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Abstract

In this paper we compute certain two-point integrals over a moduli space of stable maps into
projective space. Computation of one-point analogues of these integrals constitutes a proof of
mirror symmetry for genus-zero one-point Gromov-Witten invariants of projective hypersur-
faces. The integrals computed in this paper constitute a significant portion in the proof of
mirror symmetry for genus-one GW-invariants completed in a separate paper. These integrals
also provide explicit mirror formulas for genus-zero two-point GW-invariants of projective hy-
persurfaces. The approach described in this paper leads to a reconstruction algorithm for all
genus-zero GW-invariants of projective hypersurfaces.
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1 Introduction

1.1 Background and Motivation

The theory of Gromov-Witten invariants has been greatly influenced by its interactions with string
theory. In particular, the mirror symmetry principle has led to completely unexpected predictions
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concerning GW-invariants of Calabi-Yau manifolds. The original prediction of [CDGP] for the
genus-zero GW-invariants of a quintic threefold was verified about ten years ago in a variety of
ways in [Ber], [Ga], [Gi], [Le], and [LLY]. The 1993 prediction of [BCOV] for the genus-one GW-
invariants of a quintic threefold is verified in [Z], using the results of this paper.

The proof of the genus-zero mirror symmetry for a projective hypersurface X essentially consists
of computing certain equivariant integrals on moduli spaces M0,m(Pn−1, d) of stable degree-d maps
from genus-zero curves with m marked points into Pn−1. While the integrals appearing in Chap-
ters 29 and 30 of [MirSym] are over M0,2(P

n−1, d), the integrands involve only one marked point.
For this reason, such integrals can be easily expressed in terms of integrals on M0,1(P

n−1, d) and
determine genus-zero one-point GW-invariants of X; see (1.2) below. In this paper we compute
integrals on M0,2(P

n−1, d) with integrands involving both marked points. These integrals in a
sense correspond to arithmetic genus one and indeed constitute a significant portion of the proof
of mirror symmetry for genus-one GW-invariants in [Z]. Theorem 1.1 also provides closed mirror
formulas for genus-zero two-point GW-invariants of X, including with descendants. At the end of
Subsection 1.3, we describe the issue arising for integrals with more marked points, a potential way
of addressing it, and a reconstruction algorithm for genus-zero GW-invariants of X with descen-
dants.

Let U be the universal curve over M0,m(Pn−1, d), with structure map π and evaluation map ev:

U

π
��

ev
// Pn−1

M0,m(Pn−1, d).

In other words, the fiber of π over [C, f ] is the curve C with m marked points, while

ev
(
[C, f ; z]

)
= f(z) if z∈C.

If a is a positive integer, the sheaf

π∗ev
∗OPn−1(a) −→ M0,m(Pn−1, d)

is locally free. We denote the corresponding vector bundle by V0.
1 Its euler class, e(V0), relates

genus-zero GW-invariants of a degree-a hypersurface in Pn−1 to genus-zero GW-invariants of Pn−1;
see Section 26.1 in [MirSym]. For each i=1, . . . ,m, there is a well-defined bundle map

ẽvi : V0 −→ ev∗iOPn−1(a), ẽvi

(
[C, f ; ξ]

)
=
[
ξ(xi(C))

]
,

where xi(C) is the ith marked of C. Since it is surjective, its kernel is again a vector bundle. Let

V ′
0 = ker ẽv1 −→ M0,m(Pn−1, d) and V ′′

0 = ker ẽv2 −→ M0,m(Pn−1, d),

whenever m≥1 and m≥2, respectively.2

1The fiber of V0 over a point [C, f ]∈M0,m(Pn−1, d) is H0(C; f∗OPn−1(a))/Aut(C, f).
2In Chapters 29 and 30 of [MirSym], the roles of the marked points 1 and 2 in (1.2) are switched; the analogues

of V0 and V ′
0 over M0,2(P

n, d) are denoted by E0,d and E′
0,d, respectively.
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The standard action of the n-torus T on Pn−1 induces T-actions on M0,m(Pn−1, d), U, V0, V ′
0,

and V ′′
0 ; see Subsections 3.1 and 3.2 for details on equivariant cohomology. In particular, V0, V

′
0,

and V ′′
0 have well-defined equivariant euler classes

e(V0), e(V ′
0), e(V ′′

0 ) ∈ H∗
T

(
M0,m(Pn−1, d)

)
.

These classes are related by

e(V0) = a ev∗1(x) e(V ′
0) = a ev∗2(x) e(V ′′

0 ), (1.1)

where x ∈H∗
T
(Pn−1) is the equivariant hyperplane class. For each i= 1, 2, . . . ,m, there is also a

well-defined equivariant ψ-class,

ψi ∈ H2
T

(
M0,m(Pn−1, d)

)
,

the first chern of the vertical cotangent line bundle of U pull-backed to M0,m(Pn−1, d) by the section

M0,m(Pn−1, d) −→ U, [C, f ] −→
[
C, f ;xi(C)

]
.

Since M0,m(Pn−1, d) is a smooth stack (orbifold), there is an integration-along-the-fiber homomor-
phism ∫

M0,m(Pn−1,d)
: H∗

T

(
M0,m(Pn−1, d)

)
−→ H∗

T ≈ Q[α1, . . . , αn].

For each i=1, 2, . . . , n, let

φi ∈ H∗
T(Pn−1) ≈ Q[x, α1, . . . , αn]

/
(x−α1) . . . (x−αn)

be the equivariant Poincare dual of the ith fixed point Pi∈Pn−1. Let

Qα ≡ Q(α1, . . . , αn)

denote the field of fractions in α1, . . . , αn. For a=1, 2, . . . , n, an explicit algebraic formula for

Z(~, αi, u) ≡ 1 +

∞∑

d=1

ud

∫

M0,2(Pn−1,d)

e(V ′
0)

~−ψ1
ev∗1φi

= ~−1

(
~ +

∞∑

d=1

ud

∫

M0,1(Pn−1,d)

e(V ′
0)

~−ψ1
ev∗1φi

)
∈
(
Qα[[~−1]]

)[[
u
]]

(1.2)

is confirmed in Chapters 29 and 30 of [MirSym]. The equality in (1.2) is a straightforward conse-
quence of the string relation for GW-invariants; see Section 26.3 in [MirSym].

One of the ingredients in genus-one localization computations is a two-pointed version of (1.2):

Z̃(~1, ~2, αi, αj , u) ≡
aαi

~1+~2

∏

k 6=i

(αj−αk)

+
∞∑

d=1

ud

∫

M0,2(Pn−1,d)

e(V0)ev
∗
1φiev

∗
2φj

(~1−ψ1)(~2−ψ2)
∈
(
Qα

[[
~−1

1 , ~−1
2

]])[[
u
]]
.

(1.3)

3



Note that the term of degree zero in u above is symmetric in (~1, αi) and (~2, αj), just as are the

positive-degree terms. In turn, Z̃(~1, ~2, αi, αj , u) can be determined from the power series

Zp(~, αi, u) ≡ αp+1
i +

∞∑

d=1

ud

∫

M0,2(Pn−1,d)

e(V ′′
0 )ev∗2x

p+1

~−ψ1
ev∗1φi ∈

(
Qα[[~−1]]

)[[
u
]]

(1.4)

with p=−1, 0, . . . , n−1. The seemingly unfortunate choice of indexing is partly motivated by the
central role played by the power series Z(~, αi, u) defined in (1.2) and the simple relation

Z0(~, αi, u) = αiZ(~, αi, u),

which follows from (1.1), along with (3.9), (3.4), and (3.5). As shown in this paper,

Z̃(~1, ~2, αi, αj , u) =
a

~1+~2

∑

p+q+r=n−1

(−1)rσrZp(~1, αi, u)Zq−1(~2, αj , u), (1.5)

where σp is the pth elementary symmetric polynomial in α1, . . . , αn; see Theorem 1.1.

Remark 1: The right-hand side of (1.5) is in fact symmetric in (~1, αi) and (~2, αj), because

Zn−1(~, αi, u) − σ1Zn−2(~, αi, u) + . . .+ (−1)nσnZ−1(~, αi, u) = 0. (1.6)

The reason for this relation is explained in Subsection 1.3.

Remark 2: We will see in Subsection 1.2 that the power series Zp(~, αi, u) can be represented by
elements of Qα(~)[[u]]. The relation (1.5) might then suggest that the corresponding element of
Qα(~1, ~2)[[u]] representing Z̃(~1, ~2, αi, αj , u) has a simple pole at ~1 =−~2. In fact, there is no
pole at ~1 =−~2, except in degree zero. This is immediate from the localization formula (3.9); see
also Subsection 3.2.

The power series (1.4) encode genus-zero two-point GW-invariants of a degree-a hypersurface
in Pn−1 with constraints coming from Pn−1. Thus, Theorem 1.1 provides mirror formulas for

such invariants; the coefficients C̃
(r)
p,q are “purely equivariant” and are irrelevant for this purpose.

In the table below, we give the first ten genus-zero two-point BPS numbers, defined from GW-
invariants by equation (2) in [KP], for the degree-7 hypersurface in P6. These numbers are integers
as predicted by Conjecture 1 in [KP]. In fact, we have used the first statement of Theorem 1.1,
along with a computer program, to confirm this conjecture for all degree-d two-point BPS counts
in a degree-n hypersurface Xn in Pn−1 with n≤10 and d≤20.

degree d BPS curve count through 2 codim-2 linear subspaces in X7

1 1707797
2 510787745643
3 222548537108926490
4 113635631482486991647224
5 63340724462384110502639024265
6 37325795060717360046547665187418254
7 22857028298936684292245509537579343818647
8 14395953469762596243721601709186933042635134584
9 9263611884884554518268724722981763557936573405648178

10 6062677702410680024315392235188823274104219383883410807999
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The explicit expressions of Section 29.1 in [MirSym] for the power series Z(~, αi, u) have very
different forms for a < n and a= n. The a= n case is the most interesting one and corresponds
to Calabi-Yau hypersurfaces. As the power series Z(~, αi, u) are central to our computation of
Zp(~, α, u) and Z̃(~1, ~2, αi, αj , u), for the purposes of the explicit expressions preceding Theo-
rem 1.1 in the next subsection we consider only the case a=n.3 This is also the case used in [Z].

1.2 Main Theorem

The essence of mirror symmetric predictions for Gromov-Witten invariants is that these invariants
(and relatedly Z(~, αi, u)) can be expressed in terms of certain hypergeometric series. In this sub-
section, we define these series and then express Z(~, αi, u), Zp(~, αi, u), and Z̃(~1, ~2, αi, αj , u) in
terms of them.

Let n be a positive integer. For each q=0, 1, . . ., define I0,q(t) by

∞∑

q=0

I0,q(t)w
q ≡ ewt

∞∑

d=0

edt

∏r=nd
r=1 (nw+r)
∏r=d

r=1(w+r)n
. (1.7)

Each I0,q(t) is a degree-q polynomial in t with coefficients that are power series in et. For example,

I0(t) = 1 +
∞∑

d=1

edt (nd)!

(d!)n
and I1(t) = tI0(t) +

∞∑

d=1

edt

(
(nd)!

(d!)n

nd∑

r=d+1

n

r

)
. (1.8)

For p, q∈Z+ with q≥p, let

Ip,q(t) =
d

dt

(
Ip−1,q(t)

Ip−1,p−1(t)

)
. (1.9)

It is straightforward to check that each of the “diagonal” terms Ip,p(t) is a power series in et with
constant term 1, whenever it is defined; see [ZaZ], for example. Thus, the division in (1.9) is
well-defined for all p. Let

T =
I0,1(t)

I0,0(t)
. (1.10)

By (1.8), the map t−→T is a change of variables; it will be called the mirror map. If p∈ Z̄+ and
Y(~, x, et) is a power series in et with coefficients that are functions of a complex variable ~ and
possibly some other variable x, let

D
pY(~, x, t) = e−xt/~

{
~

Ip,p(t)

d

dt

}
. . .
{ ~

I1,1(t)

d

dt

}(
ext/~Y(~, x, et)

)
. (1.11)

We define

Y(~, x, et) = I0,0(t)
−1x

∞∑

d=0

edt

∏r=nd
r=1 (nx+r~)

∏r=d
r=1

∏k=n
k=1 (x−αk+r~)

∈ Qα(~, x)
[[
et
]]/ k=n∏

k=1

(x−αk).

3In other words, one may to choose set a=n for the rest of the paper. However, the statements of Lemmas 1.2
and 1.3 and their proofs are valid for all a. Therefore, the proofs of (1.5) and (1.6) are valid as well. The same is the
case with Theorem 1.1 if the power series Y−1 and Y are chosen appropriately.
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Expanding ext/~Y(~, x, et) as a power series in ~−1, we obtain

ext/~Y(~, x, et) = x
∞∑

q=0

( r=q∑

r=0

C
(r)
0,q (t)xq−r

)
~−q, (1.12)

where C
(r)
0,q (t) is a degree-r symmetric polynomial in α1, . . . , αn with coefficients in Q[t][[et]]. For

example,

C
(0)
0,q (t) = I0,q(t)

/
I0,0(t) and C

(1)
0,1 (t) = σ1I0,0(t)

−1
∞∑

d=1

edt

(
(nd)!

(d!)n

n∑

r=1

1

r

)
. (1.13)

The main conclusion of Section 30.4 in [MirSym] is that the power series Z(~, αi, e
T ) defined in (1.2)

is the evaluation of

Z(~, x, eT ) = e(t−T )x/~e−C
(1)
0,1(t)/~Y(~, x, et) ∈ Qα(~, x)

[[
et
]]/ k=n∏

k=1

(x−αk) (1.14)

at x=αi, if T and t are related by the mirror map (1.10).

The power series Zp(~, αi, u) and Z̃(~1, ~2, αi, αj , u) defined in (1.4) and (1.3), respectively, are
also evaluations of certain power series

Zp(~, x, u) ∈ Qα(~, x)
[[
u
]]/ k=n∏

k=1

(x−αk) and

Z̃(~1, ~2, x1, x2, u) ∈ Qα(~1, ~2, x1, x2)
[[
u
]]/ k=n∏

k=1

(x1−αk)(x2−αk)

that have a mirror transform shape analogous to (1.14). Let

D
−1Y(~, x, et) ≡

∞∑

d=0

edt

∏nd−1
r=0 (nx+r~)

∏r=d
r=1

∏k=n
k=1 (x−αk+r~)

∈ Qα(~, x)
[[
et
]]/ k=n∏

k=1

(x−αk). (1.15)

Theorem 1.1 There exist C̃
(r)
p,q ∈Qα

[
[et]
]
, with p≥r≥1 and p−r≥q≥0, such that the coefficients

of the powers of et in C̃
(r)
p,q are degree-r symmetric polynomials and the power series defined in (1.4)

are given by

Zp(~, x, e
T ) = e(t−T )x/~e−C

(1)
0,1(t)/~Yp(~, x, e

t), where

Yp(~, x, e
t) ≡ D

pY(~, x, et) +

r=p∑

r=1

p−r∑

q=0

C̃(r)
p,q (et)~p−r−q

D
qY(~, x, et),

(1.16)

if T and t are related by the mirror map (1.10). Furthermore, the power series defined in (1.3) are
given by

Z̃(~1, ~2, x1, x2, u) =
a

~1+~2

∑

p+q+r=n−1

(−1)rσrZp(~1, x1, u)Zq−1(~2, x2, u). (1.17)
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Remark: We note that by (1.16) and (1.17)

Z̃(~1, ~2, x1, x2, e
T ) = e(t−T )(x1/~1+x2/~2)e−C

(1)
0,1(t)(~−1

1 +~
−1
2 )Ỹ(~1, ~2, x1, x2, e

t), where

Ỹ(~1, ~2, x1, x2, u) ≡
a

~1+~2

∑

p+q+r=n−1

(−1)rσrYp(~1, x1, u)Yq−1(~2, x2, u).

In other words, Z̃ is the same transform of Ỹ in both (x1, ~1) and (~2, x2) as Z and Zp are of Y
and Yp in (~, x).

The only relevant property of the power series C̃
(r)
p,q for the purposes of the genus-one localization

computations in [Z] is that the et-coefficients of C̃
(r)
p,q lie in the ideal generated by σ1, . . . , σn−1 if

p≤n−1. This is automatic in the case of Theorem 1.1, since each of these coefficients is a symmetric
polynomial in α1, . . . , αn of a positive degree r ≤ n−1. The approach of [Z] suggests that these
coefficients are likely to be irrelevant in many other localization computations as well. Neverthe-
less, they are described inductively in this paper in the process of proving the first statement of
Theorem 1.1.

1.3 Outline of the Proof

The proof of (1.14) in Chapter 30 of [MirSym] essentially consists of showing that

(S1) Y(~, x, u) and Z(~, x, u) satisfy a certain recursion on the u-degree;

(S2) Y(~, x, u) and Z(~, x, u) satisfy a certain self-polynomiality condition (SPC);

(S3) the two sides of (1.14), viewed as a powers series in ~−1, agree mod ~−2;

(S4) if Y (~, x, u) satisfies the recursion and the SPC, so do certain transforms of Y (~, x, u);

(S5) if Y (~, x, u) satisfies the recursion and the SPC, it is determined by its “mod ~−2 part”.

For the purposes of these statements, in particular (S3) and (S5), we assume that

Y(~, x, u),Z(~, x, u), Y (~, x, u) ∈ Qα(~, x)
[[
u
]]/ k=n∏

k=1

(x−αk).

For example, (S5) means

Y (~, αi, u) ∼= Ȳ (~, αi, u) (mod ~−2) ∀ i=1, 2, . . . , n

=⇒ Y (~, αi, u) = Ȳ (~, αi, u) ∀ i=1, 2, . . . , n.

The proof of (1.16) in this paper essentially consists of showing that

(M1) Yp(~, x, u) and Zp(~, x, u) satisfy the recursion (2.13);

(M2)
(
Y(~, x, u),Yp(~, x, u)

)
and

(
Z(~, x, u),Zp(~, x, u)

)
satisfy the mutual polynomiality condi-

tion (MPC) of Lemma 2.2;

(M3) the two sides of (1.16), viewed as a powers series in ~−1, agree mod ~−1;
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(M4) if Z(~, x, u) satisfies (2.13) and the MPC with respect to Y (~, x, u), the transforms of Z(~, x, u)
of Lemma 2.5 satisfy (2.13) and the MPC with respect to appropriate transforms of Y (~, x, u);

(M5) if the u-constant term of Y (~, x, u) is independent of ~ and nonzero and Z(~, x, u) satis-
fies (2.13) and the MPC with respect to Y (~, x, u), it is determined by its “mod ~−1 part”;
see Proposition 2.4.

The statements (M3) and (M5) should be interpreted analogously to (S3) and (S5). In other words,
the equalities are modulo

∏k=n
k=1 (x−αk), or equivalently after the evaluation at each x=αi. Simi-

larly, the requirement on the degree-zero term in Y (~, x, u) in (M5) means that it is nonzero even
after the evaluation at each x=αi.

The claims of (M1) and (M2) concerning Zp(~, x, u) are special cases of Lemmas 1.2 and 1.3 below,
since

∫

M0,2(Pn−1,d)

e(V ′′
0 )ev∗2η

~−ψ1
ev∗1φi = ~

∫

M0,3(Pn−1,d)

e(V ′′
0 )ev∗2η

~−ψ1
ev∗1φi ∀ η∈H∗

T(Pn−1), d∈Z+, (1.18)

by the string relation; see Section 26.3 in [MirSym].

Lemma 1.2 For all m≥3, ηj ∈H
∗
T
(Pn−1), and βj ∈ Z̄+, the power series Zη,β(~, x, u) defined by

Zη,β(~, x, u) ≡
∞∑

d=0

ud

(∫

M0,m(Pn−1,d)

e(V ′′
0 )ev∗1φi

~−ψ1

j=m∏

j=2

(
ψ

βj

j ev∗jηj

)
)

(1.19)

satisfies the recursion (2.13).

Lemma 1.3 For all m≥ 3, ηj ∈H
∗
T
(Pn−1), and βj ∈ Z̄+, the power series ~m−2Zη,β(~, x, u), with

Zη,β(~, x, u) as in Lemma 1.2, satisfies the polynomial condition of Lemma 2.1 with respect to
Z(~, x, u).

Our proof of Lemma 1.2 is practically identical to the proof in Section 30.1 of [MirSym] that
Z(~, x, u) satisfies a certain recursion on the u-degree.4 The proof of Lemma 1.3 is similar to the
proof in Section 30.2 of [MirSym] that Z(~, x, u) satisfies the SPC. However, there are differences
in how the key idea for the setup used in [MirSym] is utilized. An explanation of the modifications
and a complete justification of their appropriateness are not very simple to state. In order to avoid
any confusion, we thus give a full account in Subsections 3.3 and 3.4. As it requires most of what
constitutes the proof of the recursivity relation (2.13), we give a proof of the latter in Subsection 3.2.

We are now able to justify (1.6). By (1.4),

Zp(~, x, u) ∼= xp+1 (mod ~−1
)
.5 (1.20)

Along with (M5), these three properties of Zp(~, x, u) imply (1.6), since
∑

p+r=n

(−1)rσrZp−1(~, x, u) ≡
∑

p+r=n

(−1)rσrx
p (mod ~−1

)

=
k=n∏

k=1

(x−αk).

4However, the coefficients Cj
i (d) in (2.13) are “shifts by one” of the coefficients in the recursion for Z(~, x, u).

5Such identities will be taken to mean that the two sides are equal if x is replaced with αi for every i=1, 2, . . . , n.
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The last expression above vanishes at x=αi for all i=1, 2, . . . , n.

We will check by a direct computation that

Y−1(~, x, u) ≡ D
−1Y(~, x, u)

satisfies (2.13) and the MPC with respect to Y(~, x, u); see Subsection 2.3. By (1.15),

Y−1(~, x, u) ∼= 1 (mod ~−1
)
.

Thus, the p=−1 case of (1.16) follows from (1.20), (M4), and (M5).

We could also verify directly that Y0(~, x, u) satisfies (2.13) and the MPC with respect to Y(~, x, u).
Fortunately, this is an immediate consequence of parts (i) and (ii) of Lemma 2.5, since

Y0(~, x, e
t) =

1

I0,0(t)

{
x+ ~

d

dt

}
Y−1(~, x, e

t).

Thus, Y0(~, x, u) satisfies the two properties because Y−1(~, x, u) does. On the other hand, by (1.12)
and (1.13),

Y0(~, x, u) = xY(~, x, u) ∼= x (mod ~−1
)
.

Thus, the p=0 case of (1.16) also follows from (1.20), (M4), and (M5).

The differentiation transform (i) of Lemma 2.5 is the only one of the five “admissible” transforms
that has no analogue in Chapter 30 of [MirSym].6 The admissibility of this transform, along with
that of (ii) of Lemma 2.5, implies that Yp(~, x, u) defined by the second equation in (1.16) satisfies
the recursion (2.13) and the MPC of Lemma 2.2 with respect to Y(~, x, u), no matter what the

coefficients C̃
(r)
p,q (u) are. In light of (1.20), the p≥1 cases of the first equation in (1.16) thus reduce

to showing there exist C̃
(r)
p,q (u) such that

Yp(~, x, u) ∼= xp+1 (mod ~−1
)
. (1.21)

This is proved by induction, using (1.12) and (1.13); see Subsection 2.3.

The proof of (1.17) follows the same principle. By the string relation and (1.1),

Z̃(~1, ~2, αi, αj , x2, u) =
~1~2

~1+~2

∞∑

d=0

∫

M0,3(Pn−1,d)

e(V ′′
0 )

(~1−ψ1)(~2−ψ2)
ev∗1φiev

∗
2(axφj).

Thus, by Lemmas 1.2 and 1.3, (~1 +~2)Z̃(~1, ~2, x1, x2, u) satisfies the recursion (2.13) and the
MPC of Lemma 2.2 with respect to Z(~, x, u) for (~, x)=(~1, x1) and x2 =αj fixed. By symmetry,
it also satisfies the two properties for (~, x) = (~2, x2) and x1 = αi fixed. It is then sufficient to
compare the two sides of (1.17) multiplied by ~1+~2 modulo ~−1

1 :

(
~1+~2

)
Z̃(~1, ~2, αi, αj , u) ∼= aαi

∑

p+q+r=n−1

(−1)rσrα
p
iα

q
j +

∞∑

d=1

ud

∫

M0,2(Pn−1,d)

e(V0)ev
∗
1φiev

∗
2φj

~2−ψ2
;

a
∑

p+q+r=n−1

(−1)rσrZp(~1, αi, u)Zq−1(~2, αj , u) ∼= a
∑

p+q+r=n−1

(−1)rσrα
p+1
i Zq−1(~2, αj , u).

6The multiplication by ~, i.e. transform (iii), is not explicitly mentioned in Chapter 30 of [MirSym], but its
admissibility is nearly immediate from the relevant definitions.
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In order to see that the two resulting expressions are equal, we compare them modulo ~−1
2 :

a
∑

p+q+r=n−1

(−1)rσrα
p+1
i αq

j +
∞∑

d=1

ud

∫

M0,2(Pn−1,d)

e(V0)ev
∗
1φiev

∗
2φj

~2−ψ2

∼= a
∑

p+q+r=n−1

(−1)rσrα
p+1
i αq

j ;

a
∑

p+q+r=n−1

(−1)rσrα
p+1
i Zq−1(~2, αj , u) ∼= a

∑

p+q+r=n−1

(−1)rσrα
p+1
i αq

j .

From this we conclude that the two sides of (1.17) multiplied by ~1 +~2 modulo ~−1
1 are equal.

Therefore, the two sides (1.17) are equal by (M5).

Central to this paper are the use of the transforms Dp in conjunction with part (i) of Lemma 2.5
and a desymmetrization of the approach of Chapter 30 of [MirSym] to obtain an explicit closed
formula for the integrals in (1.3). The transforms Dp, combined with the transforms (ii) and (iii) of
Lemma 2.5, make it possible to construct a power series Ỹ(~, x, u), satisfying the recursion (2.13)
and the MPC with respect to Y(~, x, u), that agrees with a pre-specified α-symmetric element of
Qα[~]

[[
u
]]

modulo ~−1. On the other hand, for the purposes of (M5), it is sufficient to assume that
the coefficient of each power of u in Y and Z is a sum of a power series in ~−1 and a polynomial
in ~.7 Using (M5) and the last two parts of Lemma 2.5, a variety of integrals on M0,m(Pn, d)
involving e(V0) and products of 1/(~j−ψj) can be reduced to integrals involving e(V0) and powers
ψ-classes, with each exponent bounded by m−3.

For example, suppose one would like to compute

Z̃(3)(~1, ~2, ~3, αi1 , αi2 , αi3 , u) ≡
∞∑

d=0

ud

∫

M0,3(Pn−1,d)

e(V0)ev
∗
1φi1ev

∗
2φi2ev

∗
3φi3

(~1−ψ1)(~2−ψ2)(~3−ψ3)
; (1.22)

these integrals may be useful for localization computations in (arithmetic) genus two. By Lem-
mas 1.2 and 1.3 and part (iii) of Lemma 2.5, ~1~2~3Z̃

(3) satisfies the recursion and the MPC with
respect to Z for each (~, x)=(~s, xs). Thus, Z̃(3) can be reconstructed8 from the “mod ~−1

3 ” part

of ~1~2~3Z̃
(3),

~1~2~3Z̃
(3)(~1, ~2, ~3, αi1 , αi2 , αi3 , u)

∼= ~1~2

∞∑

d=0

ud

∫

M0,3(Pn−1,d)

e(V0)ev
∗
1φi1ev

∗
2φi2ev

∗
3φi3

(~1−ψ1)(~2−ψ2)
, (1.23)

once one computes

Z̃p(~1, ~2, αi1 , αi2 , u) ≡
∞∑

d=0

ud

∫

M0,3(Pn−1,d)

e(V0)ev
∗
1φi1ev

∗
2φi2ev

∗
3x

p

(~1−ψ1)(~2−ψ2)
.

Similarly, ~1~2Z̃p can be reconstructed from the its “mod ~−1
2 ” part, if one can compute

Zpq(~1, αi1 , u) ≡
∞∑

d=0

ud

∫

M0,3(Pn−1,d)

e(V0)ev
∗
1φi1ev

∗
2x

pev∗3x
q

~1−ψ1
.

7The same is the case with (S5). In fact, the condition on the middle term of the recursion used Chapter 30 of
[MirSym] can also be relaxed as in Definition 2.3.

8From (1.23) and φi3 =
∏

k 6=i3
(x−αi3), one obtains

~1~2~3Z̃
(3)(~1, ~2, ~3, x1, x2, x3, u) = ~1~2

∑

p+q+r=n−1

(−1)rσrZ̃p(~1, ~2, x1, x2, u)Zq(~3, x3, u).

10



Unfortunately, the “mod ~−1
1 part” of Zpq(~1, x, u) is not simple.

The above approach does, nevertheless, lead to a reconstruction theorem for e(V0)-twisted GW-
invariants of Pn−1, or equivalently for GW-invariants of projective hypersurfaces. The theorem
arising here is different from [LeP] and [P] for example, as the reduction is made to GW-invariants
with low powers of ψ-classes and without increasing the number of marked points. Furthermore,
in may be possible to get a handle on the “components” of the “mod ~−1

1 part” of Zpq, i.e.

∫

M0,3(Pn−1,d)
ev∗1x

pev∗2x
qev∗3x

r,

and Zpq itself through the approach of Subsections 2.4 and 2.5 in [Z]. Along with (2.13), this
approach leads to an explicit, but complicated, recursion for Zpq or (the components of its “mod
~−1

1 part”).

2 Algebraic Observations

2.1 On Rigidity of Certain Polynomial Conditions

This subsection describes the extent of rigidity of power series with coefficients in rational functions
that satisfy a certain recursion and a polynomiality condition. It is the analogue of Section 30.3.

Denote by Z̄+ the set of nonnegative integers and by [n], whenever n ∈ Z̄+, the set of positive
number not exceeding n:

Z̄+ =
{
0, 1, 2, . . . ,

}
, [n] =

{
1, 2, . . . , n

}
.

Whenever f is a function of w (and possibly of other variables) which is holomorphic at w=0 (for
a dense subspace of the other variables) and s∈ Z̄+, let

Ds
wf =

1

s!

{
d

dw

}s

f(w)
∣∣∣
w=0

. (2.1)

This is a function of the other variables if there are any.

Let Q̃α be any field extension of Qα, possibly Qα itself. Given

Y ≡Y (~, x, u), Z≡Z(~, x, u) ∈ Q̃α(~, x)
[[
u
]]
,

we define

ΦY,Z ≡ΦY,Z(~, u, z) ∈ Q̃α(~)
[[
u, z
]]

by

ΦY,Z(~, u, z) =

i=n∑

i=1

eαiz

∏
k 6=i(αi−αk)

Y
(
~, αi, ue

~z
)
Z(−~, αi, u). (2.2)

Lemma 2.1 If Y, Z∈Q̃α(~, x)[[u]], there exists a unique collection

(
EY,Z;d≡EY,Z;d(~,Ω)

)
d∈Z̄+ ⊂ Q̃α(~)[Ω]
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such that the Ω-degree of EY,Z;d is at most (d+1)n−1 for every d ∈ Z̄+ and

ΦY,Z(~, u, z) =
∞∑

d=0

ud

(
1

2πi

∮
eΩz EY,Z;d(~,Ω)
∏k=n

k=1

∏r=d
r=0(Ω−αk−r~)

dΩ

)
, (2.3)

where each path integral is taken over a simple closed loop in C enclosing all points Ω=αk+r~ with
k=1, . . . , n and r=0, 1, . . . , d. The equality holds for a dense collection of complex parameters ~.

Proof: It can be assumed that

αk+r~ 6= αk′+r′~ ∀ k, k′ ∈ [n], r, r′∈ Z̄+, (r, k) 6=(r′, k′).

Note that for every i=1, . . . , n and d′=0, 1, . . . , d,

r=d′−1∏

r=0

(αi+d
′~−αi−r~)

r=d∏

r=d′+1

(αi+d
′~−αi−r~)

r=d∏

r=0

∏

k 6=i

(αi+d
′~−αk−r~)

= d′!~d′(d−d′)!(−~)d−d′
( r=d′∏

r=1

∏

k 6=i

(αi−αk+r~)

)(∏

k 6=i

(αi−αk)

)( r=d−d′∏

r=1

∏

k 6=i

(αi−αk−r~)

)

=

(∏

k 6=i

(αi−αk)

)
Qd′(~, αi)Qd−d′(−~, αi),

where

Qd(~, x) ≡
r=d∏

r=1

k=n∏

k=1

(x−αk+r~) ∀ d∈ Z̄+. (2.4)

By the Residue Theorem,

1

2πi

∮
eΩz EY,Z;d(~,Ω)
∏r=d

r=0

∏k=n
k=1 (Ω−αk−r~)

dΩ

=
d′=d∑

d′=0

i=n∑

i=1

e(αi+d′~)z EY,Z;d(~, αi+d
′~)(∏

k 6=i(αi−αk)
)
Qd′(~, αi)Qd−d′(−~, αi)

=
d′=d∑

d′=0

i=n∑

i=1

(
eαiz

∏
k 6=i(αi−αk)

)(
(e~z)d′

Qd′(~, αi)Qd−d′(−~, αi)

)
EY,Z;d(~, αi+d

′~).

(2.5)

On the other hand, since Y, Z∈Q̃α(~, x)[[u]],

Y (~, x, u) =
∞∑

d=0

NY ;d(~, αi)

Qd(~, αi)
ud and Z(~, x, u) =

∞∑

d=0

NZ;d(~, αi)

Qd(~, αi)
ud (2.6)

for unique NY ;d, NZ;d∈Q̃α(~, x). By (2.2) and (2.6),

ΦY,Z(~, u, z) =
∞∑

d=0

d′=d∑

d′=0

i=n∑

i=1

eαiz

∏
k 6=i(αi−αk)

(
NY ;d′(~, αi)

Qd′(~, αi)

)
(ue~z)d′

(
NZ;d−d′(−~, αi)

Qd−d′(−~, αi)

)
ud−d′

=
∞∑

d=0

ud

(
d′=d∑

d′=0

i=n∑

i=1

eαiz

∏
k 6=i(αi−αk)

(
(e~z)d′

Qd′(~, αi)Qd−d′(−~, αi)

)

×NY ;d′(~, αi)NZ;d−d′(−~, αi)

)
.

(2.7)
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By (2.5) and (2.7), (2.3) is satisfied if and only if

EY,Z;d(~, αi+d
′~) = NY ;d′(~, αi) ·NZ;d−d′(−~, αi) ∀ i = 1, . . . , n, d′ = 0, . . . , d. (2.8)

For a dense collection of complex parameters ~, there exists a unique polynomial

EY,Z;d(~,Ω) ∈ Q̃α(~)[Ω]

of Ω-degree at most (d+1)n−1 that satisfies (2.8).

Lemma 2.2 If Y, Z∈Q̃α(~, x)[[u]] and (EY,Z;d)d∈Z̄+ ⊂ Q̃α(~)[Ω] are as in Lemma 2.1, then

ΦY,Z ∈ Q̃α[~]
[[
u, z
]]

⇐⇒ EY,Z;d ∈ Q̃α[~,Ω] ∀ d∈ Z̄+

⇐⇒ EZ,Y ;d ∈ Q̃α[~,Ω] ∀ d∈ Z̄+ ⇐⇒ ΦZ,Y ∈ Q̃α[~]
[[
u, z
]]
.

(2.9)

Proof: The equivalence of the two middle statements in (2.9) follows from (2.8), which implies that

EZ,Y ;d(~,Ω) = EY,Z;d(−~,Ω−d~).

On the other hand, by the Residue Theorem on S2,

1

2πi

∮
ΩkdΩ

∏r=d
r=0

∏k=n
k=1 (Ω−αk−r~)

=





0, if k < (d+1)n−1;

1, if k = (d+1)n−1;

Rd
k−(d+1)n+1(~), if k > (d+1)n−1,

(2.10)

where Rd
s ∈Qα[~] is given by

Rd
s(~) = Ds

w

(
1

∏r=d
r=0

∏k=n
k=1 (1−(αk+r~)w)

)
∀ s ∈ Z̄+.

The path integral in (2.10) is again taken over a simple closed loop enclosing all points Ω=αk+r~
with r≤d. Write

ΦY,Z(~, u, z) =
∞∑

d=0

∞∑

q=0

1

q!
Fd,q(~)zqud and EY,Z;d(~,Ω) =

(d+1)n−1∑

s=0

fd,s(~)Ωs. (2.11)

By (2.3), (2.10), and (2.11),

Fd,q(~) =

(d+1)n−1∑

s=0

1

2πi

∮
fd,s(~)Ωq+sdΩ

∏r=d
r=0

∏k=n
k=1 (Ω−αk−r~)

=

(d+1)n−1∑

s=max(0,(d+1)n−1−q)

Rd
q+s−(d+1)n+1(~) fd,s(α; ~).

(2.12)

Since Rd
s ∈Qα[~], it follows that Fd,q∈Q̃α[~] if fd,s∈Q̃α[~] for all s. Conversely, since Rd

0(~)=1,

Fd,0, . . . , Fd,(d+1)n−1 ∈ Q̃α[~] =⇒ fd,(d+1)n−1, . . . , fd,0 ∈ Q̃α[~].

These observations imply the two remaining statements of Lemma 2.2.
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Definition 2.3 For i, j∈ [n] with i 6=j and d∈Z+, let

Cj
i (d) =

∏nd−1
r=0 (nαi + r(αj−αi)/d

)

d
∏r=d

r=1

∏k=n
k=1

(r,k) 6=(d,j)

(αi−αk + r(αj−αi)/d
) ∈ Qα.

We will call Z∈Q̃α(~, x)[[u]] C-recursive if

Z(~, αi, u) =
∞∑

d=0

( r=Nd∑

r=−Nd

Zr
i;d~−r

)
ud +

∞∑

d=1

∑

j 6=i

1

~ −
αj−αi

d

Cj
i (d)u

dZ
(
(αj−αi)/d, αj , u

)
(2.13)

for every i∈ [n] and for some Nd∈Z and Zr
i;d∈Q̃α.9

Proposition 2.4 Suppose

Y, Z ∈ Q̃α(~, x)[[u]] ⊂ Q̃α(x)
[[

~−1, u
]]

+ Q̃α(x)[~]
[[
u
]]

are such that Z is C-recursive, ΦY,Z ∈Q̃α[~][[u, z]], and for every i∈ [n]

Y (~, αi, fi) ≡ fi (mod u)

for some fi∈Q̃∗
α. Then,

Z(~, αi, u) ≡ 0 (mod ~−1) ∀ i ∈ [n] =⇒ Z(~, αi, u) = 0 ∀ i ∈ [n].

Remark 1: Suppose

Z(~, αi, u) =
∞∑

d=0

( ∞∑

r=−Nd

Z̃r
i;d~−r

)
ud

for some Z̃r
i;d∈Q̃α. In the statement of Proposition 2.4 and throughout the rest of the paper,

Z(~, αi, u) ≡
∞∑

d=0

( a−1∑

r=−Nd

Z̃r
i;d~−r

)
ud (mod ~−a),

i.e. we drop ~−a and higher powers of ~−1, instead of higher powers of ~.

Remark 2: In contrast to the situation in [MirSym, Chapter 30], the assumptions of Proposi-
tion 2.4, i.e. recursivity and ~-polynomiality with respect to Y , are both linear conditions on Z.
Consequently, the ~−1-term of Z(~, αi, u) is no longer necessary to determine Z.

Proof: Suppose d≥0 and we have shown that

Z(~, αi, u) ≡ 0 (mod ud) ∀ i = 1, . . . , n. (2.14)

9The recursion (30.11) in [MirSym] is a renormalization of the recursion (2.13) with a slightly different coeffi-
cient Cj

i (d).
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With notation as in (2.13) and by the last assumption on Z(~, αi, u), it follows that

Z(~, αi, u) ≡ ud
r=Nd∑

r=1

Zr
i;d~−r (mod ud+1) ∀ i = 1, . . . , n. (2.15)

If NY ;d′ , NZ;d′ ∈Q̃α(~, x) are as in the proof of Lemma 2.1,

NY ;0(~, αi) = fi and NZ;d′(~, αi) =

{
0, if d′<d;

Qd(~, αi)
∑r=Nd

r=1 Zr
i;d~−r, if d′=d,

(2.16)

by (2.6), (2.14), and (2.15). Since

EZ,Y ;d(~, αi+d
′~) = 0 ∀ d′ = 0, 1, . . . , d−1, i = 1, . . . , n

by (2.8) and (2.16) and EZ,Y ;d∈Q̃α[~,Ω] by Lemma 2.2,

EZ,Y ;d(~,Ω) =

( d−1∏

d′=0

j=n∏

j=1

(
Ω−αj−d

′~
))

·Rd(~,Ω)

for some Rd∈Q̃α[~,Ω]. Thus,

EZ,Y ;d(~, αi+d~) =

( d−1∏

d′=0

k=n∏

k=1

(
(αi+d~)−αk−d

′~
))

·Rd(~, αi+d~) = ~dR̃d(~) (2.17)

for some R̃d∈Q̃α[~]. On the other hand, by (2.8) and (2.16)

EZ,Y ;d(~, αi+d~) = NZ;d(~, αi) · fi = fi ·

(
d!~d

r=d∏

r=1

∏

k 6=i

(αi−αk+r~)

) r=Nd∑

r=1

Zr
i;d~−r

= fi ·

(
d!

r=d∏

r=1

∏

k 6=i

(αi−αk+r~)

) r=Nd∑

r=1

Zr
i;d~d−r.

(2.18)

By (2.17) and (2.18),
Zr

i;d = 0 ∀ r = 1, . . . , Nd, i = 1, . . . , n.

Along with (2.15), this implies that (2.14) holds with d replaced by d+1.

2.2 Admissible Transforms

This subsection is the analogue of the beginning of Section 30.4 in [MirSym]. We describe trans-
forms of Y, Z∈Q̃α(~, x) that preserve the polynomiality property of Lemma 2.2 and the recursivity
property of Definition 2.3. The statement of Lemma 2.5 is followed by complete proofs. The first
of the five transforms below has no analogue in [MirSym].

Lemma 2.5 Suppose Y, Z ∈ Q̃α(~, x)[[u]] are such that Z is C-recursive and ΦY,Z ∈ Q̃α[~][[u, z]].
Then,

(i) if u=et, Z̄≡
{
x+~ d

dt

}
Z is C-recursive and ΦY,Z̄ ∈Q̃α[~][[u, z]];
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(ii) if f ∈Q̃α[u], then fZ is C-recursive and ΦY,fZ ,ΦfY,Z ∈Q̃α[~][[u, z]];

(iii) if f ∈Q̃α[~], then Z̄≡fZ is C-recursive and ΦY,Z̄ ∈Q̃α[~][[u, z]];

(iv) if f ∈Q̃α[u], f(0)=0, and Ȳ =ef/~Y , then Z̄≡ef/~Z is C-recursive and ΦȲ ,Z̄ ∈Q̃α[~][[u, z]];

(v) if g∈Q[[u]], g(0)=0,

Ȳ (~, x, u) = exg(u)/~Y
(
~, x, ueg(u)

)
, and Z̄(~, x, u) = exg(u)/~Z

(
~, x, ueg(u)

)
,

then Z̄ is C-recursive and ΦȲ ,Z̄ ∈Q̃α[~][[u, z]].

Remark: In fact, (ii) and (iii) are special cases of the admissible transform defined by f ∈Qα[~][[u]].

(i) The operator
{
αi+~ d

dt

}
preserves the structure of the first term on the right-hand side of (2.13).

The (d, j)-summand in the last term becomes

{
αi+~

d

dt

}( Cj
i (d)u

d

~ −
αj−αi

d

Z
(
(αj−αi)/d, αj , u

))
=

Cj
i (d)u

d

~ −
αj−αi

d

{
αi+d~+~

d

dt

}
Z
(
(αj−αi)/d, αj , u

)

=
Cj

i (d)u
d

~ −
αj−αi

d

Z̄
(
(αj−αi)/d, αj , u

)
+ dCj

i (d)u
dZ
(
(αj−αi)/d, αj , u

)
. (2.19)

Since the last term in (2.19) does not depend on ~ and Z is C-recursive, it follows that Z̄ is also
C-recursive. Since

ΦZ̄,Y (~, u, z) =
d

dz
ΦZ,Y (~, u, z)

and ΦY,Z ∈Q̃α[~][[u, z]], ΦY,Z̄ ∈Q̃α[~][[u, z]] by the middle equivalence in Lemma 2.2.

(ii) Since Z is C-recursive and the multiplication by f preserves the structure of each of the terms
in (2.13), fZ is also C-recursive. Since ΦY,fZ =fΦY,Z and ΦY,Z ∈Q̃α[~][[u, z]], ΦY,fZ ∈Q̃α[~][[u, z]].
Similarly, since ΦZ,fY =fΦZ,Y , ΦfY,Z ∈Q̃α[~][[u, z]] by Lemma 2.2.

(iii) It is sufficient to assume that f(~)=~. The multiplication by ~ preserves the structure of the
first term on the right-hand side of (2.13). The (d, j)-summand in the last term becomes

~
Cj

i (d)u
d

~ −
αj−αi

d

Z
(
(αj−αi)/d, αj , u

)
=

Cj
i (d)u

d

~ −
αj−αi

d

Z̄
(
(αj−αi)/d, αj , u

)

+ Cj
i (d)u

dZ
(
(αj−αi)/d, αj , u

)
.

(2.20)

Since the last term in (2.20) does not depend on ~ and Z is C-recursive, it follows that Z̄ is also
C-recursive. Since ΦY,Z̄ =−~ΦY,Z and ΦY,Z ∈Q̃α[~][[u, z]], ΦY,Z̄ ∈Q̃α[~][[u, z]].

(iv) Since f(0)=0, i.e. f contains no degree-0 term in u, the multiplication by ef(u)/~ preserves the
structure of the first term on the right-hand side of (2.13). The (d, j)-summand in the last term
becomes

ef(u)/~
Cj

i (d)u
d

~ −
αj−αi

d

Z
(
(αj−αi)/d, αj , u

)
=

Cj
i (d)u

d

~ −
αj−αi

d

Z̄
(
(αj−αi)/d, αj , u

)

+
(
ef(u)/~ − ef(u)/((αj−αi)/d)

) Cj
i (d)u

d

~ −
αj−αi

d

Z
(
(αj−αi)/d, αj , u

)
.
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Since Z is C-recursive and

ef(u)/~ − ef(u)/((αj−αi)/d)

~ −
αj−αi

d

∈ Q̃α[~, ~−1]
[[
u
]]
,

it follows that Z̄ is C-recursive as well. On the other hand,

ΦȲ ,Z̄(~, u, z) = e(f(ue~z)−f(u))/~ΦY,Z(~, u, z). (2.21)

Since ΦY,Z ∈Q̃α[~][[u, z]] and

(
f(ue~z) − f(u)

)
/~ ∈ Q̃α[~]

[[
u, z
]]
,

(2.21) implies that ΦȲ ,Z̄ ∈Q̃α[~][[u, z]] as well.

(v) Since g(0)=0, the operation of replacing u with ueg(u) followed by multiplication by eαig(u)/~

preserves the structure of the first term on the right-hand side of (2.13). The (d, j)-summand in
the last term becomes

eαig(u)/~
Cj

i (d)u
dedg(u)

~ −
αj−αi

d

Z
(
(αj−αi)/d, αj , u

)
=

Cj
i (d)u

d

~ −
αj−αi

d

Z̄
(
(αj−αi)/d, αj , u

)

+
(
e(αi/~+d)g(u) − e(αj/((αj−αi)/d))g(u)

) Cj
i (d)u

d

~ −
αj−αi

d

Z
(
(αj−αi)/d, αj , u

)
.

Since Z is C-recursive and

e(αi/~+d)g(u) − e(αj/((αj−αi)/d))g(u)

~ −
αj−αi

d

=
d

(αi+d~) − αj
edz/(z−αi)

∣∣∣
z=αi+d~

z=αj

∈ Qα[~, ~−1]
[[
u
]]
,

it follows that Z̄ is C-recursive as well. On the other hand,

ΦȲ ,Z̄(~, u, z) = ΦY,Z

(
~, ueg(u), z̃

)
, where z̃ = z +

g(ue~z)−g(u)

~
∈ Q[~, z]

[[
u
]]
. (2.22)

Since ΦY,Z ∈Q̃α[~][[u, z]], (2.22) implies that ΦȲ ,Z̄ ∈Q̃α[~][[u, z]] as well.

2.3 Some Properties of Hypergeometric Series

In this subsection we verify the three claim concerning the power series Yp(~, x, u) made in Sub-
section 1.3:

(a) Y−1(~, x, u) satisfies the C-recursivity condition of Definition 2.3;

(b) ΦY,Y−1 ∈Qα[~][[u, z]];

(c) there exist C̃
(r)
p,q as in Theorem 1.1 such that (1.21) is satisfied.
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Proof of (a): Note that

Cj
i (d)u

d

~ −
αj−αi

d

Y−1

(
(αj−αi)/d, αj , u

)
= Res

z=
αj−αi

d

{
1

~−z
Y−1(z, αi, u)

}
.

Thus, by the Residue Theorem on S2,

∞∑

d=1

∑

j 6=i

Cj
i (d)u

d

~ −
αj−αi

d

Y−1

(
(αj−αi)/d, αj , u

)
= −Resz=~,0,∞

{
1

~−z
Y−1(z, αi, u)

}

= Y−1(~, αi, u) − Resz=0,∞

{
1

~−z
Y−1(z, αi, u)

}
.

(2.23)

On the other hand, if Y−1;d is the degree-d term of Y−1,

Resz=0

{
1

~−z
Y−1;d(z, αi, u)

}
= Dd−1

z

{
1

~−z

∏r=nd−1
r=0 (nαi+rz)

d!
∏r=d

r=1

∏
k 6=i(αi−αk+rz)

}
∈ Qα[~−1],

Resz=∞

{
1

~−z
Y−1(z, αi, u)

}
= 1,

where Dd
z is as in (2.1). Thus, (2.23) implies that Y−1 satisfies the recursion (2.13).

Proof of (b): Let

R(~, x, u) =
∞∑

d=0

ud

∏r=nd
r=1 (nx+r~)

∏r=d
r=1

∏k=n
k=1 (x−αk+r~)

.

By (ii) of Lemma 2.5, it is sufficient to show that ΦR,Y−1 ∈Qα[~][[u, z]]. Note that

eαiz

∏
k 6=i

(αi−αk)
R
(
~, αi, ue

~z
)
Y−1(−~, αi, u) = Resx=αi

{
exz

k=n∏
k=1

(x−αk)

R
(
~, x, ue~z

)
Y−1(−~, x, u)

}
.

Thus, by the Residue Theorem on S2,

ΦR,Y−1(~, u, z) = −Resx=∞

{
exz

k=n∏
k=1

(x−αk)

R
(
~, x, ue~z

)
Y−1(−~, x, u)

}

=
∞∑

p=0

zn−1+p

(n−1+p)!
Dp

w

{
1∏

k 6=i

(1−αkw)

( ∞∑

d=0

uded~z

∏r=nd
r=1 (n+r~w)

∏r=d
r=1

∏k=n
k=1 (1−(αk−r~)w)

)

×

( ∞∑

d=0

ud

∏r=nd−1
r=0 (n−r~w)

∏r=d
r=1

∏k=n
k=1 (1−(αk+r~)w)

)}
.

The pth summand above is polynomial in ~. Thus, ΦR,Y−1 ∈Qα[~][[u, z]].

Proof of (c): Suppose p∈Z+, and we have constructed power series

Y0,Y1, . . . ,Yp−1 ∈ Qα(~, x)
[[
et
]]
,
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satisfying the second equation in (1.16) and (1.21), so that

ext/~Yp−1(~, x, e
t) = xp +

∞∑

q=1

( p−1+q∑

r=0

C
(r)
p−1,q(t)x

p+q−r

)
~−q, (2.24)

where C
(r)
p−1,q(t) is a degree-r symmetric polynomial in α1, . . . , αn with coefficients in Q[t][[et]] such

that
C

(0)
p−1,q(t) = Ip−1,p−1+q(t)

/
Ip−1,p−1(t). (2.25)

This assumption is satisfied for p=1 by (1.12) and (1.13). Since Yp−1 ∈ Qα(~, x)[[et]],

C
(0)
p−1,1(t) ∈ t+ Qα[[et]], C

(r)
p−1,1(t) ∈ Qα[[et]] ∀ r≥1 =⇒

d

dt
C

(r)
p−1,1(t) ∈ Qα[[et]] ∀ r≥0. (2.26)

Thus,

Yp(~, x, e
t) ≡ e−xt/~

~

Ip,p(t)

d

dt

(
ext/~Yp−1(~, x, e

t)
)

−
1

Ip,p(t)

r=p∑

r=1

( d
dt
C

(r)
p−1,1(t)

)
Yp−r(~, x, e

t) ∈ Qα(~, x)
[
[et]
]
.

(2.27)

By (1.9), (2.24), and (2.25) are satisfied with p replaced by p+1 and

C(r)
p,q (t) =

1

Ip,p(t)

d

dt
C

(r)
p−1,q+1(t) −

1

Ip,p(t)

min(p,r)∑

s=1

( d
dt
C

(s)
p−1,1(t)

)
C

(r−s)
p−s,q (t).

In particular, Yp satisfies (1.21). By (2.27), the coefficients C̃
(r)
p,q are inductively defined by

C̃(r)
p,q (et) = Ip,p(t)

−1

(
d

dt
C̃

(r)
p−1,q + Iq,q(t)C̃

(r)
p−1,q−1(e

t) −
r−1∑

s=1

(
d

dt
C

(s)
p−1,1

)
C̃

(q−s)
p−s,q

)
, (2.28)

where C̃
(r)
p−1,p−r ≡ −C

(r)
p−1,1, C̃

(r)
p−1,−1 ≡ 0, C̃

(r)
p′,q ≡ 0 ∀ r≤0.

Thus, by (2.26) and inductive assumptions, C̃
(r)
p,q ∈Qα[[et]] is a degree-r symmetric polynomial in

α1, . . . , αn with coefficients in Qα[[et]], as required.

3 Localization Computations

3.1 Equivariant Cohomology

In Subsection 3.2, we apply the classical localization theorem (3.9) with the standard action of the
n-torus T on Pn−1 and on M0,m(Pn−1, d) to verify Lemma 1.2. In Subsection 3.3, we apply (3.9)
with an action of the (n+1)-torus

T̃ ≡ T × T1

on Pn−1×P1 and on a subspace of M0,m(P1×Pn−1, (1, d)) to verify Lemma 1.3. The aim of this
subsection is to review the basics of equivariant cohomology and to set notation. Throughout this
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subsection, G denotes an m-torus, either (C∗)m or (S1)m.

The m-torus G acts freely on EG=(C∞)m−0 (or (S∞)m):

(
eiθ1 , . . . , eiθm

)
· (z1, . . . , zm) =

(
eiθ1z1, . . . , e

iθmzm
)
.

Thus, the classifying space for G and its group cohomology are given by

BG ≡ EG/G = (P∞)m and H∗
G ≡ H∗(BG; Q) = Q[α1, . . . , αm],

where αi =π
∗
i c1(γ

∗) if
πi : (P∞)m −→ P∞ and γ −→ P∞

are the projection onto the ith component and the tautological line bundle, respectively. Denote
by H∗

G the field of fractions of H∗
G:

H∗
G = Qα ≡ Q(α1, . . . , αm).

A representation ρ of G, i.e. a linear action of G on Ck, induces a vector bundle over BG:

Vρ ≡ EG×G Ck.

If ρ is one-dimensional, we will call

c1(V
∗
ρ ) = −c1(Vρ) ∈ H∗

G ⊂ H∗
G

the weight of ρ. For example, αi is the weight of representation

πi : G −→ C∗,
(
eiθ1 , . . . , eiθm

)
· z = eiθiz. (3.1)

More generally, if a representation ρ of G on Ck splits into one-dimensional representations with
weights β1, . . . , βk, we will call β1, . . . , βk the weights of ρ. In such a case,

e(V ∗
ρ ) = β1 · . . . · βk. (3.2)

We will call the representation ρ of T on Cn with weights α1, . . . , αn the standard representation

of T.

If G acts on a topological space M , let

H∗
G(M) ≡ H∗(BG; Q), where BM = EG×GM,

be the equivariant cohomology of M . The projection map BM−→BG induces an action of H∗
G

on H∗
G(M). Let

H∗
G(M) = H∗

G(M) ⊗H∗
G
H∗

G.

If the G-action on M lifts to an action on a (complex) vector bundle V −→M , then

BV ≡ EG×GV
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is a vector bundle over BM . Let

e(V ) ≡ e(BV ) ∈ H∗
G(M) ⊂ H∗

G(M)

denote the equivariant euler class of V .

The standard action of T on Pn−1 is the action induced by the standard action ρ of T on Cn:

(
eiθ1 , . . . , eiθn

)
· [z1, . . . , zn] =

[
eiθ1z1, . . . , e

iθnzn
]
.

Since BPn−1 = PVρ,

H∗
T(Pn−1) ≡ H∗

(
PVρ; Q

)
= Q[x, α1, . . . , αn]

/(
xn+c1(Vρ)x

n−1+. . .+cn(Vρ)
)
,

where x=c1(γ̃
∗) and γ̃−→PVρ is the tautological line bundle. Since

c(Vρ) = (1 − α1) . . . (1 − αn),

it follows that

H∗
T(Pn−1) = Q[x, α1, . . . , αn]

/
(x−α1) . . . (x−αn) and

H∗
T(Pn−1) = Qα[x]

/
(x−α1) . . . (x−αn).

(3.3)

The standard action of T on Pn−1 has n-fixed points:

P1 = [1, 0, . . . , 0], P2 = [0, 1, 0, . . . , 0], . . . Pn = [0, . . . , 0, 1].

For each i=1, 2, . . . , n, let

φi =
∏

k 6=i

(x−αk) ∈ H∗
T(Pn−1). (3.4)

By equation (3.10) below, φi is the equivariant Poincare dual of Pi. We also note that γ̃|BPi
=Vπi

,
where πi is as in (3.1). Thus, the restriction map on the equivariant cohomology induced by the
inclusion Pi−→Pn−1 is given by

H∗
T(Pn−1) = Q[x, α1, . . . , αn]

/ k=n∏

k=1

(x−αk) −→ H∗
T(Pi) = Q[α1, . . . , αn], x −→ αi. (3.5)

By (3.5),
η = 0 ∈ H∗

T(Pn−1) ⇐⇒ η|Pi
= 0 ∈ H∗

T ∀ i = 1, 2, . . . , n. (3.6)

The tautological line bundle γn−1−→Pn−1 is a subbundle of Pn−1×Cn preserved by the diagonal
action of T. Thus, the action of T on Pn−1 naturally lifts to an action on γn−1 and

e
(
γ∗n−1

)∣∣
Pi

= αi ∀ i = 1, 2, . . . , n. (3.7)

Via the exact sequence

0 −→ γ∗n−1 ⊗ γn−1 −→ γ∗n−1 ⊗
(
Pn−1×Cn

)
−→ TPn−1 −→ 0
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of vector bundles on Pn−1, T also lifts to an action on TPn−1. By (3.2) and (3.7),

e
(
TPn−1

)∣∣
Pi

=
∏

k 6=i

(αi−αk) = φi|Pi
∀ i = 1, 2, . . . , n. (3.8)

If G acts smoothly on a smooth compact oriented manifold M , there is a well-defined integration-
along-the-fiber homomorphism ∫

M
: H∗

G(M) −→ H∗
G

for the fiber bundle BM −→ BG. The classical localization theorem of [ABo] relates it to inte-
gration along the fixed locus of the G-action. The latter is a union of smooth compact orientable
manifolds F and G acts on the normal bundle NF of each F . Once an orientation of F is chosen,
there is a well-defined integration-along-the-fiber homomorphism

∫

F
: H∗

G(F ) −→ H∗
G.

The localization theorem states that
∫

M
ψ =

∑

F

∫

F

ψ|F
e(NF )

∈ H∗
G ∀ ψ ∈ H∗

G(M), (3.9)

where the sum is taken over all components F of the fixed locus of G. Part of the statement of (3.9)
is that e(NF ) is invertible in H∗

G(F ). In the case of the standard action of T on Pn−1, (3.9) implies
that

η|Pi
=

∫

Pn−1

ηφi ∈ HT ∀ η∈H∗
T(Pn−1), i = 1, 2, . . . , n; (3.10)

see also (3.8).

Finally, if f : M −→M ′ is a G-equivariant map between two compact oriented manifolds, there is
a well-defined pushforward homomorphism

f∗ : H∗
G(M) −→ H∗

G(M ′).

It is characterized by the property that

∫

M ′

(f∗η)ψ =

∫

M
η (f∗ψ) ∀ η ∈ H∗

G(M), ψ ∈ H∗
G(M ′). (3.11)

The homomorphism
∫
M of the previous paragraph corresponds to M ′ being a point. It is immediate

from (3.11) that
f∗
(
η (f∗ψ)

)
= (f∗η)ψ ∀ η ∈ H∗

G(M), ψ ∈ H∗
G(M ′). (3.12)

3.2 Proof of Lemma 1.2

The standard T-action on Pn−1 (as well as any other action) induces T-actions on moduli spaces
of stable maps M0,m(Pn−1, d) by composition on the right:

g · [C, f ] = [C, g ◦ f ] ∀ g ∈ T, [C, f ] ∈ M0,m(Pn−1, d).
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di j

1
2

3Γij(d)

di j

1

2

3

i

1

2

3

Figure 1: Two graphs of type Ai(j; d)⊂Ai and a graph of type Bi

All evaluation maps

evi : M0,m(Pn−1, d) −→ Pn−1, [C, y1, . . . , yk, f ] −→ f(yi),

are T-equivariant. Via the natural lift of the T-action to γ∗n−1−→Pn−1 described in Subsection 3.1,
the T-action on M0,m(Pn−1, d) lifts to T-actions on the vector bundles V0, V0, and V ′′

0 , as well as
on the universal tangent line bundles.

As described in detail in [MirSym, Section 27.3], the fixed loci of the T-action on M0,m(Pn−1, d)
are indexed by decorated graphs that have no loops. A graph consists of a set Ver of vertices
and a collection Edg of edges, i.e. of two-element subsets of Ver. A loop in a graph (Ver,Edg) is
a subset of Edg of the form

{
{v1, v2}, {v2, v3}, . . . , {vN , v1}

}
, v1, . . . , vN ∈Ver, N≥1.

Neither of the three graphs in Figure 1 has a loop. A decorated graph is a tuple

Γ =
(
Ver,Edg;µ, d, η

)
, (3.13)

where (Ver,Edg) is a graph and

µ : Ver −→ [n], d : Edg −→ Z+, and η : [m] −→ Ver

are maps such that
µ(v1) 6= µ(v2) if {v1, v2} ∈ Edg. (3.14)

In Figure 1, the values of the map µ on some of the vertices are indicated by letters next to those
vertices. Similarly, the value of the map d on one of the edges is indicated by a letter next to
the edge. The three elements of the set [m] = [3] are shown in bold face. They are linked by line
segments to their images under η. By (3.14), no two consecutive vertex labels are the same and
thus j 6= i.

The fixed locus ZΓ of M0,m(Pn−1, d) corresponding to a decorated graph Γ consists of the stable
maps f from a genus-zero nodal curve Cf with m marked points into Pn−1 that satisfy the following
conditions. The components of Cf on which the map f is not constant are rational and correspond
to the edges of Γ. Furthermore, if e={v1, v2} is an edge, the restriction of f to the component Cf,e

corresponding to e is a degree-d(e) cover of the line

P1
µ(v1),µ(v2) ⊂ Pn−1
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passing through the fixed points Pµ(v1) and Pµ(v2). The map u|Cf,e
is ramified only over Pµ(v1)

and Pµ(v2). In particular, f |Cf,e
is unique up to isomorphism. The remaining, contracted, compo-

nents of Cf are indexed by the vertices v∈Ver such that

val(v) ≡
∣∣{v′∈Ver: {v, v′}∈Edg}

∣∣+
∣∣{i∈ [m] : η(i)=v}

∣∣ ≥ 3.

The map f takes such a component Cf,v to the fixed point µ(v). Thus,

ZΓ ≈ MΓ≡
∏

v∈Ver

M0,val(v), (3.15)

where M0,l denotes the moduli space of stable genus-zero curves with l marked points. For the
purposes of this definition, M0,1 and M0,2 are one-point spaces. For example, in the case of the
last diagram in Figure 1,

ZΓ ≈ MΓ≡ M0,5×M
3
0,3×M0,2×M

5
0,1 ≈ M0,5

is a fixed locus10 in M0,3(P
n−1, d) for some d≥9.

We now verify Lemma 1.2. Let

ηβ =

j=m∏

j=2

(
ψ

βj

j ev∗jηj

)
. (3.16)

Suppose Γ is a decorated graph as in (3.13) that contributes to (1.19), in the sense of the localization
formula (3.9). By (3.4) and (3.5),

ev∗1φi =
∏

k 6=i

(
αµ(η(1)) − αk

)
= δi,µ(η(1))

∏

k 6=i

(αi − αk),

where δi,µ(η(1)) is the Kronecker delta function. Thus, by (3.9), Γ does not contribute to (1.4)
unless µ(η(1)) = i, i.e. the marked point 1 of the map is taken to the point Pi ∈Pn−1. There are
two types of graphs that do (or may) contribute to (1.4); they will be called Ai and Bi-types. In
a graph of the Ai-type, the marked point 1 is attached to a vertex v0∈Ver of valence two which is
labeled i. In a graph of the Bi-type, the marked point 1 is attached to a vertex v0 of valence at 3,
which is still labeled i. Examples of the two types are depicted in Figure 1.

Suppose Γ is a graph of type Bi and

ZΓ ⊂ M0,m(Pn−1, d),

so that Γ contributes to the coefficient of ud in (1.4). In this case, the restriction of ψ1 to ZΓ is
the pull-back of a ψ-class from the component M0,val(v0) in the decomposition (3.15). Since the
T-action on the corresponding tautological line bundle is trivial,

ψk
1

∣∣
ZΓ

= 0 ∀ k ≥ d+m > val(v0) − 3.

Thus, Γ contributes a polynomial in ~−1, of degree at most d+m, to the coefficient of ud in (1.4).
Therefore, the contributions of the loci of type Bi to (1.4) are accounted for by the middle term

10after dividing by an appropriate automorphism group; see [MirSym, Section 27.3]
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Figure 2: A graph of type A∗
i (j; d0) and its two subgraphs

in (2.13).

A graph Γ as in (3.13) of type Ai has a unique vertex v joined to v0. Denote by Ai(j; d0) the set of
all graphs Γ of type Ai such that µ(v)= j and d({v0, v})=d0, i.e. the unique vertex v of Γ joined
to v0 is mapped to Pj ∈Pn−1 and the edge {v0, v} corresponds to the d0-fold cover of P1

ij branched
only over Pi and Pj . By (3.14),

Ai =
∞⋃

d0=1

⋃

j 6=i

Ai(j; d0). (3.17)

Suppose Γ∈Ai(j; d0) and v is the unique vertex joined to v0 by an edge. We break Γ at v into two
graphs:

(i) Γ0 consisting of the vertices v0 and v, the edge {v0, v}, and marked points 1 and 2 attached
to v0 and v, respectively;

(ii) Γc consisting all vertices and edges of Γ, other than the vertex v0 and the edge {v0, v}, with
a new marked point attached to v;

see Figure 2. Let dc denote the degree of Γc, i.e. the sum of all edge labels. By (3.15),

ZΓ ≈ ZΓ0 ×ZΓc . (3.18)

Denote by π0 and πc the two component projection maps.

By Section 27.4 in [MirSym],

V ′′
0

∣∣
ZΓ

= π∗0V
′′
0 ⊕ π∗cV

′′
0 ,

NZΓ

TPi
Pn−1

= π∗0

(
NZΓ0

TPi
Pn−1

)
⊕ π∗c

(
NZΓc

TPj
Pn−1

)
⊕ π∗0L2 ⊗ π∗cL1,

(3.19)

where L2−→ZΓ0 and L1−→ZΓc are the tautological tangent line bundles. Thus, by (3.8),

e(V ′′
0 )ηβ

~−ψ1

∣∣∣
ZΓ

= π∗0

(
e(V ′′

0 )

~−ψ1

)
· π∗c

(
e(V ′′

0 )ηβ
)
,

ev∗1φi|ZΓ

e(NZΓ)
= π∗0

(
ev∗1φi

e(NZΓ0)

)
· π∗c

(
ev∗1φj

e(NZΓ0)

)
·

1

π∗0c1(L2) − π∗cψ1
.

(3.20)
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By Sections 27.1 and 27.2 in [MirSym], on ZΓ0

e(V ′′
0 ) =

nd0−1∏

r=0

(
nαi + r

αj−αi

d0

)
, ψ1 = c1(L2) =

αj−αi

d0
,

e(NZΓ0) = (−1)d0

r=d0∏

r=1

(
r
αj−αi

d0

)2
r=d0∏

r=0

∏

k 6=i,j

(
αi−αk+r

αj−αi

d0

)
.

(3.21)

Thus, using (3.8) and taking into the account the automorphism group, Zd0 , we obtain
∫

ZΓ0

e(V ′′
0 )ev∗1φi

(~−ψ1)e(NZΓ0)
=

1

~ −
αj−αi

d0

Cj
i (d0). (3.22)

By (3.18), (3.21), and (3.22), the contribution of Γ to (1.19) is

ud0+dc

∫

ZΓ

e(V ′′
0 )ev∗1φiη

β

~−ψ1

∣∣∣
ZΓ

1

e(NZΓ)

=
Cj

i (d0)u
d0

~ −
αj−αi

d0

·

({
udc

∫

ZΓ

e(V ′′
0 )ev∗1φjη

β

~−ψ1

1

e(NZΓc)

}∣∣∣∣
~=

αj−αi
d0

)
.

(3.23)

We next sum (3.23) over Γ∈Ai(j; d0). This is the same as summing the expression in the curly
brackets over all m-pointed graphs with the marked point 1 attached to a vertex v labeled j, i.e. all
graphs of types Aj and Bj . By the localization formula (3.9), the sum of the terms in the curly
brackets over all such graphs Γc is Zη,β(~, αj , u). Thus,

∑

Γ∈Ai(j;d0)

ud0+dc

∫

ZΓ

e(V ′′
0 )ev∗1φiη

β

~−ψ1

∣∣∣
ZΓ

1

e(NZΓ)
=
Cj

i (d0)u
d0

~ −
αj−αi

d0

· Zη,β

(
(αj − αi)/d0, αj , u

)
. (3.24)

We conclude that Zη,β(~, x, u) is C-recursive in the sense of Definition 2.3:

• the middle term in (2.13) consists of the contributions from the graphs of type Bi;

• the (d0, j)-summand in (2.13) consists of the contributions from the graphs of type Ai(j; d0).

3.3 Proof of Lemma 1.3

In this subsection we deduce Lemma 1.3 from Lemma 3.1, which is proved in the next subsec-
tion. The argument, in this subsection and the next one, is a modification on the proof of self-
polynomiality of Z in Section 30.2 of [MirSym].

We will denote the weight of the standard action of the one-torus T1 on C by ~. Thus, by
Subsection 3.1,

H∗
T1 ≈ Q[~], H∗

T̃
≈ Q[~, α1, . . . , αn] =⇒ H∗

T̃
≈ Qα(~).

Throughout this subsection, V = C⊕C will denote the representation of T1 with the weights 0
and −~. The induced action on PV has two fixed points:

q1 ≡ [1, 0], q2 ≡ [0, 1].
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Let γ1−→PV be the tautological line bundle. Then,

e(γ∗1)
∣∣
q1

= 0, e(γ∗1)
∣∣
q2

= −~, e(Tq1PV ) = ~, e(Tq2PV ) = −~. (3.25)

For each d∈ Z̄+, the action of T̃ on Cn⊗SymdV ∗ induces an action on

Xd ≡ P
(
Cn⊗SymdV ∗

)
.

It has (d+1)n fixed points:

Pi(r) ≡
[
P̃i ⊗ ud−rvr

]
, i ∈ [n], r ∈ {0}∪[d],

if (u, v) are the standard coordinates on V and P̃i ∈ Cn is the ith coordinate vector (so that
[P̃i]=Pi∈Pn−1). Let

Ω ≡ e(γ∗) ∈ H∗

T̃

(
Xd

)

denote the equivariant hyperplane class.

For all i∈ [n] and r ∈ {0}∪[d],

Ω|Pi(r) = αi+r~, e(TPi(r)Xd) =

{
s=d∏

s=0

k=n∏

k=1
(s,k) 6=(r,i)

(Ω−αk−r~)

}∣∣∣∣
Ω=αi+r~

.11 (3.26)

Since

BXd = P
(
B(Cn⊗SymdV ∗)

)
−→ BT̃ and

c
(
B(Cn⊗SymdV ∗)

)
=

s=d∏

s=0

k=n∏

k=1

(
1 − (αk+s~)

)
∈ H∗

(
BT̃), 12

the T̃-equivariant cohomology of Xd is given by

H∗
T̃

(
Xd

)
≡ H∗

(
BXd

)
= H∗

(
BT̃
)[

Ω
]/ s=d∏

s=0

k=n∏

k=1

(
Ω − (αk+s~)

)

≈ Q
[
Ω, ~, α1, . . . , α

]/ s=d∏

s=0

k=n∏

k=1

(
Ω − αk −s~

)

⊂ Qα[~,Ω]
/ s=d∏

s=0

k=n∏

k=1

(
Ω − αs − r~

)
.

(3.27)

11The weight (i.e. negative first chern class) of the T̃-action on the line Pi(r)⊂Cn⊗SymdV ∗ is αi+r~. The tangent
bundle of Xd at Pi(r) is the direct sum of the lines Pi(r)

∗⊗Pk(s) with (k, s) 6=(i, r).
12The vector space Cn⊗SymdV ∗ is the direct sum of the one-dimensional representations Pk(s) of T̃.
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There is a natural T̃-equivariant morphism

Θ: M0,m

(
PV ×Pn−1, (1, d)

)
−→ Xd.

A general element of b of M0,m

(
PV ×Pn−1, (1, d)

)
determines a map

(f, g) : P1 −→ (PV,Pn),

up to an automorphism of the domain P1. Thus, the map

g ◦ f−1 : PV −→ Pn−1

is well-defined and determines an element Θ(b) ∈ Xd. The map Θ extends continuously over the
boundary of M0,m

(
PV ×Pn−1, (1, d)

)
.13 We denote the restriction of Θ to the smooth substack

Xd ≡
{
b∈M0,m

(
PV ×Pn−1, (1, d)

)
: ev1(b)∈q1×Pn−1, ev2(b)∈q2×Pn−1

}
(3.28)

of M0,m

(
PV ×Pn−1, (1, d)) by θd, or simply by θ whenever there is no ambiguity.

Let
π : M0,m

(
PV ×Pn−1, (1, d)

)
−→ M0,m

(
Pn−1, d

)

be the natural projection map.

Lemma 3.1 With Zη,β as in Lemma 1.3 and Φ as in (2.2),

(−~)m−2ΦZ,Zη,β
(~, u, z) =

∞∑

d=0

ud

∫

Xd

e(θ
∗Ω)zπ∗

(
e(V ′′

0 )

j=m∏

j=2

(
ψ

βj

j ev∗jηj

)) j=m∏

j=3

ev∗j
(
e(γ∗1)

)
. (3.29)

Similarly Section 30.2 in [MirSym], this lemma implies that

(−~)m−2ΦZ,Zη,β
(~, u, z) ∈ Qα[~]

[[
u, z
]]

for the following reason. With ηβ as in (3.16), by (3.27)

θd∗

(
π∗
(
e(V ′′

0 )ηβ
) j=m∏

j=3

ev∗j
(
e(γ∗1)

))
= EZ,Zη,β ;d(~,Ω)

for some EZ,Zβ,η ;d ∈ Qα[~,Ω] of Ω-degree at most (d+1)n−1. Therefore, by Lemma 3.1, (3.12),
(3.9), and (3.26),

(−~)m−2ΦZ,Zη,β
(~, u, z) =

∞∑

d=0

ud

∫

Xd

eΩzθd∗

(
π∗
(
e(V ′′

0 )ηβ
) j=m∏

j=3

ev∗j
(
e(γ∗1)

))

=
∞∑

d=0

ud

∫

Xd

eΩzEZ,Zβ,η ;d(~,Ω) =
∞∑

d=0

ud

(
r=d∑

r=0

i=n∑

i=1

eΩzEZ,Zβ,η ;d(~,Ω)|Pi(r)

e(TPi(r)Xd)

)

=
∞∑

d=0

ud

(
r=d∑

r=0

i=n∑

i=1

eΩzEZ,Zβ,η ;d(~,Ω)
∏s=d

s=0

∏k=n
k=1

(s,k) 6=(r,i)

(Ω−αk−s~)

∣∣∣∣
Ω=αi+r~

)

=

∞∑

d=0

ud

(
1

2πi

∮
eΩz

EZ,Zβ,η ;d(~,Ω)
∏s=r

s=0

∏k=n
k=1 (Ω−αk−s~)

dΩ

)
.

13For a complete algebraic proof, see Lemma 2.6 in [LLY].
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Figure 3: A graph representing a fixed locus in Xd; i 6=1, 3, 4

In the last expression, the integral has the same meaning as in Lemma 2.1. We have thus shown
that Zη,β is polynomial with respect to Z, assuming Lemma 3.1.

3.4 Proof of Lemma 3.1

In this subsection we use the localization formula (3.9) to prove Lemma 3.1. We show that each
fixed locus of the T̃-action on Xd contributing to the right-hand side of (3.29) corresponds to a pair
(Γ1,Γ2) of a graphs, with Γ1 and Γ2 contributing to Z(~, αi, ue

~z) and (−~)m−2Zη,β(−~, αi, u),
respectively, for some i∈ [n].

Similarly to Subsection 3.2, the fixed loci of the T̃-action on M0,m

(
PV×Pn−1, (d′, d)

)
correspond to

decorated graphs Γ with m marked points and no loops. Each edge should be labeled by a pair of
integers, indicating the degrees of the corresponding maps in PV and in Pn−1. Each vertex should
be labeled either (1, j) or (2, j) for some j ∈ [n], indicating the fixed point, (q1, Pj) or (q2, Pj), to
which the vertex is mapped. No two consecutive vertex labels are the same, but if two consecutive
vertex labels differ in the kth component, with k= 1, 2, the kth component of the label for edge
connecting them must be nonzero.

The situation for the T̃-action on

Xd ⊂ M0,m

(
PV ×Pn−1, (1, d)

)

is simpler, however. There is a unique edge of positive PV -degree. We draw it as a thick horizontal
line. The first component of all other edge labels must be 0; so we drop it. The first components of
the vertex labels change only when the thick edge is crossed. Thus, we drop the first components
of the vertex labels as well, with the convention that these components are 1 on the left side of the
thick edge and 2 on the right. In particular, the vertices to the left of the thick edge (including
the left endpoint) lie in q1×Pn−1 and the vertices to its right lie in q2×Pn−1. Thus, by (3.28),
the marked point 1 is attached to a vertex to the left of the thick edge and the marked point 2 is
attached to a vertex to the right. Furthermore, by the first identity in (3.25), such a graph will not
contribute to the right-hand side of (3.29) unless the remaining marked points are also attached
to vertices to the right of the thick edge. Finally, both vertices of the thick edge have the same
(remaining, second) label i∈ [n]. Let Ai denote the set of graphs as above so that the two endpoints
of the thick edge are labeled i; see Figure 3.

If Γ∈Ai, we break it into three sub-graphs:

(i) Γ1 consisting of all vertices and edges of Γ to the left of the thick edge, including its left
vertex v1, and a new marked point 2 attached to v1;
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Figure 4: The three sub-graphs of the graph in Figure 3

(ii) Γ0 consisting of the thick edge, its two vertices v1 and v2, and new marked points 1 and 2
attached to v1 and v2, respectively;

(iii) Γ2 consisting of all vertices and edges of Γ to the right of the thick edge, including its right
vertex v2, and a new marked point 1 attached to v2;

see Figure 4. The fixed locus in Xd corresponding to Γ is then

ZΓ ≈ ZΓ1 ×ZΓ0 ×ZΓ2 . (3.30)

The middle term is a single point. Let π1, π0, and π2 denote the three component projection maps.
Denote by d1 and d2 be the degrees of Γ1 and Γ2, i.e.

ZΓ1 ⊂ M0,2(P
n−1, d1), ZΓ2 ⊂ M0,m(Pn−1, d2).

The exceptional case for the first statement is d1 =0, in which case the corresponding moduli space
does not exist.

Suppose Γ∈Ai, d1 and d2 are as above, and d1>0. Similarly to (3.19),

π∗V ′′
0

∣∣
ZΓ

= π∗1V
′′
0 ⊕ π∗2V

′′
0 ,

NZΓ

TPi
Pn−1

= π∗1

(
NZΓ1

TPi
Pn−1

)
⊕ π∗2

(
NZΓ2

TPi
Pn−1

)
⊕ π∗1L2 ⊗ π∗0L1 ⊕ π∗0L2 ⊗ π∗2L1,

(3.31)

where NZΓ−→ZΓ is the normal bundle of ZΓ in Xd and L2−→ZΓ1 , L1, L2−→ZΓ0 , and L1−→ZΓ2

are the tautological tangent line bundles. We note that

L1 = Tq1P
1 and L2 = Tq2P

1 on ZΓ0 .

Thus, by (3.31), (3.8), and (3.25),

π∗
(
e(V ′′

0 )ηβ
) j=m∏

j=3

ev∗j (e(γ∗))

∣∣∣∣
ZΓ

= π∗1e(V ′′
0 ) · π∗2

(
e(V ′′

0 )ηβ(−~)m−2
)
, (3.32)

∏
k 6=i(αi−αk)

e(NZΓ)
= π∗1

(
ev∗2φi

e(NZΓ0)

)
· π∗2

(
ev∗1φi

e(NZΓ0)

)
·

1

~ − π∗1ψ2
·

1

(−~) − π∗2ψ1
.

The map θ takes the locus ZΓ to a fixed point Pk(r)∈Xd. It is immediate that k= i. By continuity
considerations, r=d1. Thus, by the first identity in (3.26),

θ∗Ω
∣∣
ZΓ

= αi+d1~.
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Combining (3.30) and (3.32) with this observation, we obtain

∫

ZΓ

e(θ
∗Ω)zπ∗

(
e(V ′′

0 )ηβ
)∏j=m

j=3 ev∗j (e(γ∗)
)
|ZΓ

e(NZΓ)
= (−~)m−2 eαiz

∏
k 6=i(αi−αk)

×

{
ed1~z

∫

ZΓ1

e(V ′′
0 )ev∗2φi

~−ψ2

∣∣∣
ZΓ1

1

e(NZΓ1)

}{∫

ZΓ2

e(V ′′
0 )ηβ

(−~)−ψ1

∣∣∣
ZΓ2

1

e(NZΓ2)

}
.

(3.33)

We note that this identity remains valid for d1 =0 if we set the term in the first curly brackets to 1
for d1 =0.

We now sum up (3.33), multiplied by ud1+d2 , over all Γ∈Ai. This is the same as summing over all
pairs (Γ1,Γ2) of graphs such that

(1) Γ1 is a 2-pointed graph of a degree d1 ≥ 0 such that the marked point 2 is attached to the
vertex labeled i;

(2) Γ2 is an m-pointed graph of a degree d2≥0 such that the marked point 1 is attached to the
vertex labeled i.

By the localization formula (3.9),

∑

Γ1

ud1

{
ed1~z

∫

ZΓ1

e(V ′′
0 )ev∗2φi

~−ψ2

∣∣∣
ZΓ1

1

e(NZΓ1)

}
= 1 +

∞∑

d=1

(ue~z)d

∫

M0,2(Pn−1,d)

e(V ′′
0 )

~−ψ2
ev∗2φi

= 1 +
∞∑

d=1

(ue~z)d

∫

M0,2(Pn−1,d)

e(V ′
0)

~−ψ1
ev∗1φi = Z

(
~, αi, ue

~z
)
;

∑

Γ2

ud2

{∫

ZΓ2

e(V ′′
0 )ηβev∗1φi

(−~)−ψ1

∣∣∣
ZΓ2

1

e(NZΓ2)

}
=

∞∑

d=0

ud

∫

M0,m(Pn−1,d)

e(V ′′
0 )ηβev∗1φi

(−~)−ψ1

= Zη,β

(
− ~, αi, u

)
.

(3.34)

Finally, by (3.9), (3.33), and (3.34),

∫

Xd

e(θ
∗Ω)zπ∗

(
e(V ′′

0 )ηβ
) j=m∏

j=3

ev∗j
(
e(γ∗1)

)
= (−~)m−2

i=n∑

i=1

eαiz

∏
k 6=i

(αi−αk)
Z
(
~, αi, ue

~z
)
Zη,β

(
− ~, αi, u

)

= (−~)m−2ΦZ,Zη,β
(~, u, z),

as claimed in (3.29).
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