪT̃ , described by

DT̃ ,k[b, ck] = ckDT ,kb, if b∈U
(0)
T , ck∈C.

Proposition 2.7 Suppose p > 2, n ≥ 2, d ≥ 1, N ≥ 1, µ = (µ1, . . . , µN ) is an N -tuple of proper
subvarieties of Pn in general position, such that

codimCµ ≡
l=N
∑

l=1

codimCµl −N = d(n+ 1) − 1,

and M0 is a subset of [N ]. If T̃=(S2, [N ]−M0, Ĩ; j̃, d̃) is a basic bubble type such that
∑

d̃i =d, the
space ŪT̃ (µ) is an ms-manifold of (real) dimension 2

(

n+1−2|Ĩ |−|M0|
)

and LkT̃ for k∈ Ĩ and ev∗TPn

are ms-bundles over ŪT̃ (µ). If T =(S2, [N ]−M0, I; j, d)< T̃ , there exist δ, C∈C∞
(

UT (µ);R+
)

and
a homeomorphism

γµ
T : FT δ −→ ŪT̃ (µ),

onto an open neighborhood of UT (µ) in ŪT̃ (µ) such that γµ
T |UT (µ) is the identity, γµ

T (FT δ−F∅T )
is contained in ∂ŪT̃ (µ), and γµ

T |F
∅Tδ is an orientation-preserving diffeomorphism onto an open

14



k

h1 h2

h3

l DT̃ ,kγ
µ
T (υ) =

{

DT ,h1+εT ,h1(υ)
}

υh1 +
{

DT ,h3+εT ,h3(υ)
}

υh2⊗υh3

Figure 6: An Example of the Estimate of Proposition 2.7

subset of UT̃ (µ). Furthermore, for all k∈ Ĩ, with appropriate identifications,

∣

∣

∣
DT̃ ,kγ

µ
T (υ) − αT ,k

(

ρT (υ)
)

∣

∣

∣
≤ C(bυ)|υ|

1
p

∣

∣ρT (υ)
∣

∣ ∀υ∈FT δ, where

ρT (υ) =
(

(υ̃h)h∈χ(T )

)

∈ F̃T ≡
⊕

h∈χ(T )

LhT ⊗L∗
ι̃h
T ; υ̃h =

⊗

i∈Î,h∈D̄iT

υi; ι̃h∈I−Î , h∈D̄ι̃hT ;

αT ,k

(

(υ̃h)h∈χ(T )

)

=
∑

h∈Ik∩χ(T )

DT ,hυ̃h,

and Ik⊂I is the rooted tree containing k.

Figure 6 illustrates the analytic estimate of Proposition 2.7 in a case when Ĩ = {k} is a single-
element set. Note that, while the stratum UT (µ) of Figure 6 has codimension three in ŪT̃ (µ), the
section DT̃ ,k depends only on two parameters of the normal bundle, υh1 and υh2⊗υh3 , at least up
to negligible terms. Such bubble types T will always be hollow in the sense of Definition 2.3 and
will not effect our computations.

Proposition 2.7 is a special case of Theorem 2.8 in [Z2]; see also the remark following the theorem.
The dimension of ŪT̃ (µ) is obtained as follows:

1

2
dim ŪT̃ (µ) = dimC UT ∗(µ) =

∑

i∈I∗

(

d̃i(n+1) + n− 2
)

− (|Ĩ|−1)n −
(

codimCµ+ |M0|
)

= n+ 1 − 2|Ĩ | − |M0|.

The analytic estimate on DT̃ ,k is crucial for the implementation of the topological tools of Sub-

section 2.1 in Subsection 3.1. If T is semiprimitive, the bundle FT = F̃T and the section
αT = αT ◦ρT extend over ŪT (µ) via the decomposition (2.5). In terms of the notions of Sub-
section 2.1, (FT ,FT −F ∅T , γµ

T ) is a normal-bundle model for UT (µ)⊂ŪT̃ (µ). This normal-bundle
model admits a closure if T is semiprimitive. Note that FT is not usually the normal bundle of
ŪT (µ) in ŪT̃ (µ) if both spaces are viewed as algebraic stacks; see [P2]. Proposition 2.7 implies only
that the restrictions to UT (µ) of FT and of the normal bundle of ŪT (µ) in ŪT̃ (µ) are isomorphic
as topological vector bundles.

For any k,m ∈ Z, we define bundle Ek,m −→ V̄k,m(µ) and homomorphism αk,m : Ek,m−→ev∗TPn

over V̄k,m(µ) by

Ek,m|ŪT̃ (µ) =
⊕

i∈Ĩ

LiT̃ , αk,m

(

(υi)i∈Ĩ

)

=
∑

i∈Ĩ

DT̃ ,iυi,
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whenever T̃ =(S2, [N ]−M0, Ĩ; j̃, d̃) is a basic bubble type such that
∑

d̃i =d, |Ĩ|=k, and |M0|=m.
The following lemma will be used in Section 3.

Lemma 2.8 Suppose n≥2, d≥1, N≥1, and µ = (µ1, . . . , µN ) is an N -tuple of proper subvarieties
of Pn in general position such that codimCµ= d(n+1)−1. If T =(S2, [N ]−M0, I; j, d) is a bubble
type such that UT (µ)⊂V̄k,m(µ), the restriction of αk,m to the subbundle

ET ⊥ ≡
⊕

i∈χ(T )−Î

LiT ⊂ Ek,m

is nondegenerate over UT (µ).

Proof: The linear map αk,m has full rank on ET ⊥ over UT (µ) if and only if the section

˜{

αk,m|ET ⊥
}

∈ Γ
(

PET ⊥|UT (µ); γ∗ET ⊥⊗ev∗TPn
)

has no zeros. Note that

dimC PET ⊥|UT (µ) ≤ dimC Vk(µ) + (k − 1) = n− k < n.

Thus, it is enough to show that ˜{

αk,m|ET ⊥
}

is transversal to the zero set in PET ⊥|UT (µ) if the
constraints µ are in general position. This last fact is immediate from Lemma 2.9.

Lemma 2.9 If u : S2−→Pn is a holomorphic map of positive degree and e∞∈T∞S
2 is a nonzero

vector, the linear maps

H0
∂̄(S2;u∗TPn) −→ Tu(∞)P

n, ξ −→ ξ(∞),
{

ξ∈H0
∂̄(S2;u∗TPn) : ξ(∞)=0

}

−→ Tu(∞)P
n, ξ −→ ∇e∞ξ,

are onto.

This lemma is well-known; see Corollary 6.3 in [Z2] for example.

3 Computations

3.1 Summary and Motivation

In this section, we prove

Proposition 3.1 Suppose n≥ 2, d≥ 1, and µ=(µ1, . . . , µN ) is an N -tuple of proper subvarieties
of Pn in general position such that

codimCµ ≡
l=N
∑

l=1

codimCµl −N = d(n+ 1) − 1.

Then the number of degree-d genus-one curves that have a fixed generic complex structure on the
normalization and pass through the constraints µ is given by

n1,d(µ) =
1

2

(

RT1,d(µ1;µ2, . . . , µN ) − CR1(µ)
)

, where

CR1(µ) =

2k≤n+1
∑

k=1

(−1)k−1(k−1)!

n+1−2k
∑

l=0

(

n+1

l

)

〈

alηn+1−2k−l,
[

V̄k(µ)
]〉

.
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Proposition 3.1 follows from Proposition 3.2 and Corollaries 3.6 and 3.10. We use the topological
tools of Subsection 2.1 and the analytic estimate of Proposition 2.7 to obtain the first corollary in
Subsection 3.2. The derivation of Corollary 3.10 in Subsection 3.3 is essentially combinatorics.

Proposition 3.2 Suppose n≥ 2, d≥ 1, and µ=(µ1, . . . , µN ) is an N -tuple of proper subvarieties
of Pn in general position such that codimCµ = d(n+1)−1. Then the number of degree-d genus-
one curves that have a fixed generic complex structure on the normalization and pass through the
constraints µ is given by

n1,d(µ) =
1

2

(

RT1,d(µ1;µ2, . . . , µN ) − CR1(µ)
)

, where CR1(µ) = N(α1,0),

i.e. CR1(µ) is the number of zeros of the affine map

ψα1,0,ν̄ : E1,0 =L1 −→ ev∗TPn, ψα1,0,ν̄(υ) = ν̄υ + α1,0(υ),

over V̄1(µ) for a generic section ν̄∈Γ
(

V̄1(µ); ev∗TPn
)

.

Proposition 3.2 is basically the main result of the analytic part of [I]. The exact statement is not
made in [I], but it can be deduced from the arguments in [I] by comparing with the methods of [Z2].

The general meaning of Proposition 3.2 is the following. The number RT1,d(µ1;µ2, . . . , µN ) can be
viewed as the “euler class” of a bundle Γ0,1 over a closure C̄∞ of the space C∞ of smooth maps
from a fixed elliptic curve that pass through the constraints µ1, . . . , µN ; see [LT]. Then,

2n1,d(µ) =
∣

∣∂̄−1(0) ∩ C∞
∣

∣ = RT1,d(µ1;µ2, . . . , µN ) −
∑

CMT (µ)(∂̄), (3.1)

where
{

MT (µ)
}

are complex finite-dimensional, usually non-compact, manifolds that stratify
∂̄−1(0) ∩ (C̄∞−C∞). Equation (3.1) is an infinite-dimensional analogue of (2) of Proposition (2.4).
In the finite-dimensional case, computation of a contribution to the euler class from an s-regular
stratum Z of the zero set of section s reduces to counting the zeros of a polynomial map be-
tween finite-rank vector bundles over Z̄, unless Z is s-hollow. The goal in the infinite-dimensional
case under consideration is a reduction to the same problem and involves an adoption of the
obstruction-bundle idea of [T]. It turns out that CMT (µ)(∂̄) = 0 for all but one stratum MT (µ)
of ∂̄−1(0) ∩ (C̄∞−C∞). The number CR1(µ) described by Proposition 3.2 is the contribution
CMT (µ)(∂̄) from the only stratum MT (µ) of ∂̄−1(0)∩ (C̄∞−C∞) that does contribute to the “euler
class” RT1,d(µ1;µ2, . . . , µN ) of Γ0,1.

As Subsection 2.1 suggests, the computation of N(α1,0) may require going through a possibly large
tree of steps. We construct this tree in the next subsection. However, as a motivation, in the rest
of this subsection, we go through the initial steps of this computation, without introducing any
additional combinatorial notation. In fact, there are no more steps to go through if n=2 and all
the constraints are points or if n=3 and all the constraints are points or lines.

Since the domain of the linear map α1,0 is a line bundle, α̃1,0 =α1,0. Thus, by Lemma 2.5,

N
(

α1,0

)

=
〈

c(ev∗TPn)c(E1,0)
−1,

[

V̄1,0(µ)
]〉

− Cα−1
1,0(0)

(

α⊥
1,0

)

, (3.2)
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where α⊥
1,0 : E1,0−→ev∗TPn/Cν̄0 denotes the composition of the linear map α1,0 : E1,0−→ev∗TPn

with the quotient projection map π0. As in Lemma 2.5, ν̄0 ∈Γ(V̄1,0(µ); ev∗TPn) is a generic non-
vanishing section. Such a section exists, since the dimension of V̄1,0(µ) is n−1. We denote the
quotient bundle ev∗TPn/Cν̄0 by O1. Let T̃ =(S2, [N ], {0̂}; 0̂, d). By definition, V1,0(µ) = UT̃ (µ).

Suppose T = (S2, [N ], I; j, d)≤ T̃ is a bubble type, i.e. UT (µ) is one of the spaces of stable maps
that stratify V̄1,0(µ). If d0̂ 6=0, by Lemma 2.8,

α−1
1,0(0) ∩ UT (µ) = ∅.

On the other hand, if d0̂ =0, by definition, α1,0 vanishes on UT (µ). Thus,

α−1
1,0(0) =

⊔

[T ]

UT (µ), (3.3)

where the union is taken over all equivalence classes of bubble types

T ≡(S2, [N ], I; j, d) < T̃

such that d0̂ =0. By Proposition 2.7 and Lemma 2.8, the decomposition (3.3) satisfies the require-
ments of (2) of Proposition 2.4, if ν̄0 is generic. Indeed, by Proposition 2.7,

∣

∣

∣
α1,0γ

µ
T (υ) − αT ,0̂ρT (υ)

∣

∣

∣
≤ C(bυ)|υ|

1
p

∣

∣ρT (υ)
∣

∣ ∀υ∈FT δ, where (3.4)

ρT (υ)=
(

(υ̃h)h∈χ(T )

)

∈ F̃T ≡L∗
0̂
T ⊗

⊕

h∈χ(T )

LhT ; υ̃h =
⊗

i∈Î ,h≤i

υi; αT ,0̂

(

(υ̃h)h∈χ(T )

)

=
∑

h∈χ(T )

DT ,hυ̃h.

By Lemma 2.8 and the decomposition (2.4), the linear map

αT ,0̂ : F̃T −→ Hom(E1,0, ev
∗TPn)

is injective on every fiber of F̃T . If the section ν̄0 is generic, the same is true of the linear map

π0 ◦ αT ,0̂ : F̃T −→ Hom(E1,0,O1),
{

{π0 ◦ αT ,0̂}(υ̃)
}

(υ) = π0

(

{αT ,0̂(υ̃)}(υ)
)

, (3.5)

as can been seen from a dimension count. Thus, (3.4) implies that there exists C̃∈C∞(UT (µ);R)
such that

∣

∣

∣
α⊥

1,0γ
µ
T (υ) − {π0 ◦ αT ,0̂}ρT (υ)

∣

∣

∣
≤ C̃(bυ)|υ|

1
p

∣

∣{π0 ◦ αT ,0̂}ρT (υ)
∣

∣ ∀υ∈FT δ. (3.6)

By definition, the ranks of FT and F̃T are |Î| and |χ(T )|, respectively, while χ(T )⊂ Î. Thus, by
Definition 2.1, UT (µ) is α⊥

1,0-hollow if χ(T ) 6= Î. In such a case, by Proposition 2.4, CUT (µ)(α
⊥
1,0)=0.

On the other hand, if χ(T )= Î, i.e. T is a semiprimitive bubble type, ρT is the identity map, and
thus π0 ◦ αT ,0̂ is the resolvent of α⊥

1,0 near UT (µ). By Proposition 2.7,

CUT (µ)(α
⊥
1,0) = N

(

π0 ◦ αT ,0̂

)

, where π0 ◦ αT ,0̂∈Γ(ŪT (µ);Hom(FT , E∗
1,0⊗O1)

)

, (3.7)

provided π0◦αT ,0̂ is a regular linear map. By a slight abuse of notation, we now denote by π0 ◦ αT ,0̂

the extension of the linear map over UT (µ) defined in (3.5) to ŪT (µ). The existence of an extension
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0̂

l

≈ M0,4 × V2,1(µ)

0̂

l

0̂

Figure 7: A Boundary Stratum that Contributes to Cα−1
1,0(0)(α

⊥
1,0) and Two That Do Not

follows from the decompositions (2.4) and (2.5). With respect to the latter decomposition,

FT ≈ π∗1γ
∗
0̂
⊗ π∗2

⊕

h∈χ(T )

LhT̄ −→ Mχ(T )tM0̂T
× ŪT̄ (µ), E∗

1,0⊗O1 ≈ π∗1γ
∗
0̂
⊗ π∗2O1;

{

{π0 ◦ αT ,0̂}
(

u0̂ ⊗ (υh)h∈χ(T )

)}

(υ0̂) = u0̂(υ0̂) · π0

∑

h∈χ(T )

DT̄ ,hυh,

where γ0̂ −→ Mχ(T )tM0̂T
denotes the universal tangent bundle for the marked point 0̂. Thus,

summing (3.7) over all equivalence classes of semiprimitive bubble types T < T̃ , we obtain

Cα−1
1,0(0)(α

⊥
1,0) =

∑

[T ]

N
(

π0 ◦ αT ,0̂

)

=
∑

(k,m)>(1,0)

N
(

α1;k,m

)

, where

α1;k,m∈Γ
(

M0,k+m+1×V̄k,m(µ);Hom(γ∗
0̂
⊗Ek,m; γ∗

0̂
⊗O1)

)

,
{

α1;k,m(u0̂⊗υ)
}

(υ0̂) = u0̂(υ0̂) · π0αk,m(υ).

Above (k,m)> (1, 0) means that k≥1, m≥0, and at least one of the inequalities is strict. In the
process of computing the numbers N(α1;k,m), we will show that π0 ◦αT ,0̂ is indeed a regular linear
map, as needed.

In Figure 7, we give examples of one type of boundary strata UT (µ) that contributes to Cα−1
1,0(0)(α

⊥
1,0)

and of two that do not. As before, each disk denotes a sphere, and we represent the entire space
UT (µ) by drawing the domain of an element of UT (µ). We shade the components of the domain
on which every map in UT (µ) is nonconstant and leave blank the components on which every map
in UT (µ) is constant. In this figure, we also illustrate the splitting and the summation of over all
equivalence classes of semiprimitive bubble types used in the previous paragraph. In short, the
strata UT (µ) that contribute to Cα−1

1,0(0)(α
⊥
1,0) consist of the stable maps that are constant on the

principle component, i.e. the one containing the special marked point 0̂, have only one level of
bubbles, i.e. all the non-principle components are attached directly to the principle component,
and the maps are nonconstant on each of the bubbles.

We next apply the topological method of Subsection 2.1 to counting the zeros of an affine map
with the linear term α1;k,m. By Lemma 2.5,

N
(

α1;k,m

)

=
〈

c
(

γ∗
0̂
⊗Ek,m

)

c
(

γ∗
0̂
⊗O1

)−1
,
[

M0,k+m+1×V̄k,m(µ)
]〉

− Cα̃−1
1;k,m

(0)

(

α̃⊥
1;k,m

)

, (3.8)
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where
α̃⊥

1;k,m : γ∗
0̂
⊗γEk,m

−→
(

γ∗
0̂
⊗π∗PEk,m

O1

)/

Cν̄1

denotes the composition of the linear map

α̃1;k,m : γ∗
0̂
⊗γEk,m

−→ γ∗
0̂
⊗π∗PEk,m

O1

with the quotient projection map π1. As before,

ν̄1 ∈ Γ
(

M0,k+m+1×PEk,m; γ∗
0̂
⊗π∗PEk,m

O1

)

is a generic non-vanishing section. We put

O2 = γ0̂ ⊗
(

(

γ∗
0̂
⊗π∗PEk,m

O1

)/

Cν̄1

)

≈
(

π∗PEk,m
ev∗TPn/Cν̄0

)/

ν̄1(γ0̂).

Let T̃ = (S2, [N ]−[M0], Ĩ ; j̃, d̃) be a bubble type such that |M0|=m, |Ĩ|= k, d̃i> 0, and
∑

d̃i = d,
i.e. ŪT̃ (µ) is one of the components of the space V̄k,m(µ). Suppose T = (S2, [N ], I; j, d) ≤ T̃ is a
bubble type, i.e. UT (µ) is one of the spaces of stable maps that stratify ŪT̃ (µ). By Lemma 2.5,

α̃−1
1;k,m(0) ∩ M0,k+m+1×PEk,m

∣

∣

UT (µ)
=

{(

b; [(υi)i∈Ĩ ]
)

: υi =0 if di 6=0
}

. (3.9)

Of course, the set on the right-hand side of (3.9) is empty if di 6= 0 for all i ∈ Ĩ. From (3.9), we
conclude that

α̃−1
1;k,m(0) =

⊔

[T ]<[T̃ ]

{(

b; [(υi)i∈Ĩ ]
)

: υi =0 if di 6=0
}

, (3.10)

where the union is taken over all equivalence classes of bubble types T̃ and T as above. One might
think that the decomposition (3.10) is the analogue of (3.3) in this case, i.e. each space on the
right-hand side of (3.10) is either α̃⊥

1;k,m-hollow or α̃⊥
1;k,m-regular. In general, this is not the case,

and we need to decompose each space on the right-hand side of (3.10) into the subspaces based on
which of the component elements υi are not zero.

If T̃ and T are bubble types as above and J is a subset of Ĩ, we set

ZJ
T ≡ M0,k+m+1 ×

(

PET J−
⋃

J ′ J

PET J ′
)

, where ET J =
⊕

i∈J

LiT −→ UT (µ).

Let Ĩ0(T )={i∈ Ĩ : di =0}. This is the subset of the principle components on which every k-tuple
of stable maps in UT (µ) is constant. By (3.10),

α̃−1
1;k,m(0) =

⊔

[T ]<[T̃ ]

⊔

J⊂Ĩ0(T )

ZJ
T . (3.11)

We will show that the set ZJ
T is α̃⊥

1;k,m-regular if T is a semiprimitive bubble type and J= Ĩ0(T ).

Otherwise, ZJ
T is α̃⊥

1;k,m-hollow and thus does not contribute to Cα̃−1
1;k,m

(0)(α̃
⊥
1;k,m). Figure 8 shows

one of a typical main stratum UT̃ (µ) of V̄2,m(µ), in a case when Ĩ = {i1, i2} is a two-element set,

and two strata UT (µ) such that T < T̃ is a semiprimitive bubble type.
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i1

i2
0̂

i1

i2

0̂

h1 h2

Î={h1, h2}

Ĩ0(T )={i1}
χ(T )={i2, h1, h2}

i1

i2
0̂

h1 h2

h3
l

Î={h1, h2, h3}

Ĩ0(T )={i1, i2}
χ(T )={h1, h2, h3}

Figure 8: A Stratum UT̃ (µ), s.t. |Ĩ |=2, and Two Strata UT (µ), s.t. T is Semiprimitive

The map γµ
T of Proposition 2.7 induces an orientation-preserving homeomorphism γJ

T between open
neighborhoods of ZJ

T in

NZJ
T ≡ FT ⊕ γ∗ET J ⊗

(

ET Ĩ0(T )−J⊕ET Ĩ−Ĩ0(T )
)

−→ ZJ
T

and in M0;k+m+1×PEk,m. The estimate of Proposition 2.7 implies that for some δ, C∈C∞(ZJ
T ;R+),

∣

∣α̃k,mγ
J
T (b;υ, u) − αJ

T ρ
J
T (b;υ, u)

∣

∣ ≤ C(b)|υ|
1
p
∣

∣ρJ
T (b;υ, u)

∣

∣ ∀(υ, u)∈NZJ
T ,δ, (3.12)

where ρJ
T : NZJ

T −→ ÑZJ
T ≡

⊕

h∈χ(T )

ÑhZ
J
T ,

ÑhZ
J
T =

{

L∗
ι̃h
T ⊗LhT , if h∈ Î , ι̃h∈J ;

γ∗
ET J ⊗LhT , otherwise;

ρJ
T ;h(υ, u) =











ρT ;h(υ), if h∈ Î , ι̃h∈J ;

uι̃h⊗ρT ;h(υ), if h∈ Î , ι̃h 6∈J ;

uh, if h∈ Ĩ−Ĩ0(T );

αJ
T ∈ Γ

(

ZJ
T ; Hom

(

ÑZJ
T ,Hom(γET J , ev∗TPn)

)

)

{

αJ
T (υ̃h)h∈χ(T )

)

}
(

(υi)i∈J

)

=
∑

i∈J

∑

h∈χ(T )∩DiT

DT ,h(υ̃hυi) +
∑

i∈Ĩ−J

∑

h∈χ(T )∩D̄iT

DT ,h(υ̃hυ) ∈ ev∗TPn.

Above ρT ;h denotes the hth component of ρT , i.e. υ̃h in the notation of Proposition 2.7, and ĩh∈ Ĩ
is defined by ĩh≤h whenever h∈I. By Lemma 2.8 and the decomposition (2.4), the linear map

αJ
T : ÑZJ

T −→ Hom
(

γET J , ev∗TPn
)

is injective on every fiber of ÑZJ
T . If the sections ν̄0 and ν̄1 are generic, the same is true of the

linear map

π1 ◦ π0 ◦ α
J
T : ÑZJ

T −→ Hom
(

γ∗
0̂
⊗γET J , γ∗

0̂
⊗O2

)

≈ Hom
(

γET J ,O2

)

{

{π1 ◦ π0 ◦ α
J
T }(υ̃)

}

(υ) = π1π0

({

αJ
T (υ̃)

}

(υ)
)

, (3.13)

as can been seen from a dimension count. Thus, by (3.12),
∣

∣

∣
α̃⊥

1;k,mγ
J
T (υ) − {π1 ◦ π0 ◦ α

J
T }ρ

J
T (υ)

∣

∣

∣
≤ C̃(bυ)|υ|

1
p

∣

∣{π1 ◦ π0 ◦ α
J
T }ρ

J
T (υ)

∣

∣ ∀υ∈NZJ
T ,δ. (3.14)

By definition, the ranks of NZJ
T and ÑZJ

T are |Î|+|Ĩ−J | and |χ(T )|, respectively, while

χ(T ) − Î = Ĩ − Ĩ0(T ).
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Thus, if Î−χ(T ) 6= ∅, i.e. T is not semiprimitive, or J 6= Ĩ0(T ), the rank of NZJ
T is less than the

rank of ÑZJ
T and thus ZJ

T is α̃⊥
1;k,m-hollow. On the other hand, if Î−χ(T )=∅ and J = Ĩ0(T ), ρJ

T

is the identity map, and thus π1 ◦ π0 ◦ α
J
T is the resolvent of α̃⊥

1;k,m near ZJ
T . By Proposition 2.7,

CZJ
T
(α̃⊥

1;k,m) = N
(

π1 ◦ π0 ◦ α
J
T

)

, where π1 ◦ π0 ◦ α
J
T ∈Γ(Z̄J

T ; Hom(NZJ
Z , γ

∗
ET J ⊗O2)

)

. (3.15)

As before, we now denote by π1◦π0◦α
J
T the natural extension of the map defined in (3.13) over ZJ

T .

While we can proceed by computing the numbersN
(

π1◦π0◦α
J
T

)

, where T is a semiprimitive bubble

type and J= Ĩ0(T ), we simplify the computation a little by replacing the linear map π1 ◦ π0 ◦ α
J
T

by another linear map α2;T , such that

N
(

π1 ◦ π0 ◦ α
J
T

)

= N
(

α2;T

)

(3.16)

and π1◦π0◦α
J
T is a regular linear map if and only if α2;T is. With respect to the decomposition (2.5),

NZJ
T ≈

⊕

i∈J

γ∗
0̂;i
⊗

⊕

ιh=i

LhT̄ ⊕ γ∗ET J ⊗
⊕

h∈Ĩ−J

LhT̄ , ET J =
⊕

i∈J

γ0̂;i −→ M2;T ≡
∏

i∈J

MHiT tMiT ,

{

{π1 ◦ π0 ◦ α
J
T }(υ̃h)h∈χ(T )

}(

(υi)i∈J

)

= π1π0

(

∑

i∈J

∑

ιh=1

DT ,h(υ̃hυi) +
∑

i∈Ĩ−J

DT ,i(υ̃iυ)
)

,

where γ0̂;i−→MHiT tMiT is the tautological line bundle. We define the linear map α2;T by

α2;T ∈ Γ
(

M0,k+m+1×PET J×ŪT̄ (µ);Hom
(

γ∗ET J ⊗ET̄ , γ∗ET J ⊗O2)
)

,
{

α2;T

(

u⊗(υh)h∈Ī

)}

(υ̃) = u(υ̃) · π1π0

∑

h∈Ī

DT̄ ,hυh. (3.17)

Let ρ : γ∗
ET J ⊗ET̄ −→ NZJ

T be the vector-bundle map defined by

ρ(u⊗υh) =

{

(u ◦ πιh)⊗υh, if h ∈ Î;

u⊗υh, if h∈ Ĩ−J,

where πi : ET J −→LiT is the projection map. The map ρ is an isomorphism over the dense open
subset ZT of Z̄T and

α2;T = π1 ◦ π0 ◦ α
J
T ◦ ρ.

Thus, (3.16) holds by definition of N(α); see Subsection 2.1. Summing (3.15) over all equivalence
classes of bubble types T < T̃ of the appropriate form and using (3.16), we conclude that

Cα̃−1
1;k,m

(0)(α̃
⊥
1;k,m) =

∑

[T ]

N(α2;T ) =
∑

σ

N
(

ασ

)

, where

ασ∈Γ
(

Mk+m+1×PFσ×V̄σ; Hom
(

γ∗Fσ
⊗Eσ, γ

∗
Fσ

⊗O2)
)

,
{

ασ(u⊗υ)
}

(υ̃) = u(υ̃) · π1π0α
′
σ(υ).

This sum is taken over all tuples σ=(2; k2,m2;φ), where (k2,m2)>(k,m) and φ specifies a splitting
of the set [k2] into k-disjoint subsets and an assignment of m2−m of the elements of the set [m2]
to these subsets. For such a tuple σ, we put

V̄σ = V̄k2,m2(µ); Eσ =Ek2,m2 ; α′
σ =αk2,m2 ; Fσ =

⊕

i∈Imφ

γσ;i −→ Mσ≡
∏

i∈Imφ

Mitφ−1(i).
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For the purposes of the last line, we view φ as a map from [k2]−[k] and a subset of [m2] to [k], and
γσ;i−→Mitφ−1(i) denotes the tautological line bundle.

3.2 A Tree of Chern Classes

In this subsection, we prove Corollary 3.6 by setting up a possibly large, but finite, tree. If each
node of the tree is assigned the chern class that appears in the statement of Lemma 3.3, the sum
of these chern classes, counted with a sign dependent on the distance to the root, is the number
of Corollary 3.6. The reader is referred to the previous subsection for a more explicit description
of the first two levels of the tree and for the proof of Lemma 3.3 in the corresponding cases. The
proof of Lemma 3.3 in general is nearly the same as the one given for the second-level nodes in the
previous subsection.

Each node in the tree is a tuple σ=(r; k,m;φ), where r≥0 is the distance to the root σ0 =(0; 1, 0; ·),
k ≥ 1, and m≥ 0. The tree satisfies the following properties. If r > 0 and σ∗=(r−1; k∗,m∗;φ∗)
is the node from which σ is directly descendent, we require that (k∗,m∗)< (k,m). Furthermore,
φ specifies a splitting of the set [k] into k∗-disjoint subsets and an assignment of m−m∗ of the
elements of the set [m] to these subsets. This description inductively constructs an infinite tree.
However, we will need to consider only the nodes σ=(r; k,m;φ) with 2k+m≤n+1. We will write
σ`σ∗ to indicate that σ is directly descendent from σ∗.

For each node in the above tree, we now define a linear map between vector bundles over an ms-
manifold. If σ=(r; k,m;φ), let {σs =(s; ks,ms;φs) : 0≤s ≤r} be the sequence of nodes such that
σr =σ and σs`σs−1 for all s>0. Put

V̄σ = V̄k,m(µ), Eσ =Ek,m −→ V̄σ, α′
σ = αk,m, Xσ = Yσ×V̄σ, Xσ,s = Yσ,s×V̄σ,

where Yσ = Yσ,r, Yσ,0 = {pt}, Yσ,s = PFσs×Yσ,s−1 if s>0,

Mσ =
∏

i∈Im φ

Mitφ−1(i), Fσ =
⊕

i∈Im φ

γσ;i −→ Mσ.

For the purposes of the last line above, we view φ as a map from [k]−[k∗] and a subset of [m] to [k∗]
in the notation of the previous paragraph. Then, γσ;i−→Mitφ−1(i) is the tautological line bundle;
see Subsection 2.2. Denote by γFσ,0 the (trivial) line bundle over Yσ,0. Let

Oσ = Oσ,r, Oσ,0 = ev∗TPn, Oσ,s = Oσ,s−1

/

Im ν̄σ,s−1 if s>0,

where ν̄σ,s ∈ Γ
(

Xσ,s; Hom(γFσs
,Oσ,s)

)

is a generic section. Since ks−1≤ks, ms−1≤ms, and one of
the inequalities is strict,

1

2
dimXσ,s ≤

1

2
dimXσ =

(

n+1−2k−m
)

+

s=r
∑

s=1

(∣

∣Imφs

∣

∣−1
)

= n− k − r < rkOσ,0 − r.

Thus, we see inductively that each bundle Oσ,s is well-defined and a generic section ν̄σ,s of
Hom(γFσ,s,Oσ,s) does not vanish. Let πσ : ev∗TPn−→Oσ be the projection map. We define

ασ ∈ Γ
(

Xσ; Hom(γ∗Fσ
⊗Eσ; γ∗Fσ

⊗Oσ)
)

, by
{

ασ(u⊗υ)
}

(υ̃) = u(υ̃) · πσα
′
σ(υ) ∈ Oσ.

Note that α̃σ0 =α1,0.
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Lemma 3.3 For every node σ∗,

N
(

ασ∗

)

=
〈

c
(

γ∗Fσ∗
⊗Oσ∗

)

c
(

γ∗Fσ∗
⊗Eσ∗

)−1
,
[

Xσ∗

]〉

−
∑

σ`σ∗

N
(

ασ

)

.

Remark: For a dense open subset of tuples {ν̄σ,s}, the corresponding linear map ασ constructed
above is regular and N(ασ) is independent of the choice of {ν̄σ,s}. What we need is that for every
bubble type T such that UT (µ)⊂V̄kr,mr

(µ) the intersection of the image of the linear map

αT ∈ Γ
(

Yσ×UT (µ);Hom
(

⊕

i∈χ(T )

LiT , ev
∗TPn

)

)

, αT (υ) =
∑

i∈χ(T )

DT ,iυi,

with the subbundle
Im ν̄σ,0 ⊕ . . .⊕ Im ν̄σ,r−1 ⊂ Oσ,0 = ev∗TPn

is {0}. The fact that this condition is satisfied for a dense open subset of tuples {ν̄σ,s} follows by
a dimension count as above, along with an argument similar to the proof of Lemma 3.10 in [Z2].

Proof of Lemma 3.3: (1) By Lemma 2.5,

N
(

ασ∗

)

=
〈

c
(

γ∗Fσ∗
⊗Oσ∗

)

c
(

γ∗Fσ∗
⊗Eσ∗

)−1
,
[

Xσ∗

]〉

− Cα̃−1
σ∗ (0)

(

α̃⊥
σ∗

)

. (3.18)

Let σ∗=(r∗; k∗,m∗;φ∗). By Lemma 2.8, α̃−1
σ∗ (0) is the union of the sets

ZJ
T ≡ Yσ∗ ×

(

PET J −
⋃

J ′ J

PET J ′
)

, where ET J =
⊕

i∈J

LiT −→ UT (µ),

taken over non-basic bubble types T = (S2, [N ]−M0, I; j, d), with |I− Î| = k∗, |M0| = m∗, and
∑

di =d, and nonempty subsets J of I−Î−χ(T ).
(2) The map γµ

T of Proposition 2.7 induces an orientation-preserving homeomorphism γJ
T between

open neighborhoods of ZJ
T in

NZJ
T ≡ FT ⊕ γ∗ET J ⊗

(

ET I−Î−χ(T )−J⊕ET χ(T )−Î
)

−→ ZJ
T

and in Yσ∗×PEσ∗ . Furthermore, the estimate (3.12) holds. Proceeding as in the previous subsection,
we conclude that ZJ

T is α̃⊥
σ -hollow unless T is semiprimitive and J=I−Î−χ(T ). Thus,

CZJ
T

(

α̃⊥
σ∗

)

= 0 if T is not semiprimitive or J 6= I−Î−χ(T ). (3.19)

If T is semiprimitive and J=I−Î−χ(T ), we find that

CZJ
T

(

α̃⊥
σ∗

)

= N
(

ασ∗,T

)

if T is semiprimitive and J = I−Î−χ(T ), (3.20)

where ασ∗,T ∈ Γ
(

Yσ∗×PET J×ŪT̄ (µ);Hom(γ∗ET J ⊗ET̄ , γ∗ET J ⊗Oσ∗,r∗+1)
)

,

ET J ≡
⊕

i∈J

γT ;i −→ Mσ∗,T ≡
∏

i∈J

MHiT tMiT , Oσ∗,r+1 = Oσ∗

/

Im ν̄σ∗

{

ασ∗,T (u⊗υ)
}

(υ̃) = u(υ̃) · πσ∗αk,m(υ), k= |χ(T )|= |Ī|, m = m∗ +
∑

i∈I−χ(T )

|MiT |;
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see (3.17).
(3) From equations (3.18)-(3.20) we conclude that that

N
(

α̃σ∗

)

=
〈

c
(

γ∗Fσ∗
⊗Oσ∗

)

c
(

γ∗Fσ∗
⊗Eσ∗

)−1
,
[

Xσ∗

]〉

−
∑

(k,m)>(k∗,m∗)

∑

|χ(T )|=k,
∑

i∈I−χ(T )

|MiT |=m−m∗

N
(

ασ∗,T

)

=
〈

c
(

γ∗Fσ∗
⊗Oσ∗

)

c
(

γ∗Fσ∗
⊗Eσ∗

)−1
,
[

Xσ∗

]〉

−
∑

σ`σ∗

N
(

ασ

)

.

The inner sum on the first line above is taken over all equivalence classes of semiprimitive bubble
types T =(S2, N−M0, I; j, d) such that |I−Î|=k∗, |M0|=m

∗, and
∑

di =d.

Lemma 3.4 For every node σ=(r; k,m;φ) and positive integer s≤r−1,

〈

c
(

Oσ,s+1

)

c
(

Eσ

)−1
,
[

Xσ,s

]〉

=
〈

c
(

Oσ,s

)

c
(

Eσ

)−1
,
[

Xσ,s−1

]〉

,

where {σs} is the sequence corresponding to σ defined in the paragraph preceding Lemma 3.3.

Proof: Since Oσ,s+1≈Oσ,s

/

γFσs
,

{

c
(

Oσ,s+1

)

c
(

Eσ

)−1}

dimXσ,s
=

dimXσ,s
∑

l=0

∑

l1+l2=l

λl1
Fσs

cl2
(

Oσ,s

){

c
(

Eσ

)−1}

dimXσ,s−2l
. (3.21)

By construction, λFσs
∈H∗(PFσs), while c(Oσ,s), c(Eσ)∈H∗(Xσ,s−1). Thus, (3.21) gives

{

c
(

Oσ,s+1

)

c
(

Eσ

)−1}

dimXσ,s
= λnσ

Fσs

dimXσ,s
∑

l=0

cl−nσ

(

Oσ,s

){

c
(

Eσ

)−1}

dimXσ,s−2l

= λnσ

Fσs

{

c
(

Oσ,s

)

c
(

Eσ

)−1}

dimXσ,s−1
,

(3.22)

where nσ =dimPFσs . By (2.1),

〈

λnσ

Fσs
,
[

PFσs

]〉

=
〈

c
(

Fσs

)−1
,
[

M̄σs

]〉

=
∏

i∈Im φs

〈

c
(

γσs;i

)−1
,
[

M̄0,i+φ−1
s (i)

]〉

= 1. (3.23)

The last identity is a consequence of (1) of Lemma 3.11. The claim follows from (3.21)-(3.23).

Corollary 3.5 For every node σ=(r; k,m;φ),

〈

c
(

γ∗Fσ
⊗Oσ

)

c
(

γ∗Fσ
⊗Eσ

)−1
,
[

Xσ

]〉

=
〈

c(ev∗TPn)c(Ek,m)−1,
[

V̄k,m(µ)
]〉

.

Proof: Since rkOσ =rkEσ+ 1
2 dimXσ, we can identify Eσ with a subbundle of Oσ. Then,

c
(

γ∗Fσ
⊗Oσ

)

c
(

γ∗Fσ
⊗Eσ

)−1
= c

(

γ∗Fσ
⊗Oσ

/

γ∗Fσ
⊗Eσ

)

= c
(

γ∗Fσ
⊗(Oσ/Eσ)

)

=⇒

{

c
(

γ∗Fσ
⊗Oσ

)

c
(

γ∗Fσ
⊗Eσ

)−1}

dimXσ
=

dimXσ
∑

l=0

λl
Fσ

{

c(Oσ)c(Eσ)−1
}

dimXσ−2l
. (3.24)
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Similarly to the proof of Lemma 3.4, (3.24) gives

〈

c
(

γ∗Fσ
⊗Oσ

)

c
(

γ∗Fσ
⊗Eσ

)−1
,
[

Xσ

]〉

=
〈

c
(

Oσ

)

c
(

Eσ

)−1
,
[

Xσ,r−1

]〉

=
〈

c
(

Oσ,r

)

c
(

Eσ

)−1
,
[

Xσ,r−1

]〉

.
(3.25)

Applying Lemma 3.4 to the last expression in (3.25) and using Oσ,1≈(ev∗TPn)/C, we obtain

〈

c
(

γ∗Fσ
⊗Oσ

)

c
(

γ∗Fσ
⊗Eσ

)−1
,
[

Xσ

]〉

=
〈

c
(

Oσ,1

)

c
(

Eσ

)−1
,
[

Xσ,0

]〉

=
〈

c
(

ev∗TPn)c(Ek,m)−1,
[

V̄k,m(µ)
]〉

.

We now combine Lemma 3.3 and Corollary 3.5 to obtain a topological formula for the num-
ber N(α1,0). For any integers k and k∗, let θk

k∗ denote the number of ways of splitting a set
of k∗-elements into k nonempty subsets. For every pair (k∗,m∗) ≥ (1, 0) of integers, we define
Θ(k∗,m∗) inductively by

Θ(1, 0)=1, Θ(k∗,m∗) = −
∑

(1,0)≤(k,m)<(k∗,m∗)

(

m∗

m

)

km∗−mθk
k∗Θ(k,m) if (k∗,m∗)>(1, 0). (3.26)

Corollary 3.6 With notation as above,

N(α1,0) =
∑

(1,0)≤(k,m)

Θ(k,m)

n+1−(2k+m)
∑

l=0

(

n+1

l

)

〈

alη̃n+1−(2k+m)−l,
[

V̄k,m(µ)
]〉

.

Proof: Note that the coefficient in front of Θ(k,m) in (3.26) is the number of ways of splitting the
set [k∗] into k nonempty subsets and assigning m∗−m elements of the set [m∗] to these subsets.
Thus, by Lemma 3.3 and Corollary 3.5,

N
(

α1,0

)

= N
(

α̃σ0

)

=
∑

(1,0)≤(k,m)

Θ(k,m)
〈

c(ev∗TPn)c(Ek,m)−1,
[

V̄k,m(µ)
]〉

. (3.27)

Since Ek,m =
⊕

Li,

c(Ek,m)−1 =

i=k
∏

i=1

(

1 + c1(Li)
)−1

=

i=k
∏

i=1

∞
∑

l=0

cl1(L
∗
i ) =

∞
∑

l=0

η̃l. (3.28)

The last equality above is immediate from the definition of η̃l; see Subsection 2.2. The claim follows
from (3.27) and (3.28), along with c(ev∗TPn)=(1+a)n+1.

3.3 Combinatorics

In this subsection, we show that the topological expression for N(α1,0) given in Corollary 3.6 is
the same as the topological expression for CR1(µ) given in Proposition 3.1. This fact is immediate
from Corollary 3.10. We start by proving an explicit formula for the numbers Θ(k,m).

Lemma 3.7 If (k,m)≥(1, 0), Θ(k,m) = (−1)k+m−1km(k−1)!.
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(1) We first start verify this formula in the case k = 1. By (3.26),

Θ(1, 0) = 1, Θ(1,m∗) = −
m∗−1
∑

m=0

(

m∗

m

)

Θ(1,m) if m∗>(1, 0). (3.29)

We need to show that Θ(1,m) = (−1)m. If m = 0, this is the case. Suppose m∗ ≥ 1 and
Θ(1,m)=(−1)m for all m<m∗. Then, by (3.29),

Θ(1,m∗) = −
m∗−1
∑

m=0

(

m∗

m

)

Θ(1,m) = −
m∗
∑

m=0

(

m∗

m

)

(−1)m + (−1)m
∗

= −(1−1)m
∗

+(−1)m
∗

=(−1)m
∗

,

as needed.
(2) We now verify the formula in the general case. It is easy to see from the definition of θk

k∗ in
the previous subsection that

θk
k = 1 if k≥1 and θk

k∗ = kθk
k∗−1 + θk−1

k∗−1 if k≥2. (3.30)

Suppose k∗ ≥ 2 and the claimed formula holds for all (k,m) with (1, 0)≤ (k,m)< (k∗,m∗). Then
by (3.26),

Θ(k∗,m∗) = −
∑

(1,0)≤(k,m)<(k∗,m∗)

(

m∗

m

)

km∗−mθk
k∗Θ(k,m)

= km∗
∑

(1,0)≤(k,m)<(k∗,m∗)

(−1)k+m

(

m∗

m

)

θk
k∗(k−1)!

(3.31)

Using (3.30), we obtain

∑

(1,0)≤(k,m)<(k∗,m∗)

(−1)k+m

(

m∗

m

)

θk
k∗(k−1)! =

∑

(1,0)≤(k,m)<(k∗,m∗)

(−1)k+m

(

m∗

m

)

(

kθk
k∗−1 + θk−1

k∗−1

)

(k−1)!

=

m∗−1
∑

m=0

(−1)m
(

m∗

m

) k∗

∑

k=1

(−1)k
(

θk
k∗−1k! + θk−1

k∗−1(k−1)!
)

(3.32)

+ (−1)m
∗

k∗−1
∑

k=1

(−1)k
(

θk
k∗−1k! + θk−1

k∗−1(k−1)!
)

.

Note that

k∗

∑

k=1

(−1)k
(

θk
k∗−1k! + θk−1

k∗−1(k−1)!
)

=
k∗

∑

k=1

(−1)kθk
k∗−1k! −

k∗−1
∑

k=0

(−1)kθk
k∗−1k! = 0; (3.33)

k∗−1
∑

k=1

(−1)k
(

θk
k∗−1k! + θk−1

k∗−1(k−1)!
)

=
k∗−1
∑

k=1

(−1)kθk
k∗−1k! −

k∗−2
∑

k=0

(−1)kθk
k∗−1k! = (−1)k

∗−1(k∗−1)!,

since ck
∗

k∗−1 =0, ck
∗−1

k∗−1 =1, and c0k∗−1 =0 if k∗>1. Combining equations (3.31)-(3.33), we verify the
claimed identity for (k,m)=(k∗,m∗).

We next need to relate the intersection numbers alη̃l′ and alη̃l′ . We break the computation into
several steps.
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Lemma 3.8 Suppose T =
(

S2,M, I; j, d) is a basic bubble type, i∈I, and Mi⊂MiT . Then, under
the splitting (2.2), with T̄ =T /Mi,

c1(L
∗
i′T )

∣

∣ŪT (Mi)(µ) =

{

γ∗T ;i×1, if i′= i;

1×c1(L
∗
i′ T̄ ), if i′ 6= i;

c1(L
∗
i′T )

∣

∣ŪT (Mi)(µ) = 1×c1(L
∗
i′ T̄ ).

Proof: The first identity and the case i′ 6= i of the second identity are immediate from the definitions.
In the remaining case, by (2.3), we have

c1(L
∗
i T )

∣

∣ŪT (Mi)(µ) = c1(L
∗
i T )

∣

∣ŪT (Mi)(µ) −
∑

∅6=M ′
i⊂MiT

PDŪT (µ)ŪT (M ′
i)

(µ)
∣

∣ŪT (Mi)(µ). (3.34)

By definition of the spaces,

PDŪT (µ)ŪT (M ′
i)

(µ)
∣

∣ŪT (Mi)(µ) =











0, if M ′
i 6⊂Mi and Mi 6⊂M

′
i ;

1×PDŪT̄ (µ)ŪT̄ (M ′
i−Mi)(µ), if Mi M ′

i ;

PDŪT0
ŪT0(Mi−M ′

i
)×1, if M ′

i Mi.

(3.35)

where T0 = (S2, 1̂+Mi, {i}; i, 0), i.e. ŪT0 =M̄0,1̂+Mi
. Plugging (3.35), (2) of Lemma 3.11, and the

case i′= i of the first statement of this lemma into (3.34), we obtain the remaining claim.

Corollary 3.9 For all k≥1, m≥0, and l≥0,

〈

alη̃n+1−(2k+m)−l,
[

V̄k,m(µ)
]〉

=
∑

m∗≥m

(

m∗

m

)

km∗−m
〈

alηn+1−(2k+m∗)−l,
[

V̄k,m∗(µ)
]〉

.

Proof: Let T =(S2, [N ]−M0, I; j, d) be a basic bubble type such that |I|=k, |M0|=m, and
∑

di =d.
By Lemma 3.8 and (1) of Lemma 3.11,

〈

alη̃n+1−(2k+m)−l,
[

ŪT (µ)
]〉

=
∑

M0⊂M∗
0⊂[N ]

〈

alηn+1−(2k+|M∗
0 |)−l,

[

ŪT /M∗
0
(µ)

]〉

, (3.36)

where T /M∗
0 =(S2, [N ]−M∗

0 , I; j, d). The claim is obtained by summing (3.36) over all equivalence
classes of bubble types T of the above form.

Corollary 3.10 For all k≥1 and l≥0,
∑

m≥0

Θ(k,m)
〈

alη̃n+1−(2k+m)−l,
[

V̄k,m(µ)
]〉

= (−1)k−1(k−1)!
〈

alηn+1−2k−l,
[

V̄k(µ)
]〉

.

Proof: By Lemma 3.7 and Corollary 3.9,
∑

m≥0

Θ(k,m)
〈

alη̃n+1−(2k+m)−l,
[

V̄k,m(µ)
]〉

= (−1)k−1(k−1)!
∑

m≥0

∑

m∗≥m

(−1)m
(

m∗

m

)

km∗〈

alηn+1−(2k+m∗)−l,
[

V̄k,m∗(µ)
]〉

= (−1)k−1(k−1)!
∑

m∗≥0

km∗

(

∑

m≤m∗

(−1)m
(

m∗

m

))

〈

alηn+1−(2k+m∗)−l,
[

V̄k,m∗(µ)
]〉

= (−1)k−1(k−1)!
〈

alηn+1−2k−l,
[

V̄k,0(µ)
]〉

,
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since
∑

m≤m∗

(−1)m
(

m∗

m

)

km∗

= (1 − 1)m
∗

= 0 if m∗ 6= 0.

Lemma 3.11 (1) If J is a finite set of cardinality at least two,
〈

c
|J |−2
1 (γ∗J ),

[

MJ

]〉

= 1, where
γJ −→MJ is the tautological line bundle.
(2) If T = (S2,M, I; j, d) is a basic bubble type, i∈I, and Mi is nonempty subset of MiT , under
the splitting (2.2),

PDŪT (µ)ŪT (Mi)(µ)
∣

∣ŪT (Mi)(µ) = −1×c1(L
∗
i T̄ ) + c1(γ

∗
T ;i)×1 −

∑

∅6=M ′
i Mi

PDŪT0
ŪT0(Mi−M ′

i)
×1,

where T0 =(S2, 1̂+Mi, {i}; i, 0) and T̄ =T /Mi.

Proof: (1) Both statements are straightforward consequences of well-known facts in algebraic ge-
ometry; see [P2]. In our notation, MJ is the Deligne-Mumford moduli space of rational curves
with points marked by the set {0̂}+J and c1(γ

∗
J)=ψ0̂. Thus, if j1, j2∈J and j1 6=j2,

c1(γ
∗
J ) = ψ0̂ =

∑

∅6=J ′⊂J−{j1,j2}

PDŪT0
ŪT0(J ′), (3.37)

where T0 =(S2, J, {i}; i, 0). Since c1(γ
∗
J )

∣

∣ŪT0(J ′) =c1(γ
∗
J ′+1̂

) under the decomposition (2.2), the first

claim of the lemma follows from (3.37).
(2) Equation (3.37) implies that for any 1̂∈J ,

c1(γ
∗
J) + ψ1̂ =

∑

∅6=J ′ J−{1̂}

PDŪT0
ŪT0(J ′). (3.38)

If T , i, and Mi are as in (2) of the lemma, under the splitting (2.2),

PDŪT (µ)ŪT (Mi)(µ)
∣

∣ŪT (Mi)(µ) = −ψ1̂×1 − 1×ψ0̂. (3.39)

The second claim of the lemma follows from (3.38), applied with J = {1̂}+Mi, and (3.39), since
1×ψ0̂ =1×c1(LiT̄ ).

4 Comparison of n
(1)
d (µ) and n1,d(µ)

4.1 Summary

In this section, we prove

Proposition 4.1 Suppose n ≥ 2, d ≥ 1, and µ = (µ1, . . . , µN ) is an N -tuple of proper linear
subspaces of Pn in general position such that codimCµ=d(n+1)−1. Then

n
(1)
d (µ) = n1,d(µ).
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Denote by M1,1 the Deligne-Mumford moduli space of stable genus-one curves with one marked
point and by M1,1 the main stratum of M1,1, i.e. the complement of the point ∞ in M1,1. The
elements of M1,1 parameterize (equivalence classes of) smooth genus-one curves with one marked
point. The point ∞∈ M1,1 corresponds to a sphere with one marked point and with two other
points identified.

Denote by M=M1,N

(

Pn, d
)

the moduli space of stable degree-d maps from N -pointed genus-one
curves to Pn. Let

M(µ) =
{

b∈M : evl(b)∈µl ∀l∈ [N ]
}

.

We denote by π : M−→M1,1 the forgetful functor sending each stable map b=[S, [N ], I;x, (j, y), u]
to the one-marked curve [S, y1] and contracting all unstable components of (S, y1). The resulting
complex curve is either a torus or a sphere with two points identified. For any σ∈M1,1, let

Mσ = π−1(σ), Mσ(µ) = Mσ ∩ M(µ).

If the j-invariant σ is different from infinity, i.e. the stable curve Cσ corresponding to σ is smooth, the
cardinality of Mσ(µ) is

∣

∣Aut(Cσ)
∣

∣ times the number of genus-one degree-d curves with j-invariant σ
that pass through the constraints µ, i.e.

∣

∣Mσ(µ)
∣

∣ = 2n1,d(µ). (4.1)

If
{

σk

}

⊂M1,1 converges to ∞∈M1,1 and bk ∈Mσk
(µ), a subsequence of {bk} converges in M to

some b∈M∞(µ). It will be shown that Σb is a sphere with two points identified; see Lemma 4.2
and Corollary 4.5. Conversely, for every

b = (S, [N ], {0̂}; , (0̂, y), u) ∈ M∞(µ)

such that Σb is a sphere with two points identified and for every σ∈M1,1 sufficiently close to ∞,
there exists a unique stable map b(σ)∈Mσ(µ) close to b in M; see Lemma 4.3. Since the number
of stable maps

b = (S, [N ], {0̂}; , (0̂, y), u) ∈ M∞(µ)

such that Σb is a sphere with two points identified is 2n
(1)
d (µ), Proposition 4.1 follows from the two

lemmas, the corollary, and equation (4.1).

4.2 Dimension Counts

In this subsection, we show that if

[b]=
[

S, [N ], I;x, (j, y), u
]

∈ M∞(µ)

and u0̂ =ub|S is not constant, then Σb =S is a sphere with two points identified; see Lemma 4.2.
This lemma is proved by dimension counting. We then observe that for each such stable map b
and every σ∈M1,1 sufficiently close to ∞, there exists a unique stable map b(σ)∈Mσ(µ) close to b
in M; see Lemma 4.3.
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Lemma 4.2 If [b] =
[

S, [N ], I;x, (j, y), u
]

∈M∞(µ) and u0̂ = ub|S is not constant, then Σb =S is
a sphere with two points identified.

Proof: Suppose T = (S, [N ], I; j, d) is a simple bubble type such that S is a circle of k spheres,
d0̂ 6=0, and

∑

di = d. Let UT ,d0̂
denote the subspace of UT such that the nonconstant restrictions

of ub to the components of S have degrees d0̂,1, . . . , d0̂,k′ for all b∈UT ,d0̂
. We must have

∑

d0̂,l =d0̂.
Then, the dimension of UT ,d0̂

(µ) is given by

(

k′

∑

l=1

(

d0̂,l(n+1)+n−1
)

− nk′ +
∑

i∈Î

(

di(n+1)+n−2−(n−1)
)

+
(

N−(k−k′)
)

)

−
(

codimCµ+N)

= 1 − |k| − |Î|.

Thus, UT (µ)=∅ unless k=1 and Î=∅, i.e. Σb =S is a sphere with two points identified.

Lemma 4.3 For every [b]=
[

S, [N ], {0̂}; , (0̂, y), u
]

∈M∞(µ) such that S is a sphere with two points
identified, there exists neighborhood Ub of ∞ in M1,1 and Wb of b in M1,N (Pn, d) such that

∣

∣Mσ(µ) ∩Wb

∣

∣ = 1 ∀σ∈Ub−{∞}.

Proof: Since d≥1,
H1(S;u∗bTP

n) = (n+1)H1
(

S;u∗bO(1Pn)
)

= 0; (4.2)

see Corollary 6.5 in [Z2] for example. The lemma follows from (4.2) by standard arguments.
A purely analytic proof can be found in [RT].

4.3 A Property of Limits in M1,N (Pn, d)

Suppose
{

σk

}

⊂M1,1 converges to ∞∈M1,1 and bk∈Mσk
converges to

[b]=
[

S, [N ], I;x, (j, y), u
]

∈ M∞

such that ub|S is constant. In this subsection, we describe a condition such a limit b must satisfy;
see Lemma 4.4. This lemma is the key part of Section 4. Its proof extends the argument of [P1] for
the n=2 case and makes use of the explicit notation described in Subsection 2.2. We conclude by
observing that no element of M∞(µ) can satisfy this condition if the constraints µ are in general
position.

Figure 9 illustrates in some cases the condition described by Lemma 4.4. The second picture,
however, is somewhat misleading. The two nodes of the domain at which the arrows point are
mapped to the same point, which is a “tacnode,” according to Lemma 4.4. It is a “tacnode” in the
sense that the span of the lines tangent to the two branches at the node of the image curve in Pn is
at most one-dimensional. In particular, one or both of the branches might be cuspidal. The proof
of Lemma 4.4 shows that the branch corresponding to the upper node is in fact a cusp.

Lemma 4.4 Suppose

[b]=
[

S, [N ], I;x, (j, y), u
]

∈
⋃

σ∈M1,1

Mσ ∩MT ,
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cusp

l

tacnode

Figure 9: Properties of Images of Some Elements in the Closure of
⋃

Mσ

where T =(S, [N ], I; j, d) is a simple bubble type such that S is a circle of spheres and d0̂ =0. Then
the dimension of the linear span of the set

{

duh

∣

∣

∞
e∞ : h∈χ(T )

}

is less than
∣

∣χ(T )
∣

∣.

Proof: (1) By the algebraic geometry definition of stable-map convergence, there exist
(i) a one-parameter family of curves κ̃ : F̃ −→ ∆ such that ∆ is a neighborhood of 0 in C, F̃ is
a smooth space, κ̃−1(0)=Σb, and Σt≡ κ̃

−1(t) is a smooth genus-one curve for all t∈∆∗≡∆−{0};
(ii) a holomorphic map ũ : F̃ −→Pn such that ũ|κ−1(0)=ub.
This family κ̃ : F̃ −→∆ can be obtained from another family of curves κ0̂: F0̂−→∆ that satisfies (i),
except κ−1

0̂
(0)=S, by a sequence of blowups at smooth points of the central fiber as we now describe.

Choose an ordering ≺ of the set I consistent with its partial ordering. If h∈I, let

Ih =
{

i∈I : i≺h
}

, i(h) = max Ih if h∈ Î , I(h) = Ih ∪ {h}, M(h) =
{

l∈ [N ] : jl�h
}

,

b(h) =
(

S2,M(h), I(h);x|Î(h), (j, y)|M(h), u|I(h)
)

.

Suppose h ∈ Î and we have constructed a one-parameter family of curves κi(h) : Fi(h) −→ ∆ that

satisfies (i), except κ−1
i(h)(0)=Σb(i(h)). Let Fh be the blowup of Fi(h) at the smooth point of (ιh, xh)

of Σb(i(h)) and let κh: Fh −→∆ be the induced projection map. Choose coordinates (t, wh) near

(ιh, xh)∈Fi(h) such that dκi(h)
∂

∂wh
=0, i.e. wh is a coordinate in κ−1

i(h)(t) for t∈∆ sufficiently small.

We define coordinates (t, zh) on a neighborhood in Fh of the complement of the node of the new
exceptional divisor by

(t, zh) −→
(

t, wh = tzh, [1, zh]
)

.

For a good choice of the family κ0̂ : F0̂−→∆, F̃ =Fh∗ and π̃=πh∗, where h∗ is the largest element
of I with respect to the ordering ≺.
(2) Let ψ∈H0(S;wS) be a nonzero differential, i.e. ψ is a holomorphic (1, 0)-form on the compo-
nents of S, which has simple poles at the singular points of S with residues that add up to zero at
each node. Then, for each h∈H0̂T , there exists ah∈C∗ such that

ψ|(0,wh) = ah

(

1 + o(1)
)

dwh.

Thus, we can extend ψ to a family of elements ψt∈H
0(Σt;ωΣt) such that

ψ|(t,wh) = ah

(

1 + o(1)
)

dwh, with ah∈C
∗. (4.3)

If h∈ Î , let |h|=
∣

∣{i∈I : i<h}
∣

∣. Denote by h̃ the element of H0̂T such that h∈D̄h̃T . By (4.3), we
have

ψ|(t,zh) = t|h|ah̃

(

1 + o(1t)
)

dzh, with ah̃∈C
∗. (4.4)
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(3) Let H1 and H2 be any two hyperplanes in Pn that intersect the image of ub transversally and
miss the image of the nodes of Σb. Then for all t sufficiently small and i=1, 2,

u−1
t (Hi) =

{

z
(i)
1,h1

(t), . . . , z
(i)
d,hd

}

⊂ Σt, where hj ∈ Î , z
(i)
j,hj

(t) = z
(i)
j,hj

(0) + o(1t), (4.5)

z
(i)
j,hj

(0)∈Σb,h, and ut = ũ|Σt. Since
∑

z
(1)
hj

(t) and
∑

z
(2)
j (t) are linearly equivalent divisors in Σt,

j=d
∑

j=1

∫ z
(2)
j,hj

(t)

z
(1)
j,hj

(t)
ψt = 0 ∀t∈∆∗, (4.6)

where each line integral is taken inside of an appropriate coordinate chart (t, zh). Plugging (4.4)
and (4.5) into (4.6) gives

j=d
∑

j=1

t|hj |ah̃j

(

z
(2)
j,hj

(0) − z
(1)
j,hj

(0) + o(1t)
)

= 0 ∀t∈∆∗. (4.7)

Let k=min
{

|h| : h∈χ(T )
}

; then k=min
{

|hj | : j ∈ [d]
}

. Thus, dividing equation (4.7) by tk and
then taking the limit as t−→0, we conclude that

∑

|hj |=k

ah̃j
z
(1)
j,hj

(0) =
∑

|hj|=k

ah̃j
z
(2)
j,hj

(0). (4.8)

(4) Equality (4.8) holds for a dense subset of pairs (H1,H2). The consequences of this fact can be
interpreted as follows. For each h∈ Î, let [uh, vh] be homogeneous coordinates on Σb,h such that
zh =vh/uh. Each map uh corresponds to an (n+ 1)-tuple of homogeneous polynomials

ph,i =

l=dh
∑

l=0

ph,i;lu
lvd−l, i = 0, . . . , n, ph,i;l∈C.

Equality (4.8) implies that there exists K∈C such that

∑

|h|=k,dh 6=0

ah̃

∑i=n
i=0 ciph,i;dh−1

∑i=n
i=0 ciph,i;dh

= K ∀
[

c0, . . . , cn
]

∈Pn. (4.9)

On the other hand, uh1(∞)=uh2(∞) for all h1, h2∈χ(T ). Thus, for all h1, h2∈χ(T ), there exists
Kh1,h2 ∈C

∗−{0} such that

(

ph1,0;dh1
, . . . , ph1,n;dh1

)

= Kh1,h2

(

ph2,0;dh2
, . . . , ph2,n;dh2

)

.

It follows that (4.9) is equivalent to

i=n
∑

i=0

∑

|h|=k,dh 6=0

ãhph,i;dh−1ci = K
i=n
∑

i=0

ph1,i;dh1
ci ∀ci∈C =⇒

∑

|h|=k,dh 6=0

ãhph,i;dh−1 = Kph1,i;dh1
, i=0, . . . , n. (4.10)
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where h1 is a fixed element of the set
{

h∈ Î : |h|=k, dh 6=0
}

and ãh ∈C∗. It is straightforward to
deduce from (4.10) that

∑

|h|=k,dh 6=0

ãhduh

∣

∣

∞
e∞ = 0.

The lemma is now proved, since
{

h∈ Î : |h|=k, dh 6=0
}

⊂χ(T ).

Corollary 4.5 Suppose

[b]=
[

S, [N ], I;x, (j, y), u
]

∈
⋃

σ∈M1,1

Mσ ∩ M∞(µ).

Then ub|S is not constant.

Proof: Suppose ub|S is constant. Let

Ĩ=
{

i∈I : χT i 6=0
}

⊂ Î , M0 =
⋃

i∈I−Ĩ

MiT , x̃=x| ˆ̃I, (j̃, ỹ)=(j, y)
∣

∣

(

[N ]−M0

)

, d̃=d|Ĩ , ũ=u|Ĩ;

T̃ =
(

S2, [N ]−M0, Ĩ ; j̃, d̃
)

, b̃ =
(

S2, [N ]−M0, Ĩ ; x̃, (j̃, ỹ), ũ
)

.

Then, T̃ is a bubble type such that
∑

d̃i =d and d̃i>0 for all i∈ Ĩ− ˆ̃I. The latter property implies

that χ(T̃ )= Ĩ− ˆ̃I. Furthermore, b̃∈UT̃ (µ). By Lemma 4.4, the linear map

α|χ(T̃ )|,|M0|
:

⊕

i∈χ(T̃ )

LiT̃ −→ ev∗TPn, α|χ(T̃ )|,|M0|
(υ) =

∑

i∈χ(T̃ )

DT̃ ,iυi,

does not have full rank at b̃. However, this is impossible by Lemma 2.8.
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