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Abstract

We give a formula computing the number of one-nodal rational curves that pass through an
appropriate collection of constraints in a complex projective space. The formula involves in-
tersections of tautological classes on moduli spaces of stable rational maps. We combine the
methods and results from three different papers.
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1 Introduction

Enumerative algebraic geometry is a field of mathematics that dates back to the nineteenth century.
However, many of its most fundamental problems remained unsolved until the early 1990s. For

*Partially supported by NSF grant DMS-9803166



example, let d be a positive integer and = (p1,...,un) an N-tuple of linear subspaces of P" of
codimension at least two such that

I=N
codimcp = Z codimcp; — N =d(n+1)+n—3.
=1

If the constraints p are in general position, denote by ng(u) the number of rational degree-d curves
that pass through pq,...,un. This number is finite and depends only on the homology classes
of the constraints. If d=1, it can be computed using Schubert calculus; see [GH]. All but very-
low-degree numbers n4(p) remained unknown until [KM] and [RT] derived a recursive formula for
these numbers. In this paper, we prove

Theorem 1.1 Suppose n >3, d>1, and p= (p1,...,un) is an N-tuple of proper subvarieties
of P™ in general position such that

I=N
codimg pn = Z codimgpy — N =d(n+1) — 1. (1.1)
=1

Then the number of degree-d rational curves that have a simple node and pass through the con-
straints p is given by

1
ng (1) = 5(RTua(pipz, . jn) = CRy(n),  where
2k<n+1 n+1-2k n+1 ~
CRi(p) = Y (1" '(k-1)! Z( l )<alnn+1_2k_l, [Ve()])-
k=1 =0

The symplectic invariant RTy 4(-;-) and the top intersections <alnn+1_2k_l, [Vk(,u)]> are computable
via algorithms described elsewhere.

n 3 1 5 5 6

d 4 4 1 6 6

v | (55) | (5,14) | (5,1,04) | (21,17 | (2,1,1,1,6)
nM(u) ] 1,800 | 1,800 | 1,800 | 20,340 | 20,340

Table 1: The Number ng)(,u) of One-Nodal Degree-d Rational Curves in P"

For the purposes of this table, we assume that the constraints pu1, ..., uy are linear subspaces of P
of codimension at least two. We describe such a tuple p of constraints by listing the number of
linear subspaces of codimension 2,...,n among p1, ..., uy. For example, the triple (5,1,4) in the
third column indicates that the tuple u consists of 5 two-planes, 1 line, and 4 points in general
position in P%.

In the statement of Theorem 1.1, RT; 4(-;-) denotes the genus-one degree-d symplectic invariant
of P" defined in [RT]. This invariant can be expressed in terms of the numbers ng4(-); see [RT]. In



particular, it is computable. Brief remarks concerning the meaning of RT 4(+;+) can be found at
the beginning of Section 3.

The compact oriented topological manifold Vi (i) consists of unordered k-tuples of stable rational
maps of total degree d. Each map comes with a special marked point (i,00). All these marked
points are mapped to the same point in P”. In particular, there is a well-defined evaluation map

ev: Vi(p) — P,

which sends each tuple of stable maps to the value at one of the special marked points. We also
require that the union of the images of the maps in each tuple intersect each of the constraints
Wi,...,un. In fact, the elements in the tuple carry a total of N marked points, y1,...,yy, in addi-
tion to the k special marked points. These marked points are mapped to the constraints u1, ..., puy,
respectively. Roughly speaking, each element of Vj(u) corresponds to a degree-d rational curve
in P, which has at least k irreducible components, and k of the components meet at the same
point in P". The precise definition of the spaces Vi (1) can be found in Subsection 2.2.

The cohomology classes a and 7; are tautological classes in Vi (). In fact,
a=evie(Opn(1)).

Let Vj (1) be the oriented topological manifold defined as Vi(u), except without specifying the
marked points y1, ..., yy mapped to the constraints u1, ..., unx. Then, there is well-defined forget-
ful map,

T Vk’(:u) - VI::(M)v

which drops the marked points 41, ..., yy and contracts the unstable components. The cohomology
class 1€ H?(Vi(p)) is the sum of all degree-l monomials in the elements of the set

{T* V(1,005 -+ T WP(k00) } C H>(Vi(p))-

As common in algebraic geometry, 1(; o) denotes the first chern class of the universal cotangent
line bundle for the marked point (i,00). In Subsection 2.2, we give a definition of 7; that does not
involve the projection map 7. An algorithm for computing the intersection numbers involved in the
statement of Theorem 1.1 is given in Subsection 5.7 of [Z2]. Tt is closely related to the algorithm
of [P2] for computing intersections of tautological classes in moduli spaces of stable rational maps
into P™.

If n=2, we denote by n((il) () the number of rational degree-d curves passing through the constraints
counted with a choice of the node on each curve. The formula of Theorem 1.1 gives

o () = (d;1>nd<u>. (1.2)

This identity is clear, since the arithmetic genus of every degree-d curve in P? is (dgl). Equa-
tion (1.2) is used in [P1] to count genus-one plane curves with complex structure fixed. More
precisely, if p is a tuple of constraints in P" satisfying condition (1.1), let n; 4(x) denote the num-
ber of genus-one degree-d curves that pass through the constraints g and have a fixed generic



complex structure on the normalization, i.e. its j-invariant is different from 0 and 1728. The key
step in [P1] is to show that

nna(u) =0l (w), (1.3)

if u is a tuple of 3d—1 points in P2. One of the main ingredients in proving Theorem 1.1 is Propo-
sition 4.1, which states that (1.3) is valid for any tuple p that satisfies condition (1.1). Note that
the numbers listed in Table 1 are consistent with (1.3) and facts of classical algebraic geometry. In
particular, the image of every degree-4 map from a genus-one curve to P” lies in a P? and the image
of every degree-6 map lies in a P%; see [ACGH, p116]. Thus, the first three numbers in the table
should be the same, and the last two numbers should be the same. The proof of Proposition 4.1
extends the degeneration argument of [P1] and builds up on modifications described in [Z1]. We
work with the moduli space ﬁl, ~(P", d) of stable degree-d maps from genus-one N-pointed curves
into P and study what happens in the limit to the maps that pass through the constraints p as
the j-invariant of the domain tends infinity, i.e. the domain degenerates to a rational curve with
two points identified.

Proposition 4.1 is not useful for determining the numbers ny 4(x) in P™ if n >3, since the right-hand
side of (1.3) is unknown. Computation of ny 4(p) for all projective spaces is the subject of [I], where
an entirely different approach is taken. The main step in computing these numbers is showing that

2nl,d(:u) = RTl,d(lul; w2 ... >/-LN) - ORl(M))

where C Ry (1) is the number of zeros of an explicit affine map between vector bundles over V| (u);
see Proposition 3.2. The remaining step is to express this number of zeros topologically. In general,
if the linear part of an affine map 1 does not vanish, it is easy to determine the signed cardinality
of ¥~1(0); see Lemma 2.5. The approach of [I] is to replace the linear part a of the affine map
under consideration by a nonvanishing linear map over a space obtained from V{(u) by a sequence
of blowups and then to express the resulting intersection number in terms of intersection numbers
on the spaces V,@(,u). The main problem with this approach is that the new linear map is not
described in [I] and it is not clear how to construct it in general. In addition, the normal bundles
of certain spaces needed for the second part of this approach are given incorrectly; see Lemma 2.8
or equation (2.27) in [I] for example. Both of these statements can be corrected without affecting
the computability of the intersection numbers, but presumably with a change in the final result.
If n=2, no blowup is needed. If n=3,4, the zero set of « is a complex manifold and the “deriva-
tive” of o in the normal direction along a~1(0) is nondegenerate. In such cases, only one blowup is
needed and a linear map with the required properties can be constructed fairly easily. Furthermore,
Lemma 2.8 of [I] requires no correction in the n=2,3, 4 cases, while equation (2.27) is never used.
If n=2,3, CRy(p) and ny 4(p) are then expressed in terms of the numbers ng ('), with d’ <d and
p' related to p. Several numbers n g(p) for P* are given in [I] as well. However, no topological
formula, like that of Theorem 1.1, is given for C'Ry(u) or ny 4(p) for P™ with n >4 and no number
nyq(p) is given for P™ with n>5.

We obtain the expression of Theorem 1.1 for the number C'R; (1) in Section 3; see Proposition 3.1.
Our approach involves no blowups and requires relatively little understanding of the global struc-
ture of the spaces Vi (u). Instead we describe CR;(u) as the euler class of a bundle minus the sum
of contributions to the euler class from smooth, but usually noncompact, strata of the zero set of
the linear part aq of the affine map. Computation of these contributions in good cases involves



counting the zeros of affine maps again, but with the rank of the target bundle reduced by one; see
Subsection 2.1. Of course, if we are to have any hope of computing these contributions, we need
to understand the behavior of o g near the smooth strata of its zero set. Proposition 2.7 describes
the behavior of ay ¢ and of related linear maps near the boundary strata of Vg (u).

Theorem 1.1 follows immediately from Propositions 3.1 and 4.1. Their proofs are mutually inde-
pendent. Section 4 uses some of the notation defined in Subsection 2.2. The topological tools of
Subsection 2.1, the descriptive notation of Subsection 2.2, and the structure theorem of Subsec-
tion 2.3 are integral to the computations of Section 3.

In brief, we enumerate one-nodal rational curves from genus-one fixed-complex-structure invariants.
Can a similar approach be used with higher-genera enumerative invariants? Let p be an N-tuple
of proper subvarieties of P" in general position such that

codimcp =d(n+1) —n.

Denote by ng 4(p) the number of genus-two degree-d curves that pass through the constraints p

and have a fixed generic complex structure on the normalization. Let n£l3) (1), 7a(p), and Ty(p)
denote the number of rational two-component curves connected at three nodes, of rational curves
with a triple point, and of rational curves with a tacnode, respectively. If n =2, we take n((ig) ()
to be the number of two-component rational curves with a choice of three nodes common to both
components. In all cases, the curves have degree-d and pass through the constraints y. Completing
the degeneration argument of [KQR], it is shown in [Z1] that

na.a(i) = 6(ng (1) + 7a() + Tu(p)), (1.4)

if u is a tuple of 3d—2 points in P2. The arguments of [KQR] and [Z1] should extend to show
that equation (1.4) is valid for arbitrary constraints u in all projective spaces. On the other hand,
ng.q(p) for P3 is computed in [Z2] and the method extends at least to P4. Thus, in those two cases,
we should be able to express the sum of the numbers ng’) (1), Ta(p), and Ty(p) in terms of inter-
section numbers of the spaces Vi(u). The relation (1.4) is obtained by considering a degeneration
to a specific singular genus-two curve. Perhaps, different relations can be obtained by considering
degeneration to other singular genus-two curves. With enough different relations, we would be able

to compute the numbers nl(f)(,u), 1a(p), and Ty(p) at least for P? and P4.

Since the initial submission of this paper, a formula for the numbers ng)(,u) in P3, i.e. the lowest-
dimensional case of Theorem 1.1, has also appeared in [R]. The approach of [R] is completely
unrelated to the one presented here; it uses more classical tools of algebraic geometry, instead of
the moduli space of stable maps.

The author thanks T. Mrowka for many useful discussions and E. Ionel for comments on the original
version of this paper.



2 Background

2.1 Topology

We begin by describing the topological tools used in the next section. In particular, we review the
notion of contribution to the euler class of a vector bundle from a (not necessarily closed) subset of
the zero set of a section. We also recall how one can enumerate the zeros of an affine map between
vector bundles. These concepts are closely intertwined. Details can be found in Section 3 of [Z2],
where these concepts are presented in a greater generality.

Throughout this paper, all vector bundles are assumed to be complex and normed. If F— M is
a smooth vector bundle, closed subset Y of F' is small if it contains no fiber of F' and is preserved
under scalar multiplication. If Z is a compact oriented zero-dimensional manifold, we denote the
signed cardinality of Z by *|Z|. If k is an integer, we write [k] for the set of positive integers not
exceeding k.

Definition 2.1 Suppose F,O — M are smooth vector bundles, 2 is an open subset of F, and
¢: Q— 0O is a smooth bundle map.
(1) Bundle map o: F— O is a dominant term of ¢ if there exists e € CO(F;R) such that

|p(v) — (V)| < e(v)|e(v)] YveQ and Uli_n)los(v) = 0.
(2) The dominant term o: F— O of ¢ is the resolvent of ¢ if a: F— O is linear map which is
injective on every fiber of F.
(8) The bundle map ¢: Q— O is hollow if there exist a vector bundle F—— M of rank less than
the rank of F', a smooth bundle map p: F—F, and a linear map a: F — O, which is mjective
on every fiber, such that aop is a dominant term of ¢.

If F— M is a vector bundle, we denote by yr — PF the tautological line bundle and by
mpp :PF— M the bundle projection map. If « is a section of the bundle Hom(F, O), let & be the
section of Hom(yp, 75 ,O) induced by o

The base spaces we work with in the next two sections are closely related to spaces of rational
maps into P™ of total degree d that pass through the N constraints w1, ..., unx. From the algebraic
geometry point of view, spaces of rational maps are algebraic stacks, but with a fairly obscure local
structure. We view these spaces as mostly smooth, or ms-, manifolds: compact oriented topological
manifolds stratified by smooth manifolds, such that the boundary strata have (real) codimension at
least two. Subsection 2.3 gives explicit descriptions of neighborhoods of boundary strata and of the
behavior of certain bundle sections near such strata. We call the main stratum M of ms-manifold
M the smooth base of M. Definition 3.7 in [Z2] also introduces the natural notions of ms-maps
between ms-manifolds, ms-bundles over ms-manifolds, and ms-sections of ms-bundles.

Definition 2.2 Let M =M, U| "2 M;=MU| '3 M; be an ms-manifold of dimension n.

(1) If ZC M; is a smooth oriented submanifold, a normal-bundle model for Z is a tuple (F,Y, 1),
where

(1a) F— Z is a smooth vector bundle and Y is a small subset of F;

(1b) for some § € C®(Z;RY), ¥: Fs— (Y —Z) — M is a continuous map such that




(1b-i) 9: Fs— (Y — Z) — M is a homeomorphism onto an open neighborhood of Z in MU Z;
(1b-ii) 9| z is the identity map, and ¥: F5—Y—Z — M is an orientation-preserving diffeomorphism
on an open subset of M.

(2) A closure of normal-bundle model (F,Y,9) for Z is a tuple (Z,F', ), where

(2a) Z is an ms-manifold with smooth base Z;

(2b) m: Z— M is an ms-map such that w|z is the identity map;

(2¢c) F' — Z is an ms-bundle such that F'|z=F.

We use a normal-bundle model for Z to describe the behavior of bundle sections over M near Z.
Each section we encounter in this paper exhibits one of the two kinds of behavior described by
Definition 2.3.

Definition 2.3 Suppose M is an ms-manifold, V. — M is an ms-bundle, s € T(M;V), and
Z s H0).

(1) Z is s-hollow if there exist a normal-bundle model (F,Y,V) for Z and a bundle isomorphism
Yy PV — 75V, covering the identity on Fs—(Y —Z), such that

(1a) Vv |ps—y—z is smooth and Vv |z is the identity;

(1b) the map ¢ = Yy o ¥*s: Fs— (Y —2Z)—V is hollow.

(2) Z is s-reqular if there exist a normal-bundle model (F,Y,9) for Z with closure (Z,F' 7),
section o« €T(Z, Hom(F',7*V)), and a bundle isomorphism dy: 9*V — w5V covering the identity
on Fs—(Y —Z2), such that

(2a) Vv |ps—y—z is smooth and Vv |z is the identity;

(2b) |z is nondegenerate and is the resolvent for =1y od*s: F5—(Y —2)—V;

(2¢) the space PF' admits a decomposition into subspaces {Z;} such that each spaces Z; is either
a-hollow or satisfies (2a) and (2b) with s replaced by .

If M is a smooth manifold and Z is a smooth compact submanifold of M such that s vanishes
along Z, but the derivative of s in the normal direction along Z is nondegenerate, Z is s-regular.
The full-rank linear map « is the derivative of the section s in the normal direction along Z.
However, if the derivative of s in the normal direction does not have full rank, Z may not be
s-hollow. For example, if s is the section of the trivial line bundle over C given by s(z) = 22, the
submanifold {0} is not s-hollow. In fact, {0} is s-regular in the sense of Section 3 in [Z2]. On the
other hand, if s is the section of the trivial rank-two bundle over Cx C given by

CxC — CxC, s(z,w) = (zw, zw?),

{0} is s-hollow, while the submanifold {0} x C* is s-regular. In contrast, the submanifold {0} xC
is not s-regular.

We call s€T'(M; V) a regular section if M can be composed into s-hollow and s-regular subspaces.
We call B
o€l (Z;Hom(F',0))

a regular linear map if « satisfies the requirements of (2c) of Definitions 2.3.
If a€T'(M;Hom(E, O)) is a linear map and rk E+% dim M =tk O, the zero set of the affine map

wa,ﬁ: E— 07 ¢a,ﬁ(v) =Uy+ Oé(’U),



is a zero-dimensional oriented submanifold of E|M, if 7 € T'(M;O) is a generic section; see
Lemma 3.10 in [Z2]. If « is a regular linear map, 1/1;,17(0) is a finite set for a generic choice
of 7, and the number

N(a) =*[¢55(0)]

is independent of such a choice of .

We are now ready to state the first part of the computational method of this paper, Proposition 2.4.
The second part is Lemma 2.5.

Proposition 2.4 Let V— M be an ms-bundle of rank n over an ms-manifold of dimension 2n.
Suppose U is an open subset of M and s€T'(M;V) is such that s|y is transversal to the zero set.
(1) If s71(0) NU is a finite set, £|s71(0) NU| = (e(V), [M]) — Cpq_ps(5)-

~ i=k
(2) If M —U = | | Z;, where each Z; is s-regular or s-hollow, then s~*(0) NU is finite, and
=

(2

1=k
Es710) U] = (e(V), [M]) = Cy_y(s) = (e(V), [M]) = > Cz,(s).
=1

If Z; is s-hollow, Cz,(s)=0. If Z; is s-regular and o;: F] — 7}V is the corresponding linear map,
Cz,(s) = N(ay).
Finally, if a; €T(Z;; Hom(F!,7¥V') has full-rank rank over all of Z;,
Cz,(s) = (wfe(V) - e(F) 7, [2i]).

This proposition is a special case of Corollary 3.13 in [Z2]. Proposition 2.4 reduces the prob-
lem of computing Cz,(s) for an s-regular manifold Z; to counting the zeros of an affine map
between two vector bundles. The general setting for the latter problem is the following. Suppose
E,O — M are ms-bundles, such that rkE—i—% dimM =1k O, and a: E— O is a regular linear
map. Let v€T'(M;O) be such that the map

Yap=v+oa: E—0O

is transversal to the zero set in O on E|M, and all its zeros are contained in E|M. Then
N(a)=* |1[)a_}7(0)| depends only on «. If the rank of E is zero, then clearly

N(a) =* [ 5(0)] = (e(0), [M]).
If the rank of F is positive and v is generic, the section 7 does not vanish and thus determines a

trivial line subbundle C7 of O. Let O+ =(O/Cr and denote by a the composition of a with the
quotient projection map. If F is a line bundle and « is a linear map,

N(a) =*[455(0)] = (e(E"©0%), [M]) = Ca-1(g) ().
By Proposition 2.4, computation of C,-1g) (at) again involves counting the zeros of affine maps,
but with the rank of the new target bundle, i.e. E*®@O', one less than the rank of the original one,
i.e. O. On the other hand, if the rank of E is bigger than one, N(«)= N(&); see Subsection 3.3
in [Z2]. Thus, at least in reasonably good cases, the number N(«) can be determined in finitely

many steps.

The next lemma summarizes the results of Subsection 3.3 in [Z2]. Let Agp=ci(v}) € H*(PE).



Figure 1: A Rooted Tree

Lemma 2.5 Suppose M is an ms-manifold and E,O — M are ms-bundles such that
Tk E + %dim/\;t =rk0O.
If a €T (M; Hom(E, O)) and v €T(M;O) are such that « is regular, v has no zeros, the map
Yap=v+a: E— O

is transversal to the zero set on E|M, and all its zeros are contained in E|M, then zpa_}(O) 5 a
finite set, i\zp;,};(O)\ depends only on «, and

N(a) =g (0)] = (c(O)e(B) ™ [M)]) = Ca-1(g) (@)

Furthermore, if n=rkF,

k=n
B+ (B =0e H(PE) and {(uXg ', [PE]) = (u, [M]) YueH™ " (M). (2.1)
k=1

2.2 Notation
In this subsection, we describe the most important notation used in this paper. Some of the nota-

tion is only sketched; see Section 2 in [Z3] for more details.

Let gn: C— S? CR? be the stereographic projection mapping the origin in C to the north pole.
We identify C with S?—{oo} via the map gy, where

oo = (0,0,—1) € % c R,
Let eso =(1,0,0) € T S2.

Definition 2.6 A finite partially ordered set I is a linearly ordered set if for all i1,ia,h €1 such
that i1,19 < h, either i1 <iy orig<iy.

A linearly ordered set I is a rooted tree if I has a unique minimal element, i.e. there exists 0l
such that 0<i for alliel.

In Figure 1, the dots denote the elements of a rooted tree I and the arrows describe the partial
ordering. If I is a linearly ordered set, let I be the subset of the non-minimal elements of I. For
every h €I, denote by ¢, € I the largest element of I which is smaller than h; see Figure 1. Suppose

I'= || Iy is the splitting of I into rooted trees such that k is the minimal element of Ij. If 1¢1,
keK



~—" | i/I

k‘l k‘g k’l k'2
Figure 2: Linearly Ordered Sets I and 1 —I—kli

we define the linearly ordered set I+41 to be the set I+1 with all partial-order relations of I along
with the relations

~

k<1l  and 1<h if hely

see Figure 2.

If S is a (possibly singular) complex curve and M is a finite set, a P"-valued bubble map with
M -marked points is a tuple
b= (S7M7I;‘T7(j7y)7u)7

where [ is a linearly ordered set, and
x:1—SUS? j M—1I, y: M—SUS? and u: [—C®(S;P")UC>®(S?;P")
are maps such that

. 52 —{co}, ifpel; . 52 {0}, ifjiel; C°(S%, P, ifiel;
x ~ A (27 A
" s, if o, &1 s, if j, &1 C=(S;P"), ifid;

and uy,(co)=u,, (x3,) for all he I. We associate such a tuple with Riemann surface

=  {iyxs?, el )
Xp = <7|:€_I|Eb,7,)/'\47 where Ypi = {{i}xS, ifigl and (h,00) ~ (11, z) VheEl,

with marked points (ji,y:) € ¥4, and continuous map wy @ Xy — P", given by u|¥y; = u; for
all i€ I. We require that all the singular points of 3 and all the marked points be distinct. Fur-
thermore, if S = 52, all these points are to be different from each of the special marked points
(,00) € Xy 3, where i is a minimal element of I, i.e. one of the elements of the set I—1I. In addition,
if Z)b,z-:S2 and u[S%]=0¢€ Ho(P"; Z), then Yp,; must contain at least two singular and/or marked
points of ¥ other than (i,00). If S # S2, but S is unstable, u; must satisfy a similar stability
condition whenever ¥ ;=S. In particular, if S is a torus or a circle of spheres and the restriction
of u; to a component Sy, of S is homologically zero, S}, contains at least one marked point of .
Two bubble maps b and b’ are equivalent if there exists a homeomorphism ¢: X, — X such that
up =wuy o ¢, ¢(ji, i) = (jj, y;) for all € M, ¢ls, , is holomorphic for all i€ I, and ¢(¥p;) C Xy for
some i el'—I"ifi'el—1.

The general structure of bubble maps is described by tuples 7 = (S, M, I; j, d), with d; € Z specifying
the degree of the map uy, on X ;. We call such tuples bubble types. Bubble type T is simple if I is a
rooted tree; 7 is basic if I=0 and d; #0 for all i€ I; T is semiprimitive if 1y, §{f, d,, =0, and dj, #0

10



for all h e I. The above equivalence relation on the set of bubble maps induces an equivalence
relation on the set of bubble types. For each h,i€ 1, let

DT ={hel:i<h}, D;T =D;TU{i}, HT ={hel:u=i}, MT={leM:j=i},
0, ifVielst. heD;T, d;=0;
xth=141, ifVielst. heD;T, d;=0, but dj #0; X(T)={hel: xrh=1}.

2, otherwise;

Denote by H7 the space of all holomorphic bubble maps with structure 7.

The automorphism group of every bubble type 7 we encounter in the next two sections is trivial.
Thus, every bubble type discussed below is presumed to be automorphism-free.

If S is a circle of spheres, we denote by M7 the set of equivalence classes of bubble maps in Hy.
For each bubble type 7 = (52, M, I;7,d), let

Ur = {[b] tb= (527 M, I;z, (],y),u) €Hr, u“(OO) = ’LLZQ(OO) Viy, o El—f}
Then there exists By C H7 such that Uy is the quotient of a subset By of Hs by a 675(51)1 -
action. Denote by Ug) ) the quotient of By by Gr=(S 1)1 Céq—. Then U7 is the quotient of Z/[,§9 )

by the residual G% = (SI)I -1 G action. Corresponding to these quotients, we obtain line
orbi-bundles {L;7—Uz:i€l}. Let

FT =P AT — Ur, where  F,7 =L, 7@ L] T.
hel

Denote by F 0T the open subset of F7 consisting of vectors with all components nonzero.

The Gromov-convergence topology on the space of equivalence classes of bubble maps induces a
partial ordering on the set of bubble types and their equivalence classes such that the spaces

Uy = |Juy  ad  Ur=J ur
TI<T TI<T

are compact and Hausdorff. The G%-action on Ll7(9 ) extends to an action on 5[7(9 ), and thus the
line orbi-bundles L;7 — Uz with i € I —I extend over Uz. These bundles can be identified with
the universal tangent line bundles for appropriate sections of the universal bundle over U7. The
evaluation maps

ev;: Hr —>]Pm7 eVl((57 M, I;x, (.77y)7u)) :ujl(yl)7

descend to all the quotients and induce continuous maps on Uy and L_{7(—0 )1t =y is an M-tuple
of subvarieties of P, let
Mz (p) = {beMz:evi(b)ep Vie M}

and define spaces Uz (1), Uz (11), etc. in a similar way. If S = S2, we define another evaluation map,

ev: B — P" by ev((S2,M, Iz, (4, y),u)) = ug(00),

11



k
Figure 3: The Domains of Elements of U7 and Uz ()

(0)

where 0 is any minimal element of I. This map descends to Z/{79
of constraints, let

and Ur. If p=p,; is an M-tuple

Ur(p) = {belr: evi(b) €y Vie M N M, ev(b) e WGM—M}
and define U7(—0 ) (1), etc. similarly.
Suppose T =(S2%, M, I; j,d) is a bubble type, ke[—f, and My is nonempty subset of M7 . Let
T /Mo = (8% 1, M ~Mo: j|(M ~Mo), d).

Define T (M) = (8%, M, I 4+, 1;5',d") by

k, if l€ My; 0, ifi=k;
g1 =11, ifleMyT—Moy; d, = dy, ifi=1;
71, otherwise; d;, otherwise.

The tuples 7 /My and 7 (Mj) are bubble types as long as dy #0 or My# M7 . In Figure 3, we show
the domain of an element of the space Uy, where I ={k} is a single-element set, and the domain of
an element of the space Uz (), where Mo={l1,l2} is a two-element set. In this and later figures,
we denote each component of the domain by a disk and shade the component(s) on which the map
into P" is nonconstant. We indicate marked points on the ghost components, i.e. the components
on which the map is constant, by putting small dots on the boundary of the corresponding disk.
The point labeled by k, i.e. the same way as the component, is the special marked point (k, o).
Proposition 2.7 and Lemma 2.8, as well as the decomposition (2.4), show that it is crucial to clearly
distinguish between ghost and non-ghost components.

Note that ) B i
Uz (ao) (1) = My gy X Uz jay (1), (2.2)

where 90 {itun, denotes the Deligne-Mumford moduli space of rational curves with ({0,1} U My)-
marked points. If 7 is a basic bubble type, let

a(LiT)=el(LiT) = ) PDy Uz ()] € H? (Ur(p)). (2.3)
0#AMoC M, T

This cohomology class is well-defined; see Subsection 5.2 in [Z2]. Whenever the bubble type 7 is
clear from context, we will write ¢;(L}) and ¢;(L}) for ¢;(L;7T) and ¢ (£;7), respectively. We
illustrate definition (2.3) in Figure 4 in the case I = {k} is a single-element set. In this figure,
as well in the future ones, we denote spaces of tuples of stable maps by drawing a picture of the

12
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Figure 4: An Example of Definition (2.3)

domain of a typical element of such a space.

We are now ready to explain the claim of Theorem 1.1. Let n, d, N, and p be as in the statement
of the theorem. If k>1 and m>1, denote by V(1) the disjoint union of the spaces Uz (i) taken
over equivalence classes of basic bubble types 7 =(S2, [N]— Moy, I;j,d) with |My| =m, |I| =k,
d;>0, and > d;=d. Let V() =Vi (). We define the spaces V. ,, (1) similarly. Let

{aCh)ielk]}y, {er(L): ik} C H* (Vi m(n);Z)
be given by
{aCDlr(w): ik} = (LT iel}, {al@)tr(n): iclk} = {a(LiT) iel},

where 7 is as above and [k] ={1,...,k}. We denote by m,m € H* (Vi m(p); Z) the sum of all
degree-I monomials in {01 (Lr):ielk } and in {01 LY):ielk } respectively. For example,

3 = ¢ (L7) + & (L])er (L£5) + e (L) (£3) + ¢1(L3) € HO (Vom(p); Z).
Finally, let a=ev*ci (v, ) € H? (l_}k,m(,u); Z), where ypn — P denotes the tautological line bundle.

We next describe a generalization of the splitting (2.2) which is used in computations in Section 3.
If 7=(S?,1,[N]—Moy;j,d) is a bubble type, let

T =(S?1I,[N]—Mo; j|([N]-My),d|I), where I=I-{icI—I:d;=0}, My=DMyuU | JMT.

iel-1
Note that if 7 is semiprimitive, 7 is basic. Furthermore,
Ur(p) = H Mu,7um,T X Uz (1), (2.4)
iel—T
Ur(p) = H Mp,7um,T X Uz (1), (2.5)
iel-I

where smﬁm M7 denotes the main stratum of ﬁHﬂ'u M7 el —1I, by definition, the bundle
L;T — Uz (p) is the pullback by the projection map of the bundle

L()’Z;(O) — My, 7uM,T = Z/_{T(o), where ’Z;(O) = (52,HZ-’T+MZ-’T, {0};0,0).

We call the latter bundle the_tautological line bundle over ﬁHﬁu ;7 This is the universal tangent
line at the marked point 0 € Mg, 70,7 The decomposition (2.4) for the bubble 7 (M) of Figure 3

13
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Figure 5: An Example of the Decomposition (2.4)

is illustrated in Figure 5.

Finally, if X is any space, F'— X is a normed vector bundle, and §: X — R is any function, let
Fs5 = {(b,’U)EF: |U|b < 5(())}

Similarly, if © is a subset of F', let Qs = F5;N Q. If v=(b,v) € F, denote by b, the image of v under

the bundle projection map, i.e. b in this case.

2.3 A Structural Description

We now describe the structure of the spaces Vi (1) and the behavior of certain bundle sections
over Vi ,(p) near the boundary strata.

If b= (S M, I;z,(j,y),u) € Br and ke, let
'DTJJ) = duk|ooeoo.

If 7 is a basic bubble type, the maps Dy with T <7 and keI—1I induce a continuous section of
ev*TP" over L_lg) ) and a continuous section of the bundle LZ’T@GV*T]P)TL over Z/_{% described by

Df,k[l% cx] = cx Db, if beup, c,eC.

Proposition 2.7 Suppose p>2, n>2,d>1, N>1, u=(u1,...,pun) is an N-tuple of proper
subvarieties of P™ in general position, such that

=N

codimepn = Z codimcp; — N =d(n+1) — 1,
1=1

and My is a subset of [N]. If T=(S? [N]-Moy,1I;7,d) is a basic bubble type such that~ZcZi:d, the
space Uz (1) is an ms-manifold of (real) dimension 2(n+1-2|I|~|My|) and LyT for k€I and ev*TP"
are ms-bundles over Uz (p). If T = (8%, [N]—Mo, I;3,d) <T, there exist §,C € C* (Z/{T(,u); R+) and
a homeomorphism

Vo FTs — Uz (p),
onto an open neighborhood of Uz (1) in Uz (1) such that ~4 Uz (i) is the identity, 7#(.7:75—.7:0’]')
s contained in 82/_{?(/0, and ’y’;—|f@’]:; is an orientation-preserving diffeomorphism onto an open
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Figure 6: An Example of the Estimate of Proposition 2.7

subset of Uz (p). Furthermore, for all kel, with appropriate identifications,

‘D ;ﬂT( v) — aTk:(pT ‘ < C(by)|v|» ‘p']' ‘ Yve FTs, where
pr(V) = ((On)hexr)) € FT = P LiTQL;T; on= (X) vi; inel-1I, heD;T;
hex(T) iel,heD; T
a1k ((On)hex(T)) = Z D1 10n,
helNx(T)

and Iy, C I is the rooted tree containing k.

Figure 6 illustrates the analytic estimate of Proposition 2.7 in a case when I= {k} is a single-
element set. Note that, while the stratum Uz () of Figure 6 has codimension three in Uz (p), the
section DT i depends only on two parameters of the normal bundle, vy, and vy, ®vy;, at least up
to neghglble terms. Such bubble types 7 will always be hollow in the sense of Definition 2.3 and
will not effect our computations.

Proposition 2.7 is a special case of Theorem 2.8 in [Z2]; see also the remark following the theorem.
The dimension of Uz (p) is obtained as follows:

1 - ~ -
3 dimUsz (p) = dime Uz« (p) = Z (di(n+1) + n—2) — (|[I|-1)n — (codimep + |Mo|)
iel*
=n+1-2I| — | M|

The analytic estimate on Ds . is crucial for the implementation of the topological tools of Sub-

section 2.1 in Subsection 3.1. If 7 is semiprimitive, the bundle F7 = F7 and the section
ar = aropr extend over Uz (u) via the decomposition (2.5). In terms of the notions of Sub-
section 2.1, (FT,FT—F"T %) is a normal-bundle model for U7 (1) CUz(11). This normal-bundle
model admits a closure if 7 is semiprimitive. Note that F7 is not usually the normal bundle of
Ur () in Uz (p) if both spaces are viewed as algebraic stacks; see [P2]. Proposition 2.7 implies only
that the restrictions to U7 (i) of 7T and of the normal bundle of U7 () in Uz (u) are isomorphic
as topological vector bundles.

For any k,m € Z, we define bundle Ej,, — Vkm(,u) and homomorphism ay, 1 By, — ev*TP"
over Vi ., (n) by

Bemltz(n) =P LT,  arm((Wi)ier) = > Dz i
icl iel
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whenever 7 = (52, [N]—My, I; j,d) is a basic bubble type such that Sd; =d, |I| =k, and |My|=m.
The following lemma will be used in Section 3.

Lemma 2.8 Supposen>2,d>1, N>1, and p = (1, ..., un) is an N-tuple of proper subvarieties
of P"* in general position such that codimcpu=d(n+1)—1. If T =(S%,[N]—Moy,I;35,d) is a bubble
type such that Uz (1) CVim (1), the restriction of oy, to the subbundle
ET+ = @ LT C Egm
iex(T)—1I

is nondegenerate over Ur ().

Proof: The linear map oy, ,,, has full rank on E7T L over Ur(p) if and only if the section

{agm|ETL} € T(PETUr (1); V. @evTP")
has no zeros. Note that

dimec PET U7 (1) < dime Vi(p) + (k—1)=n—k < n.

Thus, it is enough to show that {ay,,|ET L} is transversal to the zero set in PET LUz (p) if the
constraints p are in general position. This last fact is immediate from Lemma 2.9.

Lemma 2.9 If u: S? —P" is a holomorphic map of positive degree and e € TsoS? is a nonzero
vector, the linear maps

HY(S*u*TP") — Tyy(o0)P", £ — &(o0),
{€€ HY(S* u*TP"): {(00) =0} — Ty, € — Ve &,
are onto.

This lemma is well-known; see Corollary 6.3 in [Z2] for example.

3 Computations

3.1 Summary and Motivation
In this section, we prove

Proposition 3.1 Suppose n>2, d>1, and p=(p1,...,un) is an N-tuple of proper subvarieties
of P™ in general position such that
I=N
codimgcp = Z codimgpy — N =d(n+1) — 1.
I=1
Then the number of degree-d genus-one curves that have a fized generic complex structure on the
normalization and pass through the constraints i is given by

1
nl,d(lu’) = 5 (RTl,d(:ul; M2y - 7/~LN) - CRy (M)), where

2k<n+1 n+1—-2k n+1 -
CRi) = S (~F (k-1 > ( l )<alnn+1_2k_l, Ve(w)]).
k=1 =0
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Proposition 3.1 follows from Proposition 3.2 and Corollaries 3.6 and 3.10. We use the topological
tools of Subsection 2.1 and the analytic estimate of Proposition 2.7 to obtain the first corollary in
Subsection 3.2. The derivation of Corollary 3.10 in Subsection 3.3 is essentially combinatorics.

Proposition 3.2 Suppose n>2, d>1, and p=(p1,...,un) is an N-tuple of proper subvarieties
of P™ in general position such that codimcp = d(n+1)—1. Then the number of degree-d genus-
one curves that have a fixed generic complex structure on the normalization and pass through the
constraints p is given by

(RTya(p1; p2, - - -, un) — CRy(p)),  where CRy(p) = N(aip),

N |

nya(p) =
i.e. CRy(p) is the number of zeros of the affine map
Va0t E10=L1 — ev"'TP", Vo 0,5(V) = Uy + a10(v),
over V(1) for a generic section v €T (Vi (n); ev*TP™).

Proposition 3.2 is basically the main result of the analytic part of [I]. The exact statement is not
made in [I], but it can be deduced from the arguments in [I] by comparing with the methods of [Z2].

The general meaning of Proposition 3.2 is the following. The number RT 4(u1; p2, ..., pun) can be
viewed as the “euler class” of a bundle I'%! over a closure C™ of the space C> of smooth maps
from a fixed elliptic curve that pass through the constraints p1, ..., uy; see [LT]. Then,

2n1a(p) = |01 (0) N C™| = RTy q(p1s p2, - i) — > Covtz (D), (3.1)

where {MT(,u)} are complex finite-dimensional, usually non-compact, manifolds that stratify
071(0) N (C*°—C). Equation (3.1) is an infinite-dimensional analogue of (2) of Proposition (2.4).
In the finite-dimensional case, computation of a contribution to the euler class from an s-regular
stratum Z of the zero set of section s reduces to counting the zeros of a polynomial map be-
tween finite-rank vector bundles over Z, unless Z is s-hollow. The goal in the infinite-dimensional
case under consideration is a reduction to the same problem and involves an adoption of the
obstruction-bundle idea of [T]. It turns out that Cu,(,)(9) =0 for all but one stratum Mo (1)
of 071(0) N (C*—C>). The number CRy(y) described by Proposition 3.2 is the contribution
Ctz () (0) from the only stratum My (u) of 9~1(0) N (C*°—C°) that does contribute to the “euler
class” RTq q(p1; o, - - ., i) of TOL.

As Subsection 2.1 suggests, the computation of N(aj,0) may require going through a possibly large
tree of steps. We construct this tree in the next subsection. However, as a motivation, in the rest
of this subsection, we go through the initial steps of this computation, without introducing any
additional combinatorial notation. In fact, there are no more steps to go through if n=2 and all
the constraints are points or if n=3 and all the constraints are points or lines.

Since the domain of the linear map aq ¢ is a line bundle, &1 9=ay,9. Thus, by Lemma 2.5,

N(aio) = {c(ev*TP")e(Ero) Y, Vio()]) — ) (ai). (3.2)
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where afoz E, o —ev*TP"/Ciy denotes the composition of the linear map o o: E1g—ev*TP"
with the quotient projection map my. As in Lemma 2.5, iy € T'(V o(u); ev*TP?) is a generic non-
vanishing section. Such a section exists, since the dimension of Vj o(u) is n—1. We denote the
quotient bundle ev*TP"/Ciy by Oy. Let 7=(52,[N],{0};0,d). By definition, Vi o(x) =Uz ().
Suppose 7 = (S2,[N],I;j,d) < T is a bubble type, i.e. Uz (u) is one of the spaces of stable maps
that stratify Vi o(u). If dy#0, by Lemma 2.8,

ay6(0) NUr () = 0.

On the other hand, if d;=0, by definition, a1, vanishes on Uz (u). Thus,

ap4(0) = | |Ur(w), (3.3)

where the union is taken over all equivalence classes of bubble types
T=(5%I[N],I;5,d) <T

such that dg=0. By Proposition 2.7 and Lemma 2.8, the decomposition (3.3) satisfies the require-
ments of (2) of Proposition 2.4, if iy is generic. Indeed, by Proposition 2.7,

1
‘al,ofyg—(v) = aTﬁpT(’u)‘ < C(by)v|?|pr(v)| YveFTs, where (3.4)
p1 (V)= ((On)hex(n)) € FT=L;T® @LhT; Oy = ®v“ ar o((On)hex(1)) Z D7 1 0p.
hex(7) iel h<i hex(T)

By Lemma 2.8 and the decomposition (2.4), the linear map
arg: FT — Hom(FE) g, ev*TP")
is injective on every fiber of F7. If the section 7 is generic, the same is true of the linear map
To oyt FT — Hom(E 0, 01), {{wo o O‘T,O}({’)}(U) = ({afo(ﬁ)}(v)), (3.5)

as can been seen from a dimension count. Thus, (3.4) implies that there exists C'€ C™(Uz(u); R)
such that

afofyé(v) —{mpo aT’ﬁ}pT(’u)‘ < C’(bv)|v\%|{7r0 o ar()}py(’u)‘ Yoe FTs. (3.6)

By definition, the ranks of FT and FT are |I | and |x(T)|, respectively, while x(7) . Thus, by
Definition 2.1, Uz (p) is i o-hollow if x (7 )#1. In such a case, by Proposition 2.4, Cutr (u) (afo) =0.

On the other hand, if x(7)= I , i.e. 7 is a semiprimitive bubble type, p7 is the identity map, and
thus mp o a.;  is the resolvent of afo near Ur(p). By Proposition 2.7,

CMT(M)(afO) = N(?TO o 0‘7,0)7 where oo ar; el (Ur(p); Hom(FT, Eio®01))’ (3.7)

provided mpoa.; 5 is a regular linear map. By a slight abuse of notation, we now denote by mp o a.r g
the extension of the linear map over Uz (1) defined in (3.5) to Uz (11). The existence of an extension
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Figure 7: A Boundary Stratum that Contributes to Cal—(l)( )(Oz1 o) and Two That Do Not

follows from the decompositions (2.4) and (2.5). With respect to the latter decomposition,

FT =~ miv; @5 @ LpT — My (myum, T X Uz (1), Ef ¢®0; = miv; @ m501;
hex(T)

{{mo 0 az g} (ug ® (Vn)ney)) }(vg) = ug(vg) - m0 Y D yvn,
hex(T)

where 75 — ﬁx(T)u M, denotes the universal tangent bundle for the marked point 0. Thus,

summing (3.7) over all equivalence classes of semiprimitive bubble types T <7, we obtain

Calo 0‘10 ZN wooaTO ZN alkm where
(7] (k,m)>(1,0)

13ke,m € T (Mo o1 X Viem (10); Hom (7§ ® Eg.m; v ®01)),

{atem (ug®v) } (v5) = ug(vp) - Mook m (V).

Above (k,m)>(1,0) means that k>1, m >0, and at least one of the inequalities is strict. In the
process of computing the numbers N (a1, ), we will show that 7p o oy 5 is indeed a regular linear
map, as needed.

In Figure 7, we give examples of one type of boundary strata U7 (u) that contributes to C, 1) (afo)

and of two that do not. As before, each disk denotes a sphere, and we represent the entlre space
Ur(p) by drawing the domain of an element of U7 (1). We shade the components of the domain
on which every map in Uz (1) is nonconstant and leave blank the components on which every map
in Uz (p) is constant. In this figure, we also illustrate the splitting and the summation of over all
equivalence classes of semiprimitive bubble types used in the previous paragraph. In short, the
strata U7 (p) that contribute to C arl (0)(af0) consist of the stable maps that are constant on the

principle component, i.e. the one containing the special marked point 0, have only one level of
bubbles, i.e. all the non-principle components are attached directly to the principle component,
and the maps are nonconstant on each of the bubbles.

We next apply the topological method of Subsection 2.1 to counting the zeros of an affine map
with the linear term a4 ,,. By Lemma 2.5,

N(ogem) = <c('y§®Ek,m)c('y§®01)_l, (Mo 1 X Ve ()] ) — C&;}m(o) (dik,m)7 (3.8)
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where
~J_ * * * —
O kem Vo VB, — (’Y@ ®7TPEk,m01)/CV1

denotes the composition of the linear map
Q1ikm ' Vo OVBy, — V5 @TBE,,, O1
with the quotient projection map 7. As before,
71 € T (Mo km1 XPEgm; v @7pp,  O1)

is a generic non-vanishing section. We put
Oy = Yo ® ((78®F13Ek7m01)/(c’71) ~ (ﬂ'quk’meV*TPn/(CIjo)/171(’}/0).

Let 7 =(S?,[N]—[Mo),I;j,d) be a bubble type such that |My|=m, |I|= , >0, and Y. d; =d,
i.e. Uz (p) is one of the components of the space Vi m(1). Suppose T =(S%[N),1;5,d)<T is a
bubble type, i.e. U7 (1) is one of the spaces of stable maps that stratify Z/{T( ) By Lemma 2.5,

dl_llg m(O) N ﬁ07k+m+1 X]P)Ek’mbq_(u) = {(b, [(Ui)ief]) : ’UZ‘ZO if di 750} (39)

Of course, the set on the right-hand side of (3.9) is empty if d; #0 for all i € I. From (3.9), we
conclude that

arkm© = || {(0:[(wi);ef)) s vi=0if d; 0}, (3.10)

[T]<[T]
where the union is taken over all equivalence classes of bubble types 7 and 7 as above. One might
think that the decomposition (3. 10) is the analogue of (3.3) in this case, i.e. each space on the
right-hand side of (3.10) is either 0‘1 eom -hollow or alLk -regular. In general, this is not the case,

and we need to decompose each space on the right- hand side of (3.10) into the subspaces based on
which of the component elements v; are not zero.

If 7 and T are bubble types as above and J is a subset of I, we set
24 = My gyt X (PET’ -U PETJ’), where  ET? = D LT — Ur(u).

J'GJ ieJ

Let fo(T )={ie I:d, =0}. This is the subset of the principle components on which every k-tuple
of stable maps in U7 (u) is constant. By (3.10),

aan0= ] |z (3.11)

[T1<[T] JCIo(T)

We will show that the set 2 is dfk n-regular if 7 is a semiprimitive bubble type and J =1o(T).
Otherwise, ZJ is dihm—hollow and thus does not contribute to C Tk (0)(d1l;k7m). Figure 8 shows

one of a typical main stratum Uz (i) of Vo m(u), in a case when I = {ij,is} is a two-element set,
and two strata Uz (u) such that 7 <7 is a semiprimitive bubble type.
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: I {hl,hg} ) iy I={h ha s}
={i1} 0——>  [o(7)={i1,i2}
{22’h1,h2} hs X(T):{hl,hQ,hg}

Figure 8: A Stratum Uz (u), s.t. |I|=2, and Two Strata Uz (i), s.t. 7 is Semiprimitive

The map 'y# of Proposition 2.7 induces an orientation-preserving homeomorphism 757— between open
neighborhoods of Z{— in

NZJ =FT &7y, @(ETROD I gpT M)y _ 2]

and in ﬁo;k+m+1><]P’Ek,m. The estimate of Proposition 2.7 implies that for some §, C € C'*° (Z{—, RT),

1
‘dk,m’y%(b;fu,u) — a%p%(b;fu,u)‘ < C(b)|v|» |p%(b;fu,u)‘ V(v,u) ENZ%—,(;, (3.12)
where pr NZI — Nzl = @ Nw24,
hex(T)
. .- pTn(vV), if hel, iy € J;
- L TQL,T, ithel,ipeld,; ’ . P
NhZ’(ZJ' = { *h ®LhT OtheI‘WiSZ‘ pg’;h(v7 'LL) =\ Uz, ®pT;h(U)7 it hel,ipgJ;
TETY hes ’ Uup, ifth—jo(T);

aF € P(Z@J—; Hom (N 24, Hom (v, ev*T]P’”)))
{oF @nhexr) H(wdies) =D Y Dra@vi) + >, Y Dra(tpv) € eV TP"

i€J hex(T)ND; T iel—J hex(T)ND; T

Above pr.j, denotes the hth component of p7, i.e. Uy, in the notation of Proposition 2.7, and inel
is defined by i5, <h whenever he€I. By Lemma 2.8 and the decomposition (2.4), the linear map

ag: N2{ — Hom(ygrs,ev* TP")

is injective on every fiber of N Z%. If the sections 7y and vy are generic, the same is true of the
linear map

m om0 af: NZ4 — Hom (v ®@yprs, 7, ®0s) ~ Hom(yp7s,02)
{{m om0 0} @)} ) = mmo({od (@)} ), (3.13)
as can been seen from a dimension count. Thus, by (3.12),
i # (V) = {m1 0 0 0 0} ()] < C)Iolo|{mi o mo 0 af }pf (v)] VOENZF,  (314)
By definition, the ranks of N'Z2 and N zJ are \I|+|I—J| and |x(T)|, respectively, while
WT) = =~ Iy(T).
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Thus, if :f—x(’f) #(), i.e. T is not semiprimitive, or J;«éfo(’f), the rank of N'Z% is less than the
rank of N'ZJ and thus Z7 is dll;km-hollow. On the other hand, if I —x(7)=0 and J=Iy(T), p

is the identity map, and thus m o mg o a% is the resolvent of df—;k,m near Z%. By Proposition 2.7,
Cz;(dik,m) = N(momyoaz), where m omoasel (24 Hom(NZL,v5rs©02)). (3.15)

As before, we now denote by 71 omgoa:- the natural extension of the map defined in (3.13) over Z4.

While we can proceed by computing the numbers N (771 oy oa%), where 7 is a semiprimitive bubble

type and J :fo(T ), we simplify the computation a little by replacing the linear map 1 o mg o a%
by another linear map ao,7, such that

N(miomoay) = N(as7) (3.16)

and 7 ompoa is a regular linear map if and only if ag,7 is. With respect to the decomposition (2.5),

/\/’Z%— ~ @ ’YS;Z@@LhT ) ’YETJ@) @Lh']_', ETJ = @’y(m — ﬁgg- = HﬁHiTuMiT,

1<y} Lth=1 hel—J i€J icJ
{{71‘1 o7 O a%’}(ﬁh)hEX(T)}((Ui)iEJ) = 170 ( Z ZD']',h(’lNJhUz') + ZDT,i(@z’U)),
icd tp=1 icl—J

where 7., —>ﬁHﬂ'u ;7 is the tautological line bundle. We define the linear map aso,7 by
.7 € F(ﬁmﬁ_mﬂ xPET” XUz (1); Hom('yETJ QFET, Yeri ®02)),

{agr (u®(vn)per) }(O) = u(D) - mimo ZDT,hUh- (3.17)
hel

Let p: s QET — N Z%— be the vector-bundle map defined by

(wom, vy, ifhel;

URQUp, ) = -
plucvn) {u@vm if hel—J,

where 7;: ET? — L;T is the projection map. The map p is an isomorphism over the dense open
subset Z7 of Z and
a2,7— =T 071'0004%—0,0.

Thus, (3.16) holds by definition of N(«); see Subsection 2.1. Summing (3.15) over all equivalence
classes of bubble types 7 < T of the appropriate form and using (3.16), we conclude that

Cdl_;llc,m(o) (dfkm) = Z N(ag.7) :ZN(QU), where
(7] o
o €T (Mpsm1 X PF, x Vy; Hom (75, ® By, Vi, ®02)),
{a, (u@v) }(0) = w(D) - mmeal, (v).
This sum is taken over all tuples o = (2; ka, ma; ¢), where (ko, mo) > (k, m) and ¢ specifies a splitting

of the set [k2] into k-disjoint subsets and an assignment of mg—m of the elements of the set [ms]
to these subsets. For such a tuple o, we put

f)a:f)kzmm (n); Eo=Egymo; a:r:akmm?; Iy = @7‘7?" — Mo = Hﬁiu(ﬁ_l(i)’
1€lme¢ i€lmeg
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For the purposes of the last line, we view ¢ as a map from [ks]—[k] and a subset of [ms] to [k], and
Yoyi — Mg—1(;) denotes the tautological line bundle.

3.2 A Tree of Chern Classes

In this subsection, we prove Corollary 3.6 by setting up a possibly large, but finite, tree. If each
node of the tree is assigned the chern class that appears in the statement of Lemma 3.3, the sum
of these chern classes, counted with a sign dependent on the distance to the root, is the number
of Corollary 3.6. The reader is referred to the previous subsection for a more explicit description
of the first two levels of the tree and for the proof of Lemma 3.3 in the corresponding cases. The
proof of Lemma 3.3 in general is nearly the same as the one given for the second-level nodes in the
previous subsection.

Each node in the tree is a tuple o = (r; k, m; ¢), where r >0 is the distance to the root oy =(0;1,0;-),
k>1, and m > 0. The tree satisfies the following properties. If » >0 and o*=(r—1; k*, m*; ¢*)
is the node from which o is directly descendent, we require that (k*, m*) < (k,m). Furthermore,
¢ specifies a splitting of the set [k] into k*-disjoint subsets and an assignment of m—m* of the
elements of the set [m] to these subsets. This description inductively constructs an infinite tree.
However, we will need to consider only the nodes o= (r; k, m;¢) with 2k+m <n-+1. We will write
ok o™ to indicate that o is directly descendent from o*.

For each node in the above tree, we now define a linear map between vector bundles over an ms-
manifold. If o= (r;k,m; ), let {os=(s; ks, ms; ds): 0<s <r} be the sequence of nodes such that
o,=0 and o4t 04_1 for all s>0. Put
1_}0 = l_}k,m(,uf)7 EUZEk,m B 1_}07 aiy = Qk.m, Xa = ya Xf}(ﬂ Xa,s = ya,s Xf}aa
where ), = ya,ra ya,O = {pt}a ya,s = ]P)FUS ><J}a,s—l if s>0,
ﬁa = H ﬁ7;L|¢>—1(7;)7 Fo = @ Yoii — ﬁa-

i€lm ¢ i€lm ¢

For the purposes of the last line above, we view ¢ as a map from [k]—[k*] and a subset of [m] to [k”]
in the notation of the previous paragraph. Then, 7. — 90 4-1(;) is the tautological line bundle;
see Subsection 2.2. Denote by vg, , the (trivial) line bundle over Vs . Let

Op =0pr, Opo=ev'TP", Oy, = OU,S_l/Im Ugs—1 if $>0,

where U, s € F(Xms; Hom(’yFUS,OU,S)) is a generic section. Since k;_1 <kg, ms_1 <mg, and one of
the inequalities is strict,

1 1 —
5 dim Xoo < o dim &y = (n+1-2k—m) + D (mes|—1) =n—k—r <rtkOgq — 1.

s=1

Thus, we see inductively that each bundle O,  is well-defined and a generic section 7,  of
HOIH(’}/FU’S, O,.s) does not vanish. Let 7, : ev*TP" — O, be the projection map. We define

o € T'(Xy; Hom(vi, ® B3 75, ©05)), by {ae(u@v) }(0) = u(D) - meal, (v) € O

Note that &g, =a1.
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Lemma 3.3 For every node o*,
N(ag-) = (1. ©00)e(k,. ®Es) " [Xor]) = D N(ao).
oko*

Remark: For a dense open subset of tuples {7, s}, the corresponding linear map «, constructed
above is regular and N(«,) is independent of the choice of {7, s}. What we need is that for every
bubble type 7 such that Uz (1) C Vi, m, (1) the intersection of the image of the linear map

ar € T (Y, xUr () Hom( @D LT, ev'TP")), ar(v) = Y Dru,
iex(T) iex(7)

with the subbundle
Imv,o@...0Imv,,—1 C Oy =ev'TP"

is {0}. The fact that this condition is satisfied for a dense open subset of tuples {7, s} follows by
a dimension count as above, along with an argument similar to the proof of Lemma 3.10 in [Z2].

Proof of Lemma 3.3: (1) By Lemma 2.5,
N(ag:) = {c(v},. ®05)e(v . @ Eps) ', [Xoe]) — Cs-1(0) (@) (3.18)
Let o* = (r*; k*, m*; ¢*). By Lemma 2.8, &,.1(0) is the union of the sets

2l =Y. % (PET’ - U ]P’ETJ/), where ET” = @ LiT — Uzr(n),
JIGT ieJ

taken over non-basic bubble types 7 = (S?,[N]— My, I;j,d), with | —I| = k*, |[My| = m*, and

A

> d;=d, and nonempty subsets J of [—I—x(7).

2) The map +# of Proposition 2.7 induces an orientation-preserving homeomorphism 2 between
( Y1 v
open neighborhoods of Z{— in

NZJ = FT & vyrs @ (BT T gprx(D-T) . z]

and in YVy«xPFE,~. Furthermore, the estimate (3.12) holds. Proceeding as in the previous subsection,
we conclude that Z% is a-hollow unless 7 is semiprimitive and J=1I—1—x(7). Thus,

Czy (dj‘*) =0 if 7 is not semiprimitive or J # I—I—x/(T). (3.19)
If T is semiprimitive and J=1I—1—x(T), we find that
Czy (o?i*) = N(ag* 1) if 7 is semiprimitive and J = I —I—x(7), (3.20)
where g+ 7 € T'(Vor xPET? xUz(p); Hom (V75 ®ET , Vyprs ®O0g+ r41)),

J_ s TTav _
ET’ = @’Y’T;i — mo*,'f :HmHﬂ'uMﬂ'7 Oa*,r—i—l = Oa* /Im Vg
ieJ ieJ

{aoe 7(u@V) }(0) = w(®) - Motk m(v), k=Ix(T)|=|I|, m=m"+ > [MT];
i€l—x(T)
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see (3.17).
(3) From equations (3.18)-(3.20) we conclude that that

N(da*) = <C(7}k7‘a* ®OU*)C(’Y;U* ®E0'*)_1) [Xcr*]> - Z Z N(aa*,T)
(k;m)>(k*sm*) Ix(T)|=k, > |MiT|=m—m*
i€l—x(T)
= (c(vf,. ©00+ ) c(VE,, @ Eg= 1, ZN o)
oto*

The inner sum on the first line above is taken over all equivalence classes of semiprimitive bubble
types 7 = (5%, N— Moy, I; j,d) such that |[—I|=Fk*, |My|=m*, and >_ d; =d.

Lemma 3.4 For every node o= (r;k,m;®) and positive integer s<r—1,
1 —1
(e(Ors1)e(Eo) s [Xos]) = (¢(Oos)e(Eo)  [Xos1]),
where {os} is the sequence corresponding to o defined in the paragraph preceding Lemma 3.5.

Proof: Since Oy 541~ Og,s/ VFsq»

dim X5 s
{C(O"’S‘H)C(EU)_l}dimes = Z Z >‘Fascl2 C(EU)_l}ding,s—zl' (3.21)
1=0 Iy+lo=l

By construction, Ap, € H*(PFy,), while ¢(Og), c(Ey) € H* (X, —1). Thus, (3.21) gives
dim X,
{e(00011)e(B0) Yama,, =25, D cone Qo) {e(B0) Vi, o
1=0 (3.22)
= )‘%ZS {C(OU,S)C(EU) _l}dingysfl’

where n, =dimPF,_ . By (2.1),

(Nig o [PES,]) = (e(Fy,) ™ = I (cOr) ™ Mozupmpl) =1 (3.23)
i€lm ¢

The last identity is a consequence of (1) of Lemma 3.11. The claim follows from (3.21)-(3.23).

Corollary 3.5 For every node o= (r;k,m;®),

(c(V5, ®05) (7, O Es) ', [Xa]) = (e e T )e(Egy ) %, Vi (1)])-

Proof: Since rk O, =rk EU—I—% dim X;, we can identify E, with a subbundle of O,. Then,
* * _1 * * *
(5, ®00)c(vE, ®Es) = c(vk, ®0s 7k, ®Es) = c(vE, ®(00/ Es)) =

dim X,
{e(vk, ®00)e(7h, ©Bo) ™ Yy, = ZAI o)™} dim e, o (3.24)
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Similarly to the proof of Lemma 3.4, (3.24) gives

(c(vk, ®00)e (v, ©Eo) ™ [Xo]) = (e(Or)e(Eq) ™ [Xrs])

= (c(Oo)e(Eo) ™, [Xopi])-

Applying Lemma 3.4 to the last expression in (3.25) and using O, 1~ (ev*TP")/C, we obtain

(e(vh, ©00)e(vk, 9 Eo) " [Xo]) = (e(Oa1)e(Eq) " [Xoo] ) = (e(ev TB")e( B m) ™ [Vim (10)])

(3.25)

We now combine Lemma 3.3 and Corollary 3.5 to obtain a topological formula for the num-
ber N(ajp). For any integers k and k*, let 0],;”* denote the number of ways of splitting a set
of k*-elements into k nonempty subsets. For every pair (k*,m*) > (1,0) of integers, we define
O(k*, m*) inductively by

0(1,0)=1, O(k*,m*) = — > (Z)km*—me’,g*@(k,m) if (k*,m*)>(1,0). (3.26)
(1,0)<(k,m)<(k*,m*)
Corollary 3.6 With notation as above,

n+1—(2k+m)

N(a10) = Z O(k,m) <n—;1> (a1 @krm)—1s [Vim (12)])-

(1,0)< (k,m) 1=0

Proof: Note that the coefficient in front of ©(k,m) in (3.26) is the number of ways of splitting the
set [k*] into k& nonempty subsets and assigning m*—m elements of the set [m*] to these subsets.
Thus, by Lemma 3.3 and Corollary 3.5,

N(a10) = N(aoy) = > Okm){c(ev TP")e(Brm) ™", [Vim(1)])- (3.27)
(1,0)<(k,m)

Since Ek,m = @ Lz'>

i=k i=k oo 00
(Brm) ' =[[Q+a@ =D d@n=> (3.28)
i=1 =1 1=0 =0

The last equality above is immediate from the definition of 7;; see Subsection 2.2. The claim follows
from (3.27) and (3.28), along with c(ev*TP")=(1+a)"!.

3.3 Combinatorics

In this subsection, we show that the topological expression for N (o) given in Corollary 3.6 is
the same as the topological expression for C' Ry (u) given in Proposition 3.1. This fact is immediate
from Corollary 3.10. We start by proving an explicit formula for the numbers O(k, m).

Lemma 3.7 If (k,m)>(1,0), ©(k,m) = (—=1)km=-1gm(k-1).
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(1) We first start verify this formula in the case k£ = 1. By (3.26),

m*—1 %
0(L,0=1  O1lm)=- > <7Z;>@(1,m) if m*>(1,0). (3.29)
m=0

We need to show that ©(1,m) = (—1)™. If m = 0, this is the case. Suppose m* > 1 and
©(1,m)=(—1)™ for all m<m*. Then, by (3.29),

o1, m*) = —%X”j)@(LW ¥ () m s 0™ == ) =)

m

as needed.
(2) We now verify the formula in the general case. It is easy to see from the definition of «9,]:* in
the previous subsection that

0F =1 ifk>1 and OF. = kOf._, + 051 if k>2. (3.30)

Suppose k* >2 and the claimed formula holds for all (k,m) with (1,0) < (k,m) < (k*,m*). Then
by (3.26),

O(k*,m*) = — > (m >km*_m9,’§*@(k,m)
(1,0)<(k,m)<(k*,m*) m ) (331)
m* m [T
=k > (=Mt <m>6’,§*(k:—1)!
(1,0)<(k,;m)<(k*,m*)
Using (3.30), we obtain
m m* m m* _
e e G A R S el G [ SR R )
(1,0)<(k,m)<(k*,m*) (1,0)<(k,m)<(k*,m*)
m*—1 o k*
=3 (=™ <”;L> S (=DFOF ko (k-1))  (3.32)
m=0 k=1
k*—1
+ (=)™ (=D)F(OF k! 4 0 (k—1)Y).
k=1
Note that
k* k* k*—1
D008 R+ 05 (=1)1) =D (1)R08 k= > (—1)F0F. k=0 (3.33)
k=1 k=1 k=0
k*—1 k*—1 k*—2
S DROF R+ 0 (=11 = D (DR k= D> ()R k= (D) T (R -1),
k=1 k=1 k=0

since cf. | =0, cﬁij =1, and ). ;=0 if k*>1. Combining equations (3.31)-(3.33), we verify the

claimed identity for (k,m)=(k*,m").

We next need to relate the intersection numbers a'7y and a!fy. We break the computation into
several steps.
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Lemma 3.8 Suppose T = (S2,M, I;7,d) is a basic bubble type, i€ I, and M; C M;T. Then, under
the splitting (2.2), with T =T /M,

V7% 1, if i =1;

_ */T Z/_{ . — 1>< E*IIZ_' .
IxesT), g Wz (as) (1) = 1xer (£5T)

ct(L3T) Uz ary) (1) = {

Proof: The first identity and the case i’ # 1 of the second identity are immediate from the definitions.
In the remaining case, by (2.3), we have

(L5 Ur gy () = e (LE DUz () = Y PDyyolrar (10 Uz (1)- (3.34)
@#MZ/CMZT

By definition of the spaces,

0, if M!¢ M; and M; ¢ M;
PDyg, U vy (1)U ay (1) = § 1< PDag (ol agg—ay (), 1 M & M (3.35)
PDZ;{TOZ/?%(MZ‘—M{) X 1) if legMz

where 7o = (52, 1+ M;, {i};4,0), ie. U =M, iy, Plugging (3.35), (2) of Lemma 3.11, and the
case i’ =1 of the first statement of this lemma into (3.34), we obtain the remaining claim.

Corollary 3.9 For all k>1, m>0, and [ >0,

- - me\ e _
<al77n+l_(2k+m)—la V()] ) = Z <m>k <al77n+l—(2k+m*)—la [Vem= (1)])-

m*>m

Proof: Let T =(S%,[N]—My, I; j,d) be a basic bubble type such that |I|=k, |Mo|=m, and 3_ d; =d.
By Lemma 3.8 and (1) of Lemma 3.11,

(A" i1 - @hpm)—1> [Ur ()] ) = Z <al77n+1—(2k+|M6‘\)—l’ ZINE (3.36)
MoCMC[N]

where T /Mg = (5%, [N]—M{, I;j,d). The claim is obtained by summing (3.36) over all equivalence
classes of bubble types 7 of the above form.

Corollary 3.10 For all k>1 and [ >0,

Z O (k, m){a"ffnt1—k+m)—t> Vem(w)]) = (=D (k=D a'nn1-26—1, [Ve(p)])-
m>0
Proof: By Lemma 3.7 and Corollary 3.9,
Z @(kv m)<alﬁn+1—(2k+m)—l7 [T}k,m(ﬂ)]>

m>0

= U S 0 ()R (st P ()]

m>0 m*>m

RS k:m< ) <—1>m<”;;)><a’nn+1_<2k+m*>_l, Ve ()]

m*>0 m<m?*

= (=" k=D a"mr1-26-1, [Veo(n)]),
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since

Sy <m>km =(1-1)™ =0 if m*#0.

m<m*

Lemma 3.11 (1) If J is a finite set of cardinality at least two, <c|1‘]‘_2(fyf’}), [ﬁJD =1, where
v — M is the tautological line bundle.

(2) If T = (S% M,I;j,d) is a basic bubble type, i€ I, and M; is nonempty subset of M;T, under
the splitting (2.2),

Py, Uz ey () Uz ary (1) = =1x et (L T) + er(vr ) x 1= Y PDy, Ugy(vgy—ay) X 1,
0£MICM,

where To=(S%,14+M;, {i};i,0) and T =T /M;.

Proof: (1) Both statements are straightforward consequences of well-known facts in algebraic ge-
ometry; see [P2]. In our notation, 9 ; is the Deligne-Mumford moduli space of rational curves
with points marked by the set {0}+J and c1(v})=1yg. Thus, if ji,j2 € J and j; # jo,

a())=vy= Y, PDg, Uz (3.37)
O£ J' CJ—{j1.52}

where To= (52, J, {i};4,0). Since c; (73)‘2/7{7—0(‘]/) :Cl(7j/+i) under the decomposition (2.2), the first
claim of the lemma follows from (3.37).
(2) Equation (3.37) implies that for any 1€ J,

a(yy) +vi= Y PDg Upn. (3.38)
0£J' CI—{i}

If 7, i, and M; are as in (2) of the lemma, under the splitting (2.2),
PDyz, (o () (1) [U () (1) = =11 X1 = 1x el (3.39)

The second claim of the lemma follows from (3.38), applied with J = {1}+M;, and (3.39), since
1><’(/JO:1><61(LZ'T).

4 Comparison of ng)(,u) and ny q(p)

4.1 Summary

In this section, we prove

Proposition 4.1 Suppose n > 2, d > 1, and pu = (p1,...,4n) is an N-tuple of proper linear
subspaces of P™ in general position such that codimcpu=d(n+1)—1. Then

n$ (1) = n1.a(p).
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Denote by ﬁl,l the Deligne-Mumford moduli space of stable genus-one curves with one marked
point and by 9 ; the main stratum of ﬁl,h i.e. the complement of the point oo in ﬁl,l- The
elements of M ; parameterize (equivalence classes of) smooth genus-one curves with one marked
point. The point oo € ﬁl,l corresponds to a sphere with one marked point and with two other
points identified.

Denote by W:ﬁl, N (IP’”, d) the moduli space of stable degree-d maps from N-pointed genus-one
curves to P”. Let o o
M(p) = {beM: evy(b) €y VIE[N]}.

We denote by m: 91— 901, ; the forgetful functor sending each stable map b=[S, [N], I;z, (j,y), u]
to the one-marked curve [S,y;] and contracting all unstable components of (S,y1). The resulting
complex curve is either a torus or a sphere with two points identified. For any o€ 1, let

M, =7 L(0),  Dy(p) =DM, N M().

If the j-invariant o is different from infinity, i.e. the stable curve C,, corresponding to o is smooth, the
cardinality of My (1) is |Aut(C,)| times the number of genus-one degree-d curves with j-invariant o
that pass through the constraints pu, i.e.

[0, (1) = 2n1.a(p). (4.1)

If {ak} C My 1 converges to oo Eﬁl,l and by, Eﬁak (), a subsequence of {by} converges in M to
some b€Moo(p). It will be shown that ¥ is a sphere with two points identified; see Lemma 4.2
and Corollary 4.5. Conversely, for every

b= (57 [N]7 {O}, > (an)7u) € ﬁoo(:u)

such that 3 is a sphere with two points identified and for every o € 9, ; sufficiently close to oo,
there exists a unique stable map b(c) €9, () close to b in 9; see Lemma 4.3. Since the number
of stable maps R )

b= (S,[N].{0};,(0,y),u) € Moo ()

such that ¥ is a sphere with two points identified is 2n£ll)(,u), Proposition 4.1 follows from the two

lemmas, the corollary, and equation (4.1).
4.2 Dimension Counts

In this subsection, we show that if
[b]=[S, [N], I; 2, (j,y), u] € Moo (1)

and ug =up|S is not constant, then ¥, =S is a sphere with two points identified; see Lemma 4.2.
This lemma is proved by dimension counting. We then observe that for each such stable map b
and every o €M 1 sufficiently close to oo, there exists a unique stable map b(c) € M, (1) close to b
in M; see Lemma 4.3.
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Lemma 4.2 If [b] =[S, [N],I;z, (j,y),u] € Moo (pn) and uy=wup|S is not constant, then Ty =15 is
a sphere with two points identified.

Proof: Suppose 7 = (S,[N],I;j,d) is a simple bubble type such that S is a circle of k spheres,
dy#0, and ) d;=d. Let Z/{T% denote the subspace of U7 such that the nonconstant restrictions
of uy to the components of S have degrees d(),p e 7d(),k' for all be Uq—,%. We must have ) d(),l =dy.
Then, the dimension of Uz 4, (1) is given by

y
(Z (g (n+1)+n—1) —nk' + Y (di(n+1)+n—2—(n—1)) + (N—(k:—k’))) — (codimep+N)

=1 iel
=1— |k| —|1|.

Thus, Uz () =0 unless k=1 and f:Q), i.e. =S is a sphere with two points identified.

Lemma 4.3 For every [b]= [S, [N1,{0};,(0,y), u] €Moo () such that S is a sphere with two points

identified, there exists neighborhood Uy of oo in My 1 and Wy of b in ﬁl,N(]P’", d) such that
Dy () "W =1 Vo eUy,—{oo}.
Proof: Since d>1,
HY(S;u;TP") = (n+1)H' (S;u; O(1pn)) = 0; (4.2)

see Corollary 6.5 in [Z2] for example. The lemma follows from (4.2) by standard arguments.
A purely analytic proof can be found in [RT].

4.3 A Property of Limits in 9, y(P", d)
Suppose {Uk} C 9y ,1 converges to 0o Eﬁl,l and by, Eﬁgk converges to

such that up|S is constant. In this subsection, we describe a condition such a limit b must satisfy;
see Lemma 4.4. This lemma is the key part of Section 4. Its proof extends the argument of [P1] for
the n=2 case and makes use of the explicit notation described in Subsection 2.2. We conclude by
observing that no element of M., (1) can satisfy this condition if the constraints y are in general
position.

Figure 9 illustrates in some cases the condition described by Lemma 4.4. The second picture,
however, is somewhat misleading. The two nodes of the domain at which the arrows point are
mapped to the same point, which is a “tacnode,” according to Lemma 4.4. It is a “tacnode” in the
sense that the span of the lines tangent to the two branches at the node of the image curve in P" is
at most one-dimensional. In particular, one or both of the branches might be cuspidal. The proof
of Lemma 4.4 shows that the branch corresponding to the upper node is in fact a cusp.

Lemma 4.4 Suppose

b= [S.[N], s, Goy)ou] € | T 0 Mo,

0’69)?1,1
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tacnode

Figure 9: Properties of Images of Some Elements in the Closure of |9,

where T = (S, [N],1; j,d) is a simple bubble type such that S is a circle of spheres and dy=0. Then
the dimension of the linear span of the set {duh‘ooeooz hex(T)} is less than |x(T)|.

Proof: (1) By the algebraic geometry definition of stable-map convergence, there exist

(i) a one-parameter family of curves &: F — A such that A is a neighborhood of 0 in C, F is
a smooth space, K 1(0) =X, and X;=&"!(¢) is a smooth genus-one curve for all t€ A*=A—{0};
(ii) a holomorphic map @: F —P" such that @|x~(0) =uy.

This family #: F — A can be obtained from another family of curves kg Fo— A that satisfies (i),
except /@51 (0)=., by a sequence of blowups at smooth points of the central fiber as we now describe.
Choose an ordering < of the set I consistent with its partial ordering. If he I, let

" ={iel:i<h}, i(h) =maxI" it hel, I™ =T1"U{n}, M(h)={l€[N]:j<h},
b(h) = (8% M(h), 103l ™), (j,y)| M (), ul I").

Suppose h € I and we have constructed a one-parameter family of curves Ki(hy* Fighy — A that
satisfies (i), except /@Z._(i) (0)=Z4(in))- Let Fj be the blowup of Fyy at the smooth point of (v, 75)
of Xyi(ny) and let kp: F, — A be the induced projection map. Choose coordinates (¢, wy) near
(th, Tn) € Fi(ny such that d’%’(h)% =0, i.e. wy, is a coordinate in K,i_(}ll) (t) for t € A sufficiently small.
We define coordinates (¢, z;) on a neighborhood in Fj, of the complement of the node of the new
exceptional divisor by

(t,zp) — (t,wh:tzh, [1,zh]).

For a good choice of the family ry: Fy — A, F=Fp- and 7 =mp+, where h* is the largest element
of I with respect to the ordering <.

(2) Let ¢ € H(S;wg) be a nonzero differential, i.e. 1/ is a holomorphic (1,0)-form on the compo-
nents of S, which has simple poles at the singular points of S with residues that add up to zero at
each node. Then, for each he€ HyT, there exists aj € C* such that

1/}‘(071%) = ah(l + o(l))dwh.
Thus, we can extend 1 to a family of elements 1), € H?(3;;ws, ) such that
¢|(t,wh) = ah(l + o(l))dwh, with aj, €C*. (4.3)

If hel, let |h|= |{i€I:i<h}|. Denote by h the element of HyT such that he D; 7. By (4.3), we
have
Dl = tMag (1+0(1y))dzp,,  with a; €C™. (4.4)
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(3) Let Hy and Hy be any two hyperplanes in P™ that intersect the image of u; transversally and
miss the image of the nodes of ;. Then for all ¢ sufficiently small and i=1, 2,

{zl a ( zdh } C %, where h; el, Z](Z})lj (t) = zj(z})LJ(O) + o(1y), (4.5)

z](})bj (0) €341, and uy=u|%;. Since ) zh ( ) and > z](-z) (t) are linearly equivalent divisors in ¥,

Z/(l)]’ =0  VieA®, (4.6)

where each line integral is taken inside of an appropriate coordinate chart (¢, z;). Plugging (4.4)
and (4.5) into (4.6) gives

Zt\hl (25 0) =2 () +0(1) =0 vieA”, (4.7)

Let k=min {|h|: h€x(7)}; then k=min {|h;|: j€[d]}. Thus, dividing equation (4.7) by t* and
then taking the limit as ¢t — 0, we conclude that

Z ap,;* ]h Z ap,;* ]h (4.8)

|hjl=k |hjl=k

(4) Equality (4.8) holds for a dense subset of pairs (H1, Hz). The consequences of this fact can be
interpreted as follows. For each h €I, let [up,vs] be homogeneous coordinates on X, such that
zp =vp/up. Each map wuy, corresponds to an (n + 1)-tuple of homogeneous polynomials

I=d),
E phzluv 7 1=0,...,n, ph,i;lec'

Equality (4.8) implies that there exists K € C such that

=n
N C; g
Z a; Zz_lgn iPh,i;dp,—1 =K V[Co, ... >Cn] cPn. (49)
|h|=k,d\#0 Zizo CiDhi;dy,

On the other hand, up, (c0) =up,(c0) for all hy, ho € x(7). Thus, for all hy, ha € x(7), there exists
K, hy € C*—{0} such that

(phl,O;dhl P 7ph1,n;dh1) = Khl,hz (phz,o;dh2 PRI 7ph2,n;dh2)'
It follows that (4.9) is equivalent to

=n =n

S0 anpriay-16 =K Y Py, ¢ Ve €C=>
i=0 [ h|=kdy,£0 i=0
Z AhPhizdy,—1 = KDhyid,, 5 i1=0,...,n. (4.10)
|h|=k,d) 0
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where hy is a fixed element of the set {he I: |h|=E,dp 750} and ap € C*. It is straightforward to
deduce from (4.10) that

E dhduh‘ooeoo = 0.
|h|=k,dn70

The lemma is now proved, since {hef: \h|=Fk,d,#0} Cx(T).

Corollary 4.5 Suppose

b= [S, [N], I;z, (j.y)u) € | Do N oo (p).
ocNM 1

Then up|S is not constant.

Proof: Suppose up|S is constant. Let

I={iel:xri#0}CI, My=|JMT, F=z|l, (G,9) =0, y)|(IN|-My), d=d|I, a=ull;
iel-T
T = (8% [N]-Mo, [;5,d), b= (5% [N]-Mo, [;%,(j,§)@).

Then, T is a bubble type such that ) di=d and d; >0 for all i€ I—1I. The latter property implies
that x(7)=1I—1I. Furthermore, l;euf(u). By Lemma 4.4, the linear map

aphyan LT — ' TP, a4 (V) = D Di v,

iex(T) iex(7)
does not have full rank at b. However, this is impossible by Lemma 2.8.
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