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Chapter 0

Notation and Terminology

If M is a topological space and p € M, a neighborhood of p in M is an open subset U of M that
contains p.

The identity element in the groups GL;R and GL;C of invertible k x k real and complex matrices
will be denoted 1. For any set M, idy; will denote the identity map on M.

If h: M— N and f: V — X are maps and V C N, we will denote by foh the map

vy v Lo x.



Chapter 1

Smooth Manifolds and Maps

1 Smooth Manifolds: Definition and Examples

Definition 1.1. A topological space M is a topological m-manifold if
(TM1) M is Hausdorff and second-countable, and
(TM2) every point p€ M has a neighborhood U homeomorphic to R™.

A chart around p on M is a pair (U, p), where U is a neighborhood of p in M and ¢: U —U" is
a homeomorphism onto an open subset of R™.

Thus, the set of rational numbers, Q, in the discrete topology is a 0-dimensional topological mani-
fold. However, the set of real numbers, R, in the discrete topology is not a 0-dimensional manifold
because it does not have a countable basis. On the other hand, R with its standard topology is a
1-dimensional topological manifold, since

(TM1:R) R is Hausdorff (being a metric space) and second-countable;

(TM2:R) the map ¢=id: U=R — R is a homeomorphism; thus, (R,id) is a chart around every
point peR.

A topological space satisfying (TM2) in Definition 1.1 is called locally Euclidean; such a space is
made up of copies of R™ glued together; see Figure 1.1. While every point in a locally Euclidean
space has a neighborhood which is homeomorphic to R™, the space itself need not be Hausdorff;
see Example 1.2 below. A Hausdorff locally Euclidean space is easily seen to be regular, while
a regular second-countable space is normal [8, Theorem 32.1], metrizable (Urysohn Metrization
Theorem [8, Theorem 34.1]), paracompact [8, Theorem 41.4], and thus admits partitions of unity
(see Definition 14.3 below).

Example 1.2. Let M = (0xRU0'XR)/~, where (0, s)~(0/, s) for all s€ R—0. As sets, M =RL{0'}.
Let B be the collection of all subsets of R LI{0'} of the form

(a,b) CR, a,beR, (a,b) = ((a,b) —0) U {0} ifa<0<b.
This collection B forms a basis for the quotient topology on M. Note that

(TO1) any neighborhoods U of 0 and U’ of 0/ in M intersect, and thus M is not Hausdorff;



0/

locally Euclidean space line with two origins

Figure 1.1: A locally Euclidean space M, such as an m-manifold, consists of copies of R™ glued
together. The line with two origins is a non-Hausdorff locally Euclidean space.

(TO2) the subsets M —0" and M —0 of M are open in M and homeomorphic to R; thus, M is
locally Euclidean.

This example is illustrated in the right diagram in Figure 1.1. The two thin lines have length
zero: R~ continues through 0 and 0’ to R™. Since M is not Hausdorff, it cannot be topologically
embedded into R™ (and thus cannot be accurately depicted in a diagram). Note that the quotient

map
q:OxRUO xR — M

is open (takes open sets to open sets); so open quotient maps do not preserve separation properties.
In contrast, the image of a closed quotient map from a normal topological space is still normal [8,
Lemma 73.3].

Definition 1.3. A smooth m-manifold is a pair (M,F), where M is a topological m-manifold and
F={(Uq, a)}aca is a collection of charts on M such that

(SM1) M = | J Ua,
acA

(SM2) gpaogoglz 0(UaNUpg) — ©a(UaNUpg) is a smooth map (between open subsets of R™) for
all o, BEA;

(SM3) F is maximal with respect to (SM2).
The collection F is called a smooth structure on M.

Since the maps ¢, and g in Definition 1.3 are homeomorphisms, ¢3(U,NUg) and ¢ (U,NUg) are
open subsets of R, and so the notion of a smooth map between them is well-defined; see Figure 1.2.
Since {gpaogpgl}*l =ppowyt, smooth map in (SM2) can be replaced by diffeomorphism. If a=p3,

SOaOSDBl:id : @B(UamUB)ZQOa(Ua) — @a(UamU,@):@a(Ua)

is of course a smooth map, and so it is sufficient to verify the smoothness requirement of (SM2)
only for a#p.

An element of such a collection F will be called a smooth chart on the smooth manifold on (M, F)
or simply M.



0p(Ua NUg) ‘pa(UamUﬂ)

Figure 1.2: The overlap map between two charts is a map between open subsets of R™.

It is hardly ever practical to specify a smooth structure F on a manifold M by listing all elements
of F. Instead F can be specified by describing a collection of charts Fo={(U, ¢)} satisfying (SM1)
and (SM2) in Definition 1.3 and setting

F = {chart (V,) on M| worp L p(UNV) — (UNV) is diffeomorphism V (U, )EFo}. (1.1)

Example 1.4. The map p=id: R™ — R"™ is a homeomorphism, and thus the pair (R™,id) is a
chart around every point in the topological m-manifold M =R™. So, the single-element collection
Fo={(R™,id)} satisfies (SM1) and (SM2) in Definition 1.3. It thus induces a smooth structure F
on R™:; this smooth structure is called the standard smooth structure on R™.

Example 1.5. Every finite-dimensional vector space V has a canonical topology specified by the
requirement that any vector-space isomorphism ¢ : V — R™, where m =dim V, is a homeomor-
phism (with respect to the standard topology on R™). If ¢: V — R™ is another vector-space
isomorphism, then the map

poyp L R™ — R™ (1.2)
is an invertible linear transformation; thus, it is a diffeomorphism and in particular a homeomor-
phism. So, two different isomorphisms ¢, 1 : V — R™ determine the same topology on V. Each
pair (V) is then a chart on V, and the one-element collection Fo={(V, )} determines a smooth
structure F on V. Since the map (1.2) is a diffeomorphism, F is independent of the choice of
vector-space isomorphism ¢ : V — R™. Thus, every finite-dimensional vector space carries a
canonical smooth structure.

Example 1.6. The map ¢: R — R, ¢(t) =13, is a homeomorphism, and thus the pair (R, ) is
a chart around every point in the topological 1-manifold M =R. So, the single-element collection

0={(R, ¢)} satisfies (SM1) and (SM2) in Definition 1.3. It thus induces a smooth structure F’
on R. While ' # F, where F is the standard smooth structure on R' described in Example 1.4,
the smooth manifolds (R!, F) and (R!, F’) are diffeomorphic in the sense of (2) in Definition 2.1
below.

Example 1.7. Let M =S! be the unit circle in the complex (s, )-plane,
U, =8"-{i}, U_=8"—{-i}.

For each pe Uy, let ¢4 (p) €R be the s-intercept of the line through the points +i and p# +i; see
Figure 1.3. The maps ¢+ : U+ — R are homeomorphisms and S'=U, UU_. Since

U NU_=8"—{i,-i} =U,; —{-i} =U_ - {i}
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Figure 1.3: A pair of charts on S' determining a smooth structure.

and ¢4 (UyNU-)=R—0=R*, the overlap map is
propti o (UrNU-)=R* — ¢ (UyNU-)=R*;

by a direct computation, this map is s — s~!. Since this map is a diffeomorphism between open
subsets of R, the collection

Fo= {(U+790+)7 (U—’@—)}

determines a smooth structure F on S*.

A smooth structure on the unit sphere M = S™ C R™*! can be defined similarly: take Uy C S™
to be the complement of the point g+ € S™ with the last coordinate +1 and ¢4 (p) € R the
intersection of the line through ¢t and p # g+ with R™ =R" x 0. This smooth structure is the
unique one with which S™ is a submanifold of R™*!; see Definition 5.1 and Corollary 5.8.

Example 1.8. Let MB=([0,1]xR)/~, (0,t) ~(1,—t), be the infinite Mobius Band,
Up=(0,1)xRC MB,  ¢o=id: Uy — (0,1)xR,

(s—1/2,1), ifse(1/2,1],

@172 Urjg = MB—{1/2} xR — (0, 1) xR, 1 5([s,1]) = {(s+1/2 1), ifse(0,1/2)

where [s,t] denotes the equivalence class of (s,t) € [0,1] x R in MB. The pairs (Up, ¢9) and
(Uy /251 /2) are then charts on the topological 1-manifold MB. The overlap map between them is

012005 " po(UoNUy )= ((0,1/2)U(1/2,1)) xR — 1 9(UoNUy 19) =((0,1/2)U(1/2,1)) xR,

B ) (s+1/2,-t), ifs€(0,1/2);
P1/2000  (s:1) = {(3—1/2,t), if se(1/2,1);

see Figure 1.4. Since this map is a diffeomorphism between open subsets of R?, the collection

Fo = {(Uo,%0), (U1, 01/2)}
determines a smooth structure F on MB.
Example 1.9. The real projective space of dimension n, denoted RP"™, is the space of real one-

dimensional subspaces ¢ of R™*! (or lines through the origin in R"*!) in the natural quotient
topology. In other words, a one-dimensional subspace of R**! is determined by a nonzero vector in
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Figure 1.4: The infinite Mobius band MB is obtained from an infinite strip by identifying the two
infinite edges in opposite directions, as indicated by the arrows in the first diagram. The two charts
on MB of Example 1.8 overlap smoothly.

R™*1 ie. an element of R""1—0. Two such vectors determine the same one-dimensional subspace
in R"*! and the same element of RP" if and only if they differ by a non-zero scalar. Thus, as sets

RP" = (R"*'—0) /R* = (R"*'~0)/ ~,  where
c-v=cveR"™ -0 VeeR*, veR" 0, v~ v VeeRY, veRM_0.
Alternatively, a one-dimensional subspace of R"! is determined by a unit vector in R"*!, i.e. an

element of S™. Two such vectors determine the same element of RP™ if and only if they differ by
a non-zero scalar, which in this case must necessarily be £1. Thus, as sets

RP" = S"/Zg = S”/ ~, where
Zo ={£1}, c-v=cveS" Vce€ly,veS", v~cv Vc€ls, ves?. (1.3)
Thus, as sets,
RP" = (R"*1—0) /R* = S"/Z,.

It follows that RP™ has two natural quotient topologies; these two topologies are the same, however.
The space RP™ has a natural smooth structure, induced from that of R"*'—0 and S™. It is generated
by the n+1 charts

©;: UiE {[XQ,Xl,...,Xn]i XZ#O} —)Rn,

(& Xio1 Xiqa Xn)

(X0, X1,..., X — XX X, U X

Note that RP =51,

Example 1.10. The complex projective space of dimension n, denoted CP"™, is the space of complex
one-dimensional subspaces of C"*! in the natural quotient topology. Similarly to the real case of
Example 1.9,
CP" = (C"'—0)/C* = §*"*1/S' where
St ={ceC*: |c|=1}, St = LyeC™ —0: |v| =1},
c-v=cveC" -0 VeeC* veCr-o.



The two quotient topologies on CP"™ arising from these quotients are again the same. The space
CP" has a natural complex structure, induced from that of C"*1—0.

There are a number of canonical ways of constructing new smooth manifolds.

Proposition 1.11. (1) If (M, F) is a smooth m-manifold, U C M is open, and
F‘U = {(UozﬁUa (Poc|UaﬂU): (Uonsoa)e"r} = {(Ua790a)€F: UaCU}, (1'4)

then (U, F|y) is also a smooth m-manifold.
(2) If (M, Far) and (N, Fn) are smooth manifolds, then the collection

Fo = {(Uaxvﬁa@axwﬁ): (Uou‘Poz)E-FMv (Vﬁvwﬁ>€FN} (1-5)
satisfies (SM1) and (SM2) of Definition 1.3 and thus induces a smooth structure on M x N.

Proof. (1) It is immediate that the second collection in (1.4) is contained in the first. The first
collection is contained in the second because F is maximal with respect to (SM2) in Definition 1.3
and the restriction of a smooth map from an open subset of R™ to a smaller open subset is still
smooth. Since every element (U,, ¢q) of F is a chart on M, every such element with U, C U is
also a chart on U. Since {U, : (Uy, @) € F} is an open cover of M, {U,NU: (Uy,pa) € F} is
an open cover of U. Since F satisfies (SM2) in Definition 1.3, so does its subcollection F|y;. Since
F is maximal with respect to (SM2) in Definition 1.3, so is its subcollection F|y. Thus, F|y is
indeed a smooth structure on U.

(2) Let m=dim M and n=dim N. Since each (U,, ¢o) € Far is a chart on M and each (V,v¢5) € Fy
is a chart on IV,

YaXthg: Ua x Vg — 0a(Uys) x15(Vs) C R xR"™ = R™ ™

is a homeomorphism between an open subset of M x N (in the product topology) and an open
subset of R™*". Since the collections {Uy: (Uy, ¢a)€Fm} and {Vz: (V3,¢5) €Fn} cover M and
N, respectively, the collection

{Uaxvﬁ: (Ua,cpa)E}"M, (Vﬁ)wﬁ)GIN}
covers M x N. If (Uyx V3, pax13) and (Uy X V1, o X1pgr) are elements of the collection (1.5),

UaxVgNUy x Vg = (UaﬂUa/) X (V@ﬂVg/),
{goa leg}(Ua x Vg N Uy XV@) = goa(UaﬁUa/) X g (VgﬁVﬁ/) c R™t
{(Po/ X@Dgl}(Ua XVg NU, XVg/) = (pa/(UaﬂUa/) X ¢5/(VﬁﬂVg/) C Rern,

and the overlap map,

{paxtis} o {paxig} ™" = {pacp!} x {05005},

is the product of the overlap maps for M and N; thus, it is smooth. So the collection (1.5)
satisfies the requirements (SM1) and (SM2) of Definition 1.3 and thus induces a smooth structure
on M xN. O



The smooth structures on U and M x N of Proposition 1.11 are called the subspace smooth structure
and the product smooth structure, respectively.

Corollary 1.12. The general linear group,
GL,R = {A€Mat,x,R: det A # 0},

is a smooth manifold of dimension n>.

Proof. The map ,
det: Mat, x,R~R" — R

is continuous. Since R—0 is an open subset of R, its pre-image under det, GL,R, is an open subset
of R™ and thus is a smooth manifold of dimension n? by (1) of Proposition 1.11. O

2 Smooth Maps: Definition and Examples

Definition 2.1. Let (M, Fyr) and (N, Fn) be smooth manifolds.

(1) A continuous map f: M — N is a smooth map between (M, Fyr) and (N, Fn) if for all
(U, )€ Funr and (V,1) € Fy the map

pofop ™t p(fTHVINU) — (V) (2.1)
is a smooth map (between open subsets of Euclidean spaces).

(2) A smooth bijective map f : (M,Fp) — (N,Fn) is a diffeomorphism if the inverse map,
f~Y (N, Fn)— (M, Fur), is also smooth.

(8) A smooth map f: (M,Fy) — (N,Fn) is a local diffeomorphism if for every p € M there
are open neighborhoods Uy, of p in M and V), of f(p) in N such that fly, : U, —V} is a
diffeomorphism between the smooth manifolds (Uy, Furlu,) and (Vy, Fnlv,).

If f: M — N is a continuous map and (V)€ Fy, f~1(V)C M is open and ¥ (V) CR" is open,
where n=dim N. If in addition (U, ¢) € Fas, then o(f~1(V)NU) is an open subset of R™, where
m =dim M. Thus, (2.1) is a map between open subsets of R” and R", and so the notion of a
smooth map between them is well-defined; see Figure 1.5.

A Dbijective local diffeomorphism is a diffeomorphism, and vice versa. In particular, the identity
map id: (M, F) — (M, F) on any manifold is a diffeomorphism, since for all (U, ), (V,v) € Fur
the map (2.1) is simply
Yot e(UNV) — »(UNV) C (V);
it is smooth by (SM2) in Definition 1.3. For the same reason, the map
©: (U,]:M|U) — (p(U) CcR™

is a diffeomorphism for every (U, ¢) € Fas. A composition of two smooth maps (local diffeomor-
phisms, diffeomorphisms) is again smooth (a local diffeomorphism, a diffeomorphism).

It is generally impractical to verify that the map (2.1) is smooth for all (U, ¢) € Fps and (V, ) € Fn.
The following lemma provides a simpler way of checking whether a map between two smooth
manifolds is smooth.
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Figure 1.5: A continuous map f between manifolds is smooth if it induces smooth maps between
open subsets of Euclidean spaces via the charts.

Lemma 2.2. Let (M, Fur) and (N, Fy) be smooth manifolds and f: M — N a map.

(1) If {Us}taca is an open cover of M, then f: M — N is a smooth map (local diffeomor-
phism) if and only if for every o € A the restriction fly,: Uy —> N is a smooth map (local
diffeomorphism) with respect to the induced smooth structure on U, of Proposition 1.11.

(2) If Fuo and Fiyo are collections of charts on M and N, respectively, that generate Far and
Fn in the sense of (1.1), then f: M — N is a smooth map (local diffeomorphism) if and only
if (2.1) is a smooth map (local diffeomorphism) for every (U, ) € Faro and (V, 1) € Fn.o.

Thus, f: M — N is a smooth map (local diffeomorphism) if and only if (2.1) is a smooth map
(local diffeomorphism) for every (U, ¢) € Fro and all (V,4) € Fn,o in a subcollection of Fp.g
covering f(U). If follows that for every chart (U, ¢) € Fas the map

0:U— oU) CR™
is a diffeomorphism.

By Lemma 2.2, if f: (M, Fy) — (N, Fy) is smooth, then 1o f: f~1(V) — R" is also a smooth
map from an open subset of M (with the smooth structure induced from Fj; as in Proposition 1.11)
for every (V,v¢) e Fn. If in addition f is a diffeomorphism (and thus m=n),

bofop ™l p(UNFHV)) — »(f(U)NV) C R™

is a diffeomorphism for every (U, ¢) € Fas, and thus (f~1(V),vof) € Fas by the maximality of Fyy.
It follows that every diffeomorphism f: (M, Fyr) — (N, Fn), which is a map f: M — N with
certain properties, induces a map

[ Fn — Fu, (Vi) — (F7H (V)0 f),

which is easily seen to be bijective. However, there are lots of bijections Fny — Fys, and most of
them do not arise from a diffeomorphism f: M — N (which may not exist at all) or even some
map between the underlying spaces.



Example 2.3. Let V and W be finite-dimensional vector spaces with the canonical smooth struc-
tures of Example 1.5 and f: V — W a vector-space homomorphism. If ¢ : V — R™ and
¥: W —R" are vector-space isomorphisms,

Yofop L R™ — R"

is a linear map and thus smooth. Since f(V') is contained in the domain of 1, it follows that
f:V— W is a smooth map. So every homomorphism between finite-dimensional vector spaces is
a smooth map with respect to the canonical smooth structures on the vector spaces.

Example 2.4. Let Mat, «,R be the vector space of nxn real matrices with the canonical smooth
structure of Example 1.5. Define

f: Mat,xnR — Mat,x,R by A — A"A, (2.2)

where A" is the transpose of A. If ¢ : Mat,x,R — R™ is an isomorphism of vector spaces (for
example, with each component of f sending a matrix to one of its entries), then each component
of the map

wofopt: R" — R™

is a homogeneous quadratic polynomial on R”Q; so po fop~!is a smooth map. Since the image

of f is contained in the domain of ¢, it follows that the map (2.2) is smooth. The image of f is
actually contained in the linear subspace SMat,R of symmetric n xn matrices. Thus, f induces a
map

fo: Maty, xR — SMat, R, fO(A) = f(A)a
obtained by restricting the range of f; so the diagram

SMat,, R
7

fo -~
// L
-

Mat,, R — > Mat,, ., R

where ¢ is the inclusion map, commutes. The induced map fy is also smooth with respect to the
canonical smooth structures on Mat,,«,R and SMat,R. In fact, if ¥: SMat, R — R +1)/2 §g an
isomorphism of vector spaces (for example, with each component of f sending a matrix to one of
its upper-triangular entries), then each component of the map

¢ofogpfl R — R/

is again a homogeneous quadratic polynomial on R”2; so o fop~! is a smooth map and thus f

is smooth. The smoothness of fjy also follows directly from the smoothness of f because SMat,,R
is an embedded submanifold of Mat,, x,R; see Proposition 5.5.

Example 2.5. Let (M, Fys) and (N, Fy) be smooth manifolds and Fys«n the product smooth
structure on M x N of Proposition 1.11. Let Fy be as in (1.5).

(1) For each g€ N, the inclusion as a “horizontal” slice,

tg: M — M x N, p — (p,q),

10
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Figure 1.6: A horizontal slice M x ¢=1Im,, a vertical slice px N =Im¢,, and the two component
projection maps M x N — M, N

is smooth, since for every (U, ¢) € Fas and (U xV, px1) € Fy with g€V the map
{oxv}orop™ =idxy(q): p(1g (UxV)NU) =p(U) — {ox 0} (UxV) = (U)x$(V)
is smooth and ¢4(U) CU x V. Similarly, for each pe M, the inclusion as a “vertical” slice,
tp: N — M XN, qg— (p,q),
is also smooth.
(2) The projection map onto the first component,
mi=mp: MXN — M, (p,q) — p,
is smooth, since for every (U xV, px) € Fy and (U, ) € Fas the map
pommo{pxp} = m: {px ¢} (m (UINUXV) = p(U)x (V) — o(U)

is smooth (being the restriction of the projection R™ x R™ — R™ to an open subset) and
ma(UxV)CU. Similarly, the projection map onto the second component,

mo=nn: MxN — N, (p,q) — 4,
is also smooth.

The following lemma, corollary, and proposition provide additional ways of constructing smooth
structures. Corollary 2.7 follows immediately from Lemmas 2.6 and B.1.1. It gives rise to manifold
structures on the tangent and cotangent bundles of a smooth manifold, as indicated in Example 7.5.
Lemma 2.6 can be used in the proof of Proposition 2.8.

Lemma 2.6. Let M be a Hausdorff second-countable topological space and {pq: Uy, —)MQ}QEA
a collection of homeomorphisms from open subsets U, of M to smooth m-manifolds M, such that

(PaO(PEl: ¥B (UamUB) — Pa (UamUﬁ) (2.3)

is a smooth map for all o, 8 € A. If the collection {Uy}aea covers M, then M admits a unique
smooth structure such that each map @4 is a diffeomorphism.

11



Corollary 2.7. Let M be a set and {pq: Uy — Ma}aeA a collection of bijections from subsets
Uy of M to smooth m-manifolds M, such that

00005 05(UaNUs) — ¢a(UanUs)

is a smooth map between open subsets of Mg and M, respectively, for all o, 3 € A. If the collec-
tion {Uy}aea separates points in M and a countable subcollection {Uqa}aca, 0f {Ua}aca covers
M, then M admits a unique topology Tar and smooth structure Fpr such that each map o is a
diffeomorphism.

Proposition 2.8. If a group G acts properly discontinuously on a smooth m-manifold (M,]:M)
by diffeomorphisms and w: M — M =M /G is the quotient projection map, then

Fo=A{(@(U), po{nlu}™h): (U.p)€Fyy, v is injective}

is a collection of charts on the quotient topological space M that satisfies (SM1) and (SM2) in
Definition 1.3 and thus induces a smooth structure Fy; on M. This smooth structure on M is the
unique one satisfying either of the following two properties:

(QSM1) the projection map M — M is a local diffeomorphism;

(QSM2) if N is a smooth manifold, a continuous map f: M — N is smooth if and only if the
map forw : M — N is smooth.

In the case of Lemma 2.6, ¢, (U,NU, g) is an open subset of M, because U, and Ug are open subsets
of M and ¢, is a homeomorphism; thus, smoothness for the map (2.3) is a well-defined require-
ment in light of (1) of Proposition 1.11 and (1) of Definition 2.1. In the case of Corollary 2.7,
©a(UaNUg) need not be a priori open in M,, and so this must be one of the assumptions. In
both cases, the requirement that gaaogpgl be smooth can be replaced by the requirement that it
be a diffeomorphism. We leave proofs of Lemma 2.6, Corollary 2.7, and Proposition 2.8 as exercises.

The smooth structure Fj; on M of Proposition 2.8 is called the quotient smooth structure on M.
For example, the group Z acts on R and on RxR by

Z xR — R, (m,s) — s +m, (2.4)
ZxRxR — RxR,  (m,s,t) — (s+m,(=1)"t).
Both of these actions satisfy the assumptions of Proposition 2.8 and thus give rise to quotient

smooth structures on S' =R/Z and MB = (R xR)/Z. These smooth structures are the same as
those of Examples 1.7 and 1.8, respectively.

Example 1.6 is a special case of the following phenomenon. If (M,F) is a smooth manifold and
h: M — M is a homeomorphism, then

WF={(h'(U),poh): (U p)eF}

is also a smooth structure on M, since the overlap maps are the same as for the collection F. The
smooth structures F and h*F are the same if and only if h: (M, F) — (M, F) is a diffeomorphism.
However, in all cases, the map h=': (M, F) — (M, h*F) is a diffeomorphism; so if a topological
manifold admits a smooth structure, it admits many smooth equivalent (diffeomorphic) smooth
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structures.

This raises the question of which topological manifolds admit smooth structures and if so how
many inequivalent ones. Since every connected component of a topological manifold is again a
topological manifold, it is sufficient to study this question for connected topological manifolds.

dim=0: every connected topological 0-manifold M consists of a single point, M = {pt}; the only
smooth structure on such a topological manifold is the single-element collection {(M, )},
where ¢ is the unique map M — RO,

dim=1: every connected topological (smooth) 1-manifold is homeomorphic (diffeomorphic) to ei-
ther R or S* in the standard topology (and with standard smooth structure); a short proof
of the smooth statement is given in [5, Appendix].

dim=2: every topological 2-manifold admits a unique smooth structure; every compact topological
2-manifold is homeomorphic (and thus diffeomorphic) to either a “torus” with g >0 handles
or to a connected sum of such a “torus” with RP? [8, Chapter 8]; every such manifold
admits a smooth structure as it is the quotient of either S? or R? by a group acting properly
discontinuously by diffeomorphisms.

dim=3: every topological 3-manifold admits a unique smooth structure [6].

dim=4: there are lots of topological 4-manifolds that admit no smooth structure and lots of other
topological 4-manifolds (including R*) that admit many (even uncountably many) smooth
structures.

The first known example of a topological manifold admitting non-equivalent smooth structures
is the 7-sphere [4]. Since then the situation in dimensions 5 or greater has been sorted out by
topological arguments [9].

Remark 2.9. While topology studies the topological category T C, differential geometry studies
the smooth category SC. The objects in the latter are smooth manifolds, while the morphisms are
smooth maps. The composition of two morphisms is the usual composition of maps (which is still
a smooth map). For each object (M, Fys), the identity morphism is just the identity map idys
on M (which is a smooth map). The “forgetful map”

SC —TC, (M, Fyr) — M, (f: (M, Fym)— (N, Fn)) — (f : M—N),
is a functor from the smooth category to the topological category.

In the remainder of these notes, we will typically denote a smooth manifold in the same way as its
underlying set and topological space; so a smooth manifold M will be understood to come with a
smooth structure Fj,.

3 Tangent Vectors

If M is an m-manifold embedded in R", with m <n, and 7: (a,b) — M is a smooth map (curve
on M), then
t — (T

T—0 T

eR" (3.1)

13



(1)
/ PN, st

Figure 1.7: The tangent space of S at p viewed as a subspace of R2.

should be a tangent vector of M at (¢). The set of such vectors is an m-dimensional linear subspace
of R™; it is often thought of as having the O-vector at p; see Figure 1.7. However, this presentation
of the tangent space T),M of M at p depends on the embedding of M in R", and not just on M and p.

On the other hand, the tangent space at a point p € R™ should be R™ itself, but based (with the
origin) at p. Each vector v € R™ acts on smooth functions f defined near p by

f(p+tv) — f(p)
; .

Dulpf = lim (3.2)

If v=e; is the i-th coordinate vector on R™, then 0,|,f is just the i-th partial derivative 0; f|, of f
at p. The map 0,|, defined by (3.2) takes each smooth function defined on a neighborhood of p in
R™ to R and satisfies:

(TV1) if f: U — R and g: V — R are smooth functions on neighborhoods of p such that
flw =glw for some neighborhood W of p in UNV, then 0,|,f =0yp9;

(TV2) if f: U—R and g: V—R are smooth functions on neighborhoods of p and a,b€R, then

8v|p(af—|-bg) = aav|pf + b@v|pg,

where a f+bg is the smooth function on the neighborhood UNV given by
{af+bg}(q) = af(q) + bg(q);

(TV3) if f: U—R and g: V— R are smooth functions on neighborhoods of p, then

av’p(fg) = f(p)av ’pg + g(p)8v|pf7
where fg is the smooth function on the neighborhood UNV given by {fg}(q) = f(q)g(q).

It turns out every that R-valued map on the space of smooth functions defined on neighborhood
of p satisfying (TV1)-(TV3) is 0y, for some v €R™; see Proposition 3.4 below. At the same time,
these three conditions make sense for any smooth manifold, and this approach indeed leads to an
intrinsic definition of tangent vectors for smooth manifolds.

The space of functions defined on various neighborhoods of a point does not have a very nice

structure. In order to study the space of operators satisfying (TV1)-(TV3) it is convenient to put
an equivalence relation on this space.

14



Definition 3.1. Let M be a smooth manifold and pe M.

(1) Functions f: U—R and g: V— R defined on neighborhoods of p in M are p-equivalent, or
f~pg, if there exists a neighborhood W of p in UNV such that f|lw=g|w.

(2) The set of p-equivalence classes of smooth functions is denoted Fp; the p-equivalence class of
a smooth function f: U — R on a neighborhood of p is called the germ of f at p and is
denoted ip.

The set Fp has a natural R-algebra structure:
of +bg =af+bg . f g =fg  Yf,g € abER,

where af+bg and fg are functions defined on UNV if f and g are defined on U and V, respectively.
There is a well-defined valuation homomorphism,

evp: F, — R, ip — f(p).

Let F), = kerevy; this subset of Fp consists of the germs at p of the smooth functions defined on
neighborhoods of p in M that vanish at p. Since ev), is an R-algebra homomorphisms, F, is an
ideal in F); this can also be seen directly: if f(p) =0, then {fg}(p)=0. Let Fz? C F}, be the ideal

in F), consisting of all finite linear combinations of elements of the form ipgp with ip, 9,€ F,. If

cER, let ¢, EI:}, denote the germ at p of the constant function with value c on M.

Lemma 3.2. Let M be a smooth manifold and pe M. If v is a derivation on Fp relative to the
valuation evp,1 then
v|pz =0, v(c,) =0 VceR. (3.3)

Proof. 1t ip,gper, then f(p), g(p)=0 and thus

v(f,9,) = Fp)v(g,) +g(p)v(f,) = 0;

p
so v vanishes identically on Fp2 . If ceR,
v(gp) = v(lye,) = 1p) - v(g,) +clp) - v(ly) = 1-v(gy) + ¢ v(ly)
=v(g,) +v(c-1,) =v(c,) +v(c,);
so v(c,) = 0. 0

Corollary 3.3. If M is a smooth manifold and p€ M, the map v — v|g, induces an isomorphism
from the vector space Der(Fp,evp) of derivations on Fp relative to the valuation evy, to

{LeHom(F,,R): LI =0} ~ (F,/F;)".

He. v: F'p — R is an R-linear map such that

o(f g) =ewp(f Jolg) +evplg o(f,) V1.9 €Fp.
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Proof. The set Der(E,, ev,) of derivations on E, relative to the valuation ev, indeed forms a vector
space:

{av + bw}(ip) = av(ip) + bw(ip) N v,weDer(Fp,evp), a,beER, ipeﬁp.

If v € Der(F), ev,), the restriction of v to Fj, C F), is a homomorphism to R that vanishes on F? by
Lemma 3.2. Conversely, if L: Fj,— R is a linear homomorphism vanishing on Fﬁ, define

v By — R by w(f,) = L(£-f()):

since the function f— f(p) vanishes at p, f—f (p)p € F), and so vy, is well-defined. It is immediate
that vy, is a homomorphism of vector spaces. Furthermore, for all ip, 9,

ve(f,9,) = L(f9—f)g(p) ) = L(f(p)g—g(p)p+g(p)f—f(p)p +f=fp) 9-9() )
P)L(g—g(p),) +9)L(f =) ) + L(f=f() 9—9(p) )

pvi(g,) + (p)v( ,) 0,

since L vanishes on Fg; so vy, is a derivation with respect to the valuation ev,. It is also immediate
that the maps

I
= f(

Der(F), evy) — {LeHom(F,,R): L‘Fg =0}, v — Ly, = v|F,,
- 3.4
{LeHom(F,,R): Ll =0} — Der(Fp, evp), L — vp, (3:4)

are homomorphisms of vector spaces. If L€ Hom(F},,R) and L| F2 =0, the restriction of vz, to F), is
L, and so L,, = L. If v€Der(F), ev,) and ipeﬁp, by the second statement in (3.3)

o(£) = 0(£,) ~ o)) = (I~ 1)) = Lo(f 1)) = vr. (1)
so vr, =v and the two homomorphisms in (3.4) are inverses of each other. O
Proposition 3.4. If pe R™, the vector space Fp/Fg is m-dimensional and the homomorphism
R™ — Der(F}, evp) ~ (Fp/FpQ)*, v —> Oylp, (3.5)
induced by (3.2), is an isomorphism.

Proof. By (TV1), 0y|p induces a well-defined map Fp — R. By (TV2), 0,|, is a vector-space
homomorphism. By (TV3), 0,|, is a derivation with respect to the valuation ev,. Thus, the
map (3.5) is well-defined and is clearly a vector-space homomorphism. If 7; : R™ — R is the
projection to the j-th component,

1, ifi=j;

0, ifij.

Thus, the homomorphism (3.5) is injective, and the set {m;—m;(p) } is linearly independent
——p

in Fp/Fg. On the other hand, Lemma 3.5 below implies that

8el|p( ﬂ-j(p)) = (8i(7rj_77j(p)))p = 5ij = { (3.6)

=m i,j=m
flp+z) = +Z i f)pxi + Z T Z/ (1—t)(0;05 f ) pyt2dt (3.7)
=1 i,j=1
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for every smooth function f defined on a open ball U around p in R™ and for all p+x€U. Thus,
the set {mj—m;(p) } spans F), /FI?; so F,/ Fg is m-dimensional and the homomorphism (3.5) is an
— = p
isomorphism. ]
Note that the inverse of the isomorphism (3.5) is given by
Der(ﬁ’p,evp) — R™, v— (v(ﬂp), o 0(Tm, ) (3.8)
by (3.6), this is a right inverse and thus must be the inverse.

Lemma 3.5. If h: U —R is a smooth function defined on an open ball U around a point p in R™,
then

i=m 1
Bp+a) = h(p) + 3 / (i) p 2t
i=1 0

for all p+x€U.

This follows from the Fundamental Theorem of Calculus:

1q 1i=m
h(p+2z) = h(p) +/ ah(ertx)dt = h(p) +/ Z(@ih)p+mxidt
0 0 =1

i=m 1
= h(p) + Z ﬂfi/o(aih)p+mdt~
i=1

Corollary 3.6. If M is a smooth m-manifold and p € M, the vector space Der(Fp,evp) s m-
dimensional.

Proof. If p: U — R™ is a smooth chart around p € M, the map f — foy induces an R-algebra
isomorphism

¢ Epp) — 1y Lo

Since ev ) =evyop™, p* restricts to an isomorphism F,,y — F}, and descends to an isomorphism

— fop . (3.9)

2 2
Thus, Corollary 3.6 follows from Corollary 3.3 and Proposition 3.4. O

Definition 3.7. Let M be a smooth manifold and pe M.

(1) The tangent space of M at p is the vector space TpM:Der(Fp, evp); a tangent vector of M at
p s an element of T, M.

(2) The cotangent space of M at p is TyM = (1,M)* = Hom(T,,M,R).

By Corollary 3.6, T, M and T,; M are m-dimensional vector spaces if M is an m-dimensional mani-
fold. By Proposition 3.4, T,R™ is canonically isomorphic to R for every p€ R™. By Corollary 3.3,
TyM=~F, / Fg; an element ip+sz of F,/ sz determines the vector-space homomorphism

LM —R,  v—v(f). (3.11)

Any smooth function f defined on a neighborhood of p in M defines an element of T*M in the
same way, but this element depends only on

f=fp) +F; € F/F;.
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Example 3.8. Let V be an m-dimensional vector space with the canonical smooth structure of
Example 1.5. For p,veV, let
Oplp: Fp — R

be the derivation with respect to ev, defined by (3.2). The homomorphism
V — T,V =Der(Fp,evy), v —ylp, (3.12)
is injective because for any linear functional f: V —R

flott) = fp) _ . fP)+tf(v) — f(p)
t

t—0 t

= f(v);

Dolpf = th—n>10

50 Oylpf # 0 on every linear functional f on V not vanishing on v and thus 9,|, # 0 € T,V if
v# 0 (such functionals exist if v # 0; they are smooth by Example 2.3). Since the dimension of
T,V is m by Corollary 3.6, the homomorphism (3.12) is an isomorphism of vector spaces. So, for
every finite-dimensional vector space V' and p €T,V (3.12) provides a canonical identification of
T,V with V' (but not with R™); the dual of (3.12) provides a canonical identification 7T,;V" with
V*=Hom(V,R).

4 Differentials of Smooth Maps
Definition 4.1. Let h: M — N be a smooth map between smooth manifolds and pe M.

(1) The differential of h at p is the map

dph: T,M — Ty N, {dph(0)}(f,,) = v(foh) VveLM, f, €Fy. (41)

(2) The pull-back map on the cotangent spaces is the map

h* = {dph}": Ty N — T, M, n —s nodyh. (4.2)

The map (4.1) is a vector-space homomorphism, and thus so is h*. It is immediate from the
definition that d,idys =idz,as and thus id), = idT; m. It N=R, Tj;,)R is canonically isomorphic
to R, via the map

Th(p)]R — R, w — w(idR);

see (3.8). In particular, if veT,M,
dph(v) — {dph(v)}(idr) = v(idroh) = v(h).

Thus, under the canonical identification of 7j,,yR with R, the differential d,h of a smooth map
h: M — R is given by

\dph(v) =v(h) Vve TpM‘ (4.3)

and so corresponds to the same element of 77 M as
2 2.
h_h(p)p+Fp € Fp/Fp )
see (3.11).
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Example 4.2. Let V and W be finite-dimensional vector spaces with the canonical smooth struc-
tures of Example 1.5. By Example 2.3, every vector-space homomorphism h: V — W is smooth.
If pveV and f: U—R is a smooth function defined on a neighborhood of h(p) in W, by (4.1)
and (3.2)

f(h(p+tv)) — f(h(p))
t
o T() +h() — F((p))
t—s0 t
Thus, under the canonical identifications of 7,V with V' and Tj,,) W with W as in Example 3.8,
the differential d,h at p of a vector-space homomorphism h: V — W corresponds to the homo-
morphism h itself; so the diagram

{dph(8v|p)}(f) = Oy|p(foh) = tli_n>10

= Oh(v)ln(p) (f) -

TV ThipyW (4.4)
(3.12) (3.12)
1% h W

commutes. In particular, the differentials of an identification ¢ : V. — R™ induce the same
identifications on the tangent spaces.

Lemma 4.3. If g: M — N and h: N — X are smooth maps between smooth manifolds and
peEM, then
dp(hOg) = dg(p)h o dng TpM — Th(g(p))X (45)

Thus, (hog)*=g*oh*: T} X—T;M and

(9(p))

whenever f is a smooth function on a neighborhood of g(p) in N.

Proof. If veT,M and f is a smooth function on a neighborhood of h(g(p)) in X, then by (4.1)
{{dp(hog)}(0)}(f) = v(fohog) = {dpg(v) } (foh) = {dy(h(dpg(v)) }(f)

= {{dg@hodpg}(v) }(f);
thus, (4.5) holds. The second claim is the dual of the first. For the last claim, note that
9 dyp) f = dgp) f o dpg = dp(fog) (4.7)

by (4.2) and (4.5). For the purposes of applying (4.2) and (4.5), all expressions in (4.7) are viewed
as maps to T'p(4(p))R, before its canonical identification with R. The identities of course continue
to hold after this identification. O

Definition 4.4. A smooth curve in a smooth manifold M is a smooth map ~v: (a,b) — M, where
(a,b) is a nonempty open (possibly infinite) interval in R. The tangent vector to a smooth curve
~v: (a,b)— M at te(a,b) is the vector

d
V(t) = aW(t) = diy(9e,|t) € Ty M, (4.8)

where ey =1€R! is the oriented unit vector.
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If h: M — N is a smooth map between smooth manifolds and 7: (a,b) — M is a smooth curve
in M, then
hov: (a,b) — N
is a smooth curve on N and by the chain rule (4.5)
(hon)'(t) = di{hov}(Oelt) = {dypyh o div} (e,le) = dyyh(dev (e, 1))
, (4.9)
= dyy (7' (1)) € Ty N
for every t€(a,b).

Lemma 4.5. Let V' be a finite-dimensional vector space with its canonical smooth structure of
Ezample 1.5. If v: (a,b) —V is a smooth curve and t&(a,b), 7' (t) €Ty )V corresponds to

S0 — i 2D =30

T—0 T

eV

under the canonical isomorphism T,V =V provided by (3.12).

Proof. If h :V — W is a homomorphism of vector spaces,

hoy(t) = h(3(2)) (4.10)

by the linearity of h. Thus, by (4.9) and the commutativity of (4.4), it is sufficient to prove this
lemma for V =R™, which we now assume to be the case. If f: U — R is a smooth function defined
on a neighborhood of v(¢) in R™, by (4.8), (4.1), the usual multi-variable chain rule, and (3.1)

fO(t+7) = F(r (@)

{'Y/<t)}(f) = {dt’Y(ael\t)}(f) = Oy |t(foy) = lim

T—0 T
= T(Driw(t) = lim f(v(t)+ﬂ(i)) —f(v(®)) (4.11)

= 05l f

where J(f)(): R™ — R is the usual Jacobian (matrix of first partials) of the smooth map f from
an open subset of R™ to R evaluated at «(t). Thus, under the canonical identification of T’ R™
with R™ provided by (3.5), the tangent vector +/(¢) of Definition 4.4 corresponds to the tangent
vector 7(t) of calculus. O

Corollary 4.6. Let (M, Fyr) be a smooth manifold. For every pe M and veT,M, there exists a
smooth curve
v: (a,b) — M s.t. ¥(0)=p, v(0)=wv.

Proof. If p: U —R™ is a smooth chart around p on M, the homomorphism
—1.
Aoy TomR™ — T,M

is an isomorphism. Thus, by (4.9), it is sufficient to prove the claim for V' =R", which we now
assume to be the case. By Lemma 4.5 applied with V =R"™/ it is to show that for all p,v € R™
there exists a smooth curve

v: (a,b) — R™ st. v(0) =p, ¥(0)=w.

An example of such a curve is v: (—00,00) — R™, t — p+tv. O
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Example 4.7. By Example 2.4, the map

h: Mat, «,R — SMat,R, h(A) = A" A,
is smooth; we determine the homomorphism dj, h. The map
00, 00) — Mat, «x,R, t — I, +tA,

)=1I, and 4(0)=A. By (4.10), the homomorphism induced by dj, h
by (3.12) takes 4(0)=A to
) —

To0) = fim MO =AOO) _ Tt 24) (L tA) ~ L,

t—0 t t—0 t

v (=
is a smooth curve such that v(0
via the isomorphisms provided

= A4 A",
Thus, the homomorphism induced by dy, h via the identifications provided by (3.12) is given by
dy, h: Mat,x,R — SMat,,R, A— A+ A"

In particular, dy, h is surjective, because its restriction to the subspace SMat,, R C Mat,,x,R is.

Let ¢ = (x1,...,2m) : U — R™ be a smooth chart on a neighborhood of a point p in M; so,
x; = mop, where m; : R”™ — R is the projection to the i-th component as before. Since the
map (3.9) induces the isomorphism (3.10) and {ﬂ'z‘—%i(l?)(p(p)}i is a basis for F‘P(p)/Fj(p)

o ({mi—aip), 1) = {(m—zi@)op }, = {zi—z:p) },

¢(p)
is a basis for F,,/F7. Thus, {dyz;}; is a basis for T;*M, since dya; and z;—z(p) act in the same

way on all elements of T),M; see the paragraph following Definition 4.1. For each i=1,2,...,m,
let 3
-1
el Ay (Oeilo(p)) € TyM. (4.12)
p
By (4.1), for every smooth function f defined on a neighborhood of p in M
0

= {do ™ (Oeilo@) }(F) = Oeilo) (forr™) (4.13)

= ai(fo‘Pilmp(p)

is the i-th partial derivative of the function fop™" at ¢(p); this is a smooth function defined on a
neighborhood of ¢(p) in R™. In particular, for all ¢,j=1,2,...,m

0 0
i (a),) = o

the first equality above is a special case of (4.3). Thus, {% |p}i is a basis for T}, M it is dual to the
basis {d,;}; for Ty M. The coefficients of other elements of T),M and T,y M with respect to these
bases are given by

8.7}@'

1

(:L'j) = ai(ﬂjoap o gp_l) = (52']' ;
p

=m 8 =m a

v = (dpzi(v)) 7| = v(x;) = VoveT,M; (4.14)
i=1 O i=1 Ozil,
=m a i}

n=2_M 3, )i VneT, M. (4.15)
i=1 tlp
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The first identities in (4.14) and (4.15) are immediate from the two bases being dual to each other
(each dpz; gives the same values when evaluated on both sides of the first identity in (4.14); both
sides of (4.15) evaluate to the same number on each - z]- p) The second equality in (4.14) follows

from (4.3). If f is a smooth function on a neighborhood of p, by (4.15), (4.3), and (4.13)

i=m 8
dpf = Z dpf<ax
i=1

i=m a
i p>dpl‘i - Z <5$z‘

=1 p

()= 3 @ifo¢ ™) ot (410)
=1

If=(y1,...,ym): V—R"™ is another smooth chart around p, by (4.14), (4.3), and (4.13)

9 zm< 9 9 =m . 9
2S00 2] 8 (o)
9 9 9 9 )
— — =)=, =] )T :
(axlp D p> <8y1p o p) (¥oe™) o)

where j(zﬁo«pfl)‘p(p) is the Jacobian of the smooth map 1o ~! between the open subsets ¢(UNV)
and Y(UNV) of R™ at ¢(p); see Figure 1.2 with ¢, =1 and pg=¢.

Suppose next that f: M — N is a map between smooth manifolds and
o= (x1,...,2p): U — R™ and V=(y1,...,Yn): V —R"

are smooth charts around p € M and f(p) € N, respectively; see Figure 1.5. By (4.14), (4.1),

and (4.13),
)-E{er(a Mool -2

i

0z
(8j(miopo forp™)) o0
o 20 0yil )

D) 3

f(p)

? (4.18)

S S,
I
S =

1

(2

so the matrix of the linear transformation d; f: T, M — Ty(,) N with respect to the bases {2 Doy ‘ }
and {Tyi‘f(p)}l is J(yofop™ 1)¢ (p)» the Jacobian of the smooth map o fop™ ! between the open

subsets @(UN f~1(V)) and (V) of R™ and R™, respectively, evaluated at o(p). In particular,
dpf is injective (surjective) if and only if J(@ZJOfo@_l)(p(p) is. The f =1id case of (4.18) is the
change-of-coordinates formula (4.17). If M and N are open subsets of R™ and R", respectively,
p=idp, and ¢ =idy, then under the canonical identifications T,R™ =R™ and T}, R" =R" the
differential d, f is simply the Jacobian J(f), of f at p. The chain-rule formula (4.5) states that
the Jacobian of a composition of maps is the (matrix) product of the Jacobians of the maps; if M,
N, and X are open subsets of Euclidean spaces, this yields the usual chain rule for smooth maps
between open subsets of Euclidean spaces, for free (once it is checked that all definitions above
make sense and correspond to the standard ones for Euclidean spaces).

By the above, if p=(z1,...,2m): U—R" is a smooth chart around a point p in M, then {d,z;};

is a basis for Ty M. A weak converse to this statement is true as well; see Corollary 4.10 below. The
key tool in obtaining it is the Inverse Function Theorem for R™; see [7, Theorem 8.3], for example.
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Theorem 4.8 (Inverse Function Theorem). Let U’ C R™ be an open subset and f: U — R™ a

smooth map. If the Jacobian J(f), of f is non-singular for some peU’, there exist neighborhoods
UofpinU andV of f(p) in R™ such that f: U—V is a diffeomorphism.

Corollary 4.9 (Inverse Function Theorem for Manifolds). Let f: M — N be a smooth map
between smooth manifolds. If the differential dyf : TyM — T,y N is an isomorphism for some
pE€ M, then there exist neighborhoods U of p in M and V of f(p) in N such that f: U—V is a
diffeomorphism.

Proof. Let o= (21,...,2m): U —R™ and Y= (y1,...,ym): V' —>R"™ be smooth charts around
pin M and f(p) in N, respectively; see Figure 1.5. Then,

Yofop lip(UNF (V") — (V') CR™

is a smooth map from an open subset of R” to R™ such that J (yofop™!) o(p) 18 non-singular (since

by (4.18) this is the matrix of the linear transformation d,f with respect to bases {ﬁélp}j and
J

{6%1_\ #(p)}i)- Since p and ¢ are homeomorphisms onto the open subsets ¢(U’) and 9 (V’) of R™,

by Theorem 4.8 there exist open neighborhoods U of p in U'Nf~1(V') and V of f(p) in V' such
that the restriction

Yofop i p(U) — (V)
is a diffeomorphism. Since ¢: U — ¢(U) and ¢: V — (V) are also diffeomorphisms, it follows
that so is f: U —V (being composition of 1o fop™! with =1 and ¢). O

Corollary 4.10. Let M be a smooth m-manifold. If x1,...,Ty: U — R are smooth functions
such that {dpz;}i is a basis for TyM for some p € U’, then there exists a neighborhood U of p in
U’ such that

= (z1,...,2m): U —R

s a smooth chart around p.
Proof. Let f=(x1,...,2p): U —>R™. Since {d,x;}; is a basis for T, M, the differential
dpl'l
df= : |:7m—rm
dpTm

is an isomorphism (for each v €T, M —0, there exists i such that dyz;(v)#0). Thus, Corollary 4.10
follows immediately from Corollary 4.9 with M =U" and N =R™. O

Corollary 4.11. Let M be a smooth m-manifold. If x1,...,x,: U — R are smooth functions
such that the set {dpxz;}; spans TyM for some p € U’, then there exists a neighborhood U of p in
U’ such that an m-element subset of {x;}; determines a smooth chart around p on M.

Proof. This claim follows from Corollary 4.10 by choosing a subset of {x;}; so that the correspond-
ing subset of {dpz;}; is a basis for Ty M. O

Corollary 4.12. Let M be a smooth m-manifold. If x1,...,x,: U — R are smooth functions
such that the set {dpz;}; is linearly independent in TyM for some p € U’, then there ewist a
neighborhood U of p in U’ and a set of smooth functions xyi1,...,Tm: U —> R such that the map

<p:(x1,...,xk,xk+1,...,xn):U—)Rm

1s @ smooth chart around p on M.
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Proof. This claim follows from Corollary 4.10 by choosing a smooth chart ¥ =(y1,...,ym): U" —
R™ on a neighborhood U” of p in U’ and adding some of the functions y; to the set {z;}; so that
the corresponding set {d,z;,dpy;} is a basis for T; M. O

Remark 4.13. The differential of a smooth map induces a functor from the category of pointed
smooth manifolds (smooth manifolds with a choice of a point) and pointed smooth maps (smooth
maps taking chosen points to each other) to the category of finite-dimensional vector spaces and
vector-space homomorphisms:

(M,p) — T,M, (h: (M,p)— (N,q)) — (dph: T,M —TyN);

these mappings take a composition of morphisms to a composition of morphisms by (4.5) and ids
to idz,ar. On the other hand, the pull-back map A* on the cotangent spaces reverses compositions
of morphisms by (4.6) and thus gives rise to a contravariant functor between the same two categories.

5 Immersions and Submanifolds

Definition 5.1. Let M and N be smooth manifolds.

(1) A smooth map f: M — N is an immersion if the differential dp,f: TyM — Ty, N is injective
for every pe M.

(2) The manifold M is a submanifold of N if M C N, M has the subspace topology, and the

inclusion map v: M — N is an immersion.

If M C N is a smooth submanifold and p € M, the differential dp¢: T,M — T, N is an injective
homomorphism. In such cases, we will identify 7),M with Imd,. C T),N via dp¢.

Discrete subsets of points (with the unique smooth structure) and open subsets (with the induced
smooth structure of Proposition 1.11) of a smooth manifold are submanifolds; see Exercise 25. If
M and N are smooth manifolds, the horizontal and vertical slices

Imeg, Ime, C M xN

of Example 2.5 are embedded submanifolds; see Exercise 26. On the other hand, Q CR does not
admit a submanifold structure.

If f: M — N is a diffeomorphism between smooth manifolds, then the differential
dpf: TpM — Tf(p)N (5.1)

is an isomorphism for every p € M. Thus, a diffeomorphism between two smooth manifolds is a
bijective immersion. On the other hand, if f: M — N is an immersion, dim M < dim N. If
dimM =dim N and f: M — N is an immersion, then the differential (5.1) is an isomorphism
for every p € M. Corollary 4.9 then implies that f is a local diffeomorphism. Thus, a bijective
immersion f: M — N between smooth manifolds of the same dimension is a diffeomorphism.
The assumption that manifolds are second-countable topological spaces turns out to imply that
a bijective immersion must be a map between manifolds of the same dimension; see Exercise 31.
Thus, a bijective immersion is a diffeomorphism and vice versa.
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Rn—wz

Rm

Figure 1.8: An immersion pull-backs a subset of the coordinates on the target to a smooth chart
on the domain

A more interesting example of an immersion is the inclusion of R™ as the coordinate subspace
R™x0 into R™, with m <n. By Proposition 5.3 below, every immersion f: M — N locally (on M
and N) looks like the inclusion of R as R™x 0 into R™ and every submanifold M C N locally
(on N) looks like R"™x0CR"™. We will use the following lemma in the proof of Proposition 5.3.

Lemma 5.2. Let f: M™ — N™ be a smooth map and pc M. If the differential d,f is injective,
there exist a neighborhood U of p in M and a smooth chart ¢ = (y1,...,yn) : V. — R"™ around
f(p) €N such that

@Z(ylofa"-,ymof): U—)Rm

s a smooth chart around pe M.
Proof. Since the differential d,, f: T), M —T(,) N is injective, its dual
[f={dpf}*: T;(p)N — TyM

is surjective. Thus, if ¥ =(y1,...,yn) : V —> R™ is any smooth chart around f(p) € N, then the
set

{7y = dplyio N},
spans Ty M (because the set {d () y:} is a basis for T}‘(p)N). By Corollary 4.11, a subset of {y;of};

determines a smooth chart around p on M. If this subset is different from {yiof, ..., ymof }, compose
¥ with a diffeomorphism of R™ that switches the coordinates, sending the chosen coordinates (those
in the subset) to the first m coordinates. O

The statement of Lemma 5.2 is illustrated in Figure 1.8. In summary, if d, f is injective, then m of
the coordinates of a smooth chart around f(p) give rise to a smooth chart around p. By re-ordering
the coordinates around f(p), it can be assumed that it is the first m coordinates that give rise to
a smooth chart around p, which is then p=mowo f, where 7: R — R™ is the projection on the
first m coordinates. In particular,

7 (F(U)) — @(U) C R™
is bijective; so the image of f(U)CV C N under ¥ is the graph of some function g: ¢(U) — R~

(f(U)) = {(z,9(x)): z€0(U)}.

By construction,

V(@) = (n(f@)), - un(f(@)) = (e, gle(@))) e R"xR*™  Vp'eU;
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$0 g = (Yma1,---,yn)ofop L. In the proof of the next proposition, we compose 1 with the
diffeomorphism (z,y) — (z,y—g(z)) so that the image of f(U) is shifted to R™ x0.

Proposition 5.3 (Slice Lemma). Let f: M™ — N™ be a smooth map and p € M. If d,f is
injective, there exist smooth charts

p: U — R™ and Y:V— R"

around p€ M and f(p) € N, respectively, such that the diagram

R
|k
R™ —R"
commutes, where the bottom arrow is the natural inclusion of R™ as R™x0, and f(U)=1"1(R™x0).

Proof. By Lemma 5.2, there exist a neighborhood U of p in M and a smooth chart ¢’ =(y1,...,ys) :
V' — R™ around f(p)€ N such that

p=mo/of: U — R™

is a smooth chart around p € M, where 7: R” — R"™ is the projection on the first m coordinates
as before. In particular, ¢(U) CR™ is an open subset and

Yo f=(p,gop): U — R"xR"™™,
where = (Ym11,---,Yn)ofop ! : o(U)—R"™; this is a smooth function. Thus, the map
O: SO(U)XRnim — @(U)XRnima (mvy) — (mvy_g(x))a

is smooth. It is clearly bijective, and

L, 0
j(g)(at,y) = ( » > ;

]Infm

so O is a diffeomorphism. Let V =19'"!(¢(U)xR"™™) and
=00y : V — R™.

Since p(U)xR™™ is open in R™, V is open in N. Since O is a diffeomorphism, v is a smooth chart
on N. Since ¢/(V') and p(U)xR™ ™ contain 1//(f(U)), f(U) is contained in V. By definition,

Yo f(p') =0cyof(p) =0(e(d),9(e®))) = ('), 9(e()) — gle®")))
= (¢(p) ) e(U)x0 Vp el.
)-

Since ¢(f(U)) =p(U) =9 (V)NR™x0, f(U) =9~ (R™x0 =

Corollary 5.4. If M™ C N" is a submanifold, for every p € M there exists a smooth chart
v=(x1,...,2y) : V—R"™ on N around p such that

MMV = ¢_1(Rmx0) = {p'EV: Tmi1(P) =2maa(p)=.. .::Un(p’):()}
and P: MOV — R™x0 = R™ is a smooth chart on M.
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R?’L —m

Rm

Figure 1.9: The local structure of immersions

Proof. Let U be an open neighborhood of p in M and (V, ) a smooth chart on N around p= f(p)
provided by Proposition 5.3 for the inclusion map f: M — N. Since M C N has the subspace
topology, there exists W C V' open so that U = M NW; the smooth chart (W, |y ) then has the
desired properties. O

According to this corollary, every smooth m-submanifold M of an n-manifold N locally (in a
suitably chosen smooth chart) looks like the horizontal slice R™ x0 CR"™. If p € M lies in such a
chart,

T,M = SpanR{ail‘pv(fm‘p’”"azn‘p}

= {vETLN: dpZps1(v) =dpTms2(v)=...=dpzn(v)=0}.

Proposition 5.3 completely describes the local structure of immersions, but says nothing about
their global structure. Images of 3 different immersions of R into R? are shown in Figure 1.10.
Another type phenomena is illustrated by the injective immersion

R — Stx st s —> (eis,eias), (5.2)
where « €R—Q. The image of this immersion is a dense submanifold of S!x S*.

If .: M — N is an injective map and h: X — N is any map such that h(X) C¢(M), then there

S ) 0
O O

Figure 1.10: Images of some immersions R — R?
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exists a unique map hg: X — M so that the diagram

M

4
ho i
s L

Ve

_ho N
commutes. If M, N, and X are topological spaces, ¢ is an embedding, and h is continuous, then hg
is also continuous [8, Theorem 7.2¢]. An analogue of this property holds in the smooth category,
as indicated by the next proposition.

Proposition 5.5. Let .: M — N be an injective immersion, h: X — N a smooth map such that
h(X)Cu(M), and ho: X — M the unique map such that h=1tohy. If hy is continuous, then it is
smooth; in particular, hy is smooth if v is an embedding (e.g. if M is a submanifold of N ).

Proof. 1t is sufficient to show that every point ¢ € X has a neighborhood W on which hg is smooth.
By Proposition 5.3, there exist smooth charts

p: U — R™ and P:V—R"
around ho(q) € M and h(q)=t(ho(q)) € N such that the diagram

U—2sRrm

]
s L
7 Y

WLy CsRe
commutes, where W = hg 1(U) and the right-most arrow is the standard inclusion of R™ as R x 0
in R™. Since hg is continuous, W is open in X. Since h is smooth and % is a smooth chart on N,
the map
oh = 1porohg = (cpoho,()) W — R xR

is smooth. Thus, the map gohg: W — R™ is also smooth. Since ¢ is a smooth chart on M
containing the image of hg|y, it follows that hg|y is a smooth map. O

It is possible for the map hg to be continuous even if t: M — N is not an embedding (and even if
the image of h is not contained in the image of any open subset of M on which ¢ is an embedding).
This is in particular the case for the immersion (5.2), which satisfies the condition of the following
definition.

Definition 5.6. An injective immersion ¢: M™ — N" is regular if for every q € N there exists
a smooth chart ¢ : V. — R™ xR"™™ aqaround q such that the image of every connected subset
UcuY(V) under ¢ is contained in 1 (R™ xy) for some y€R"™™ (dependent on U ).

Since the connected components of +=1(V) are disjoint open subsets of M and each of them is
mapped by ¢ to one of the horizontal slices ¢ ~*(R™xy), : =1 (V) C M is contained in at most count-
ably many of the horizontal slices 1! (R™ x ). In particular, each of the connected components
of 1 71(V)C M lies in one of these slices; see Figure 1.11.

Corollary 5.7. If 1: M — N s a regular immersion, h: X — N is a smooth map such that
h(X)Cu(M), and hy: X — M is the unique map such that h=tohg, then hqy is smooth.

28



Rn*m
(M)YNV

Rm

Figure 1.11: Image of a regular immersion (M) in a smooth chart consists of horizontal slices

Proof. In light of Proposition 5.5, it is sufficient to show that the map hg is continuous. Let U be a
connected open subset of M, x€hy ' (U), and p=ho(x). We will show that there is an open subset
W C X such that x €W and h(W) C«(U); since ¢ is injective, the latter implies that ho(W)CU and
so W C hal(U). Since ¢ is a regular immersion, there exists a smooth chart ¢: V — R™ xR"™™
around ho(p) = h(z) € N such that the image of every connected subset U’ C +~1(V) under 1 is
contained in ¢~} (R™xy) for some y € R"~™. Shrinking U and V and shifting 1, it can be assumed
that «(U) =9 1 (R™x0). Let W Ch~'(V) be the connected component containing z € N. Since
h(W)Cu(M)NV is connected, h(W) is contained in one of the horizontal slices 1»~!(R™xy). Since
h(z) €y~ (R™ x0), we conclude that h(W)C 1y~ (R™ x0)=(U). O

On the other hand, hg in Proposition 5.5 need not be continuous in general. For example, it is not
continuous at h~1(0) if  and h are immersions described by the middle and right-most diagrams,
respectively, in Figure 1.10. A similar example can be obtained from the left diagram in Figure 1.10
if all branches of the curve have infinite contact with the z-axis at the origin (¢ and h can then
differ by a “branch switch” at the origin).

Corollary 5.8. Let N be a smooth manifold, M C N, and v: M — N the inclusion map.

(1) If Tar is a topology on M, there exists at most one smooth structure Fpr on (M, Tar) with
respect to which v is an immersion.

(2) If Tar is the subspace topology on M and (M, Tar) admits a smooth structure Fyy with respect
to which v is an immersion, there exists no other topology T{, admitting a smooth structure
" on M with respect to which v is an immersion.
The first statement of this corollary follows easily from Proposition 5.5. The second statement
depends on manifolds being second-countable; its proof makes use of Exercise 31.

Corollary 5.9. A topological subspace M C N admits a smooth structure with respect to which M
is a submanifold of N if and only if for every pe M there exists a neighborhood U of p in N such
that the topological subspace MNU of N admits a smooth structure with respect to which MNU s
a submanifold of N.

Proof. By Corollary 5.8, the smooth structures on the overlaps of such open subsets must agree. [

The middle and right-most diagrams in Figure 1.10 are examples of a subset M of a smooth
manifold N that admits two different manifold structures (M, Tar, Far), in different topologies, with
respect to which the inclusion map ¢: M — N is an embedding. In light of the second statement
of Proposition 5.8, this is only possible because M does not admit such a smooth structure in
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the subspace topology. On the other hand, if manifolds were not required to be second-countable,
the discrete topology on R would provide a second manifold structure with respect to which the
identity map R — R, with the target R having the standard manifold structure, would be an
immersion.

6 Submersions and Submanifolds

This section is in a sense dual to Section 5. It describes ways of constructing new immersions and
submanifolds by studying properties of submersions (smooth maps with surjective differentials),
rather than studying properties of immersions and submanifolds. While Section 5 exploits Corol-
lary 4.11, this section makes use of Corollary 4.12, as well as of the Slice Lemma (Proposition 5.3).

If M and N are smooth manifolds, the component projection maps
w1 MXN — M, mo: M XN — N,
are submersions; see Exercise 26. By the following lemma, every submersion locally has this form.

Lemma 6.1 (Local Structure of Submersions). Let h: M™ — Z* be a smooth map and p€ M. If
the differential d,h is surjective, there exist smooth charts

p: U —R™ and Y:V — R¥
around p€ M and h(p) € Z, respectively, such that the diagram
U—2sRrm
A
VYo R
commutes, where the right arrow is the natural projection map from R™ to RFx0CR™.

Proof. Let )= (y1,...,yx): V — R¥ be a smooth chart on Z around f(p). Since the differential
dph is surjective, its dual map

W ={dph}": Ty, N — T, M
is injective. Since {dj,y:} is a basis for Ty N, it follows that the set
{W*dnpyyi = dp(yioh) }
is linearly independent in 77 M. By Corollary 4.12, it can be extended to a smooth chart
P: (yloh, e YO, T, .. ,xm) U — RExR™F
on M, where U is a neighborhood of p in h=1(V). O

Lemma 6.1 can be seen as a counter-part of the Slice Lemma (Proposition 5.3). While an immersion
locally looks like the inclusion

R™ — R™x0 C R", m<n,
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M —r HIH

U(h(p)) R*

Figure 1.12: The local structure of submersions

a submersion locally looks like the projection
R™ — RF = RFx0 c R™, k<m.

Thus, an immersion can locally be represented by a horizontal slice in a smooth chart, while the
pre-image of a point in the target of a submersion is locally a vertical slice (it is customary to
present projections vertically, as in Figure 1.12).

Corollary 6.2. Let h: M — Z be a smooth map and pc M. If the differential d,yh is surjective,
there exist a neighborhood U of p in M and a smooth structure on the subspace h™ (h(p))NU of M
so that h=Y(h(p))NU is a submanifold of M and

codimps (A~ (h(p))NU) = dim M — dim (™" (h(p))NU) = dim Z.

Proof. If ¢: V —RF and ¢ = (1oh, ¢) : U —R* xR™~* are smooth charts on Z around h(p) and
on M around p, respectively, provided by Lemma 6.1,

B ()N = (b} () NV = {row} L ((A(p))) = ¢~ ($(h(p)) xR ).
Since ¢: U — ¢(U) is a homeomorphism, so is the map
p: b (R(P)NU — ¢(h(p)) xR™* N p(U)
in the subspace topologies. Thus,
61 b= (h(p) U —> R
induces a smooth structure on h~!(h(p))NU C M in the subspace topology. Since the inclusion
Y(h(p)) x R™F — RExR™F
is an immersion, so is the inclusion h=1(h(p))NU — M. O

Theorem 6.3 (Implicit Function Theorem for Manifolds). Let f: M — N be a smooth map and
Y CN an embedded submanifold. If

TN =Imd, f + Ty, Y Vpef 1Y), (6.1)
then f~1(Y) admits the structure of an embedded submanifold of M,
codimp f7H(Y) = codimyY,  T,(f'(Y)) = {dpf} " (Ty)Y) VpES'(Y).
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Proof. In order to prove the first two statements, it is sufficient to show that for every pe f~1(Y)
there exists a neighborhood U of p in M such that f~(Y)NU admits the structure of an embedded
submanifold of M of the claimed dimension; see Corollary 5.9. As provided by Corollary 5.4, let
Y: V—R" be a smooth chart on N around f(p) €Y such that YNV =1 (Rx0), where [=dim Y.
Let 7: R* — 0xR"! be the projection map and

h=woof: fFHV)—V —R" — R
Since R!x0=7"1(0), YNV =4~ 1(#71(0)) and
RNV = Y aV) = £ ETH0) = hTH0). (6:2)
On the other hand, by the chain rule (4.5)
dph = dy(pen T o dyyth o dpf: TyM — Ty N — Ty R" — To(0xR™ ). (6.3)
The homomorphism dyf(,))7 is onto, as is the homomorphism d(, 1. On the other hand,
di(rp) T © ¥ = dy) (For): Ty N — Ty R" — To(0xR"™)

by the chain rule (4.5) and thus vanishes on T}()Y (since 7ot maps Y to 0 in 0 xR"1). So,
by (6.1), the restriction
dy(renTodspyt: Imdyf — TH(0xR™ ™)

is onto, i.e. the homomorphism (6.3) is surjective. By Corollary 6.2 and (6.2), there exists a
neighborhood U of p in f~1(V) such that

ffnu=fwnfYv)ynu=rt0)nU

admits the structure of an embedded submanifold of M of codimension I, as required. For the last
statement, note that

L7 W) A} (TrgyY)  Ypef (),
since f(f~!(Y)) CY; the opposite inclusion holds for dimensional reasons. O
Corollary 6.4. Let f: M — N be a smooth map and g N. If
dpf: T,M — T,N is onto ¥ pe€f(q), (6.4)

then f~1(q) admits the structure of an embedded submanifold of M of codimension equal to the
dimension of N and

Tp(f_l(q)) = ker (dpf:TpM—>TqN) VpEf_l(q).
Proof. This is just the Y ={q} case of Theorem 6.3. O

Example 6.5. Let f: R™"! — R be given by f(x) = |z|?>. This is a smooth map, and its
differential at 2 € R™*! with respect to the standard bases for T,R™*! and TrnR is

J(Fa= (221 232 ... 22ppq1): R — R

Thus, d,f is surjective if and only if x # 0, i.e. f(z) # 0. By Corollary 6.4, f~1(q) with ¢ #0
then admits the structure of an embedded submanifold of R™*! and its codimension is 1 (so the
dimension is m). This is indeed the case, since f~!(q) is the sphere of radius /g centered at the
origin if ¢ >0 and the empty set (which is a smooth manifold of any dimension) if ¢<0. If ¢=0,
f~Y(q)={0}; this happens to be a smooth submanifold of R™*!, but of the wrong dimension.
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Example 6.6. Corollary 6.4 can be used to show that the group SO,, is a smooth submanifold of
Mat,,«»R, while U, and SU,, are smooth submanifolds of Mat,,«,C. For example, with SMat, R
denoting the space of symmetric nxn real matrices, define

f:MatnynR — SMat,ynR, by f(A) = AA™.

Then, O(n) = f~1(I,). It is then sufficient to show that the differential d 4 f is onto for all A€ O(n).
Since f=foR4 for every A€O(n), where the diffeomorphism

Ra: Mat,«nR — Mat, xR is given by RA(B) = BA,
it is sufficient to establish that dyf is surjective. This is done in Example 4.7.

Corollary 6.7 (Implicit Function Theorem for Maps). Let f: X — M and g: Y — M be smooth
maps. If
TrpyM =TImd, f + Imdyg V (z,y) X XY s.t. f(x)=9(y), (6.5)

then the space
XxyY = {(m,y)EXXY: f(:v):g(y)}

admits the structure of an embedded submanifold of X XY of codimension equal to the dimension
of M and

Tip,q) (XXMY) = {(v,w) €T, XeT,Y: dpf(v):dqg(w)} V(p,q) € XxnuY

under the identification of Exercise 26. Furthermore, the projection map mi=nx: X Xy Y — X
is injective (an immersion) if g: Y — M is injective (an immersion).

This corollary is obtained by applying Theorem 6.3 to the smooth map

h=(f,9): XxXY — MxM.

Its last statement immediately implies Warner’s Theorem 1.39. The commutative diagram

XxyY 2 sy

4]

X M

is known as a fibered square.

Corollary 6.8 (Implicit Function Theorem for Intersections). Let X,Y C M be embedded subman-
ifolds. If
oM =T,X +T,Y VpeXnY, (6.6)

then XNY is a smooth submanifold of X, Y, and M,
dim XNY =dim X +dimY — dim M, T,(XNY)=T,XNT,Y CT,M Vpe XnY.

This corollary is a special case of Corollary 6.7.
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Remark 6.9. Submanifolds X,Y C M satisfying (6.6) are said to be transverse (in M); this is
written as X MY or X M Y to be specific. For example, two distinct lines in the plane are
transverse, but two intersecting lines in R? are not. Similarly, smooth maps f: X — M and
g: Y — M satisfying (6.5) are called transverse; this is written as fMg or fMyg. If f: M — N
satisfies (6.1) with respect to a submanifold Y C N, f is said to transverse to Y’; this is written
as fmMY or fmyY. Finally, if f: M — N satisfies (6.4) with respect to g € N, ¢ is said to be a
regular value of f. By Corollary 6.4, the pre-image of a regular value is a smooth submanifold in
the domain of codimension equal to the dimension of the target. By Sard’s Theorem [5, §2], the
set of a regular values is dense in the target (in fact, its complement is a set of measure 0); so the
pre-images of most points in the target of a smooth map are smooth submanifolds of the domain,
though in some cases they may all be empty (e.g. if the dimension of the domain is lower than the
dimension of the target).

The standard version of the Implicit Function Theorem for R, Corollary 6.10 below, says that
under certain conditions a system of k equations in m variables has a locally smooth (m —k)-
dimensional space of solutions which can be described as a graph of a function ¢g: R™* — R,
It is normally obtained as an application of the Inverse Function Theorem for R™, Theorem 4.8
above. It can also be deduced from the proof of Lemma 6.1 and by itself implies Corollary 6.2.

Corollary 6.10 (Implicit Function Theorem for R™). Let U C R™ ¥ xR* be an open subset and
f: U —RF a smooth function. If (xo,y0) € f~1(0) is such that the right kx k submatriz of
T (F) (@o,y0) %kmo,yo)’ is non-singular, then there exist open neighborhoods V' of xg in R™* and

W of yo in R* and a smooth function g: V—W such that

LNV XxW = {(z,9(x)): zeV}.

Exercises

1. Show that the collection (1.1) is indeed a smooth structure on M, according to Definition 1.3.
2. Show that the maps ¢4 : UL — R™ described after Example 1.7 are indeed charts on S™ and
the overlap map between them is

x

prop li o (ULNU_)=R™—0 — ¢, (UNU_)=R™—0, 2 —> PR

3. Show that the map ¢;/; in Example 1.8 is well-defined and is indeed a homeomorphism.
4. With notation as in Example 1.10, show that
(a) the map S$?"*1/S! — (C"*!1—0)/C* induced by inclusions §?"+1 — C?7+1 and S!' — C*
is a homeomorphism with respect to the quotient topologies;

(b) the quotient topological space, CP", is a compact topological 2n-manifold which admits a
structure of a complez (in fact, algebraic) n-manifold, i.e. it can be covered by charts whose
overlap maps, @, 0 cpgl, are holomorphic maps between open subsets of C" (and rational
functions on C");

(c) CP" contains C™ (with its complex structure) as a dense open subset.
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10.

11.

12.

13.

14.

. Let V and W be finite-dimensional vector spaces with the canonical smooth structures of Ex-

ample 1.5. Show that the canonical smooth structure on the vector space VAW =V xW is the
same as the product smooth structure.

. Show that a composition of two smooth maps (local diffeomorphisms, diffeomorphisms) is again

smooth (a local diffeomorphism, a diffeomorphism).

Let f: M — N be a map between smooth manifolds. Show that f is a smooth map if and only
if for every smooth function h: N — R the function ho f: M — R is also smooth.

. Verify Lemma 2.2.

. Let V be a finite-dimensional vector space with the canonical smooth structure of Example 1.5.

Show that the vector space operations,

VXV—)V, (U1,U2)—>’01+U2,
RxV —1V, (ryv) — 1v,

are smooth maps.

Let Vi, Vo, W be finite-dimensional vector spaces with their canonical smooth structures of
Example 1.5. Show that any bilinear map

2 VixVy — W, V1 Q®QUy — V1-V2,
is smooth.

Show that the two smooth structures F and F’ on R! in Example 1.6 are not the same, but
(R, F) and (R!, F') are diffeomorphic smooth manifolds.

Let S cC and M B be the unit circle and the infinite Mobius band with the smooth structures
of Examples 1.7 and 1.8, respectively. Show that the map

MB = ([0,1] x R)/~— S',  [s,t] — &*™*,
is well-defined and smooth.

Let (M, F) be a smooth m-manifold and U C M an open subset. Show that F|y is the unique
smooth structure on the topological subspace U of M satisfying either of the following two
properties:

(SSM1) the inclusion map ¢: U — M is a local diffeomorphism;
(SSM2) if N is a smooth manifold, a continuous map f: N — U is smooth if and only if the
map tof: N— M is smooth.

Let (M, Far) and (N, Fy) be smooth manifolds and Fjr«n the product smooth structure on
M x N of Proposition 1.11. Show that Fjs«n is the unique smooth structure on the product
topological space M x N satisfying either of the following two properties:

(PSM1) the slice inclusion maps ¢, : M — M x N, with ¢ € N, and ¢, : M — M x N, with
p€ M, and the projection maps mwps, 7y : M X N — M, N are smooth;
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15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

(PSM2) if X is a smooth manifold, continuous maps f: X — M and g: X — N are smooth
if and only if the map fxg: X — M x N is smooth.

Verify Lemmas 2.6 and Corollary 2.7.
Verify Proposition 2.8.

Show that the actions (2.4), (2.5), and (1.3) satisfy the assumptions of Proposition 2.8 and that
the quotient smooth structures on

S'=R/Z,  MB=(RxR)/Z, and RP" = S"/Z,,
are the same as the smooth structures of Examples 1.7, 1.8, and 1.9, respectively.

Verify that the addition and product operations on Fp described after Definition 3.1 are well-
defined and make Fj, into an R-algebra with valuation map ev,,.

Deduce (3.7) from Lemma 3.5.
Verify that the map (3.9) is well-defined and is indeed an R-algebra homomorphism.

Verify that the differential dyh of a smooth map h: M — N, as defined in (4.1), is indeed
well-defined. In other words, dyh(v) is a derivation on Fj, for all v € T,M. Show that
dph: Ty M — Ty, N is a vector-space homomorphism.

Let M be a smooth connected manifold and f: M — N a smooth map. Show that d,f =0 for
all pe M if and only if f is a constant map.

Let M be a smooth manifold, V' a finite-dimensional vector space with the canonical smooth
structure of Example 1.5, and f,g: M — V smooth maps. Show that

dp(f+9) =dpf +dpg: T,M —V  ¥pe M,
under the canonical identifications T's(,)V, Tgp)s T(p)+g(p)V =V of Example 3.8.

Let f,g: M — R be smooth maps. Show that

dp(fg) = f(p)dpg +g(p)dpf: TyM — R VpeM.

More generally, suppose Vi, Vo, W are finite-dimensional vector spaces with their canonical
smooth structures of Example 1.5,

Vi@V — W, V1 QU —> V1-V2,
is a bilinear map, and f1: M — V; and fo: M — V5 are smooth maps. Show that
dp(f1- f2) = fi(p) - dpfo +dpf1 - folp): T,M — W VpeM,

under the canonical identifications T}, ,)V1=V1, T}, ) V2 =V2, and T}, (). £, () W =W of Exam-
ple 3.8.
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25.

26.

27.
28.

29.

30.

31.

32.
33.
34.
35.

Let (M, F) be a smooth manifold, U C M an open subset with the smooth structure induced
from M as in Proposition 1.11, and ¢: U — M the inclusion map. Show that the differential

dpe: T,U — T, M
is an isomorphism for all peU.

Let (M, Far) and (N, Fy) be smooth manifolds and M x N their Cartesian product with the
product smooth structure of Proposition 1.11. With notation as in Example 2.5, show that the
homomorphisms

dptg+dgtp: TyM & TyN — T o) (M X N), (v1,v2) —> dptg(v1) + dgip(v2)
dip,) M S dpq)m2: Tipg) (M XN) — T,M & TyN, w — (dpqm(w), dpgm2(w)),

are isomorphisms and mutual inverses for all p€ M and g€ N.
Let M be a non-empty compact m-manifold. Show that there exists no immersion f: M — R™.
Show that there exists no immersion f: S'xS! — RP?.

Let M be a smooth manifold and p € M a fixed point of a smooth map f: M — M, i.e. f(p)=p.
Show that if all eigenvalues of the linear transformation

dpf: T,M — T,M

are different from 1 (so dp,f(v)#v for all veT,M —0), then p is an isolated fixed point (has a
neighborhood that contains no other fixed point).

Let M be an embedded submanifold in a smooth manifold N and ¢: M — N the inclusion
map. Show that for every p€ M the image of the differential

dpe: TyM — T,N

is the subspace of T, N consisting of the vectors o/(0), where a: (—e,€) — N is a smooth map
such that Im o C M and a(0)=p.

Show that a bijective immersion f: M — N between two smooth manifolds is a diffeomorphism.
Hint: you’ll need to use that M is second-countable, along with either

(i) if f: U —R" is a smooth map from an open subset of R™ with m <n, the measure of
F(U)CR is 0;
(ii) the Slice Lemma (Proposition 5.3) and the Baire Category Theorem [8, Theorem 7.2].

Show that the map (5.2) is an injective immersion and that its image is dense in S' x S*.
Verify Corollary 5.8.
Show that the smooth structures on S™ of Example 6.5 and Exercise 2 are the same.
Show that the topological subspace
{(z,y) eR?: B4ay+yd= 1}
of R? is a smooth curve (i.e. admits a natural structure of smooth 1-manifold with respect to

which it is a submanifold of R?).
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36.

37.

38.

39.

40.

41.

42.

(a) For what values of t€R, is the subspace
{(wl, o Tpyr) ERMTL 22 .—i—x%—xiﬂ - t}

a smooth embedded submanifold of R™t1?

(b) For such values of ¢, determine the diffeomorphism type of this submanifold (i.e. show that
it is diffeomorphic to something rather standard). Hint: Draw some pictures.

Show that the special unitary group

SU,, = {AEMatnC: ATA=1,, det Azl}
is a smooth compact manifold. What is its dimension?
Verify Corollary 6.7.

With notation as in Corollary 6.7, show that every pair of continuous maps p: Z — X and
q: Z—Y such that fop=gogq factors through a unique continuous map r: Z — X x5/ Y,

and that Xx /Y is the unique (up to homeomorphism) topological space possessing this property
for all (p, ¢) as above. If in addition the assumption (6.5) holds and p and ¢ are smooth, then r
is also smooth, and X x ;Y is the unique (up to diffeomorphism) smooth manifold possessing
this property for all (p, q) as above.

Verify Corollary 6.8.

Let M be a smooth manifold and p € M a fixed point of a smooth map f: M — M, i.e. f(p)=p.
Show that if all eigenvalues of the linear transformation

dpf: TyM —s T,M

are different from 1 (so d,,f(v)#wv for all veT,M —0), then p is an isolated fixed point (has a
neighborhood that contains no other fixed point).

Deduce Corollary 6.10 from the proof of Lemma 6.1 and Corollary 6.2 from Corollary 6.10.
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Chapter 2

Smooth Vector Bundles

7 Definitions and Examples

A (smooth) real vector bundle V' of rank k over a smooth manifold M is a smoothly varying family
of k-dimensional real vector spaces which is locally trivial. Formally, it is a triple (M, V, ), where
M and V are smooth manifolds and

TV —M

is a surjective submersion. For each p€ M, the fiber szw_l(p) of V over p is a real k-dimensional
vector space; see Figure 2.1. The vector-space structures in V), vary smoothly with p € M. This
means that the scalar multiplication map

RxV —V, (c,v) — ¢ v, (7.1)
and the addition map
VxuV = {(vi,v2) €V xV:im(v)=mn(va) € M} —V, (v1,v2) — V1 +ve, (7.2)
are smooth. Note that we can add vi,vs €V only if they lie in the same fiber over M, i.e.
m(v1) =m(v2) = (v1,v2) € Vxp V.

The space V x 3/ V is a smooth submanifold of V xV by the Implicit Function Theorem for Maps
(Corollary 6.7). The local triviality condition means that for every point p € M there exist a
neighborhood U of p in M and a diffeomorphism

h: Vg =7 1(U) — UxRF

such that h takes every fiber of 7 to the corresponding fiber of the projection map 7 : UxRF — U,
i.e. moh=m on V|y so that the diagram

Vip=nr'(U) —2 U x RF

N4

U

commutes, and the restriction of A to each fiber is linear:

h(civ1+cova) = c1h(vy) + coh(ve) € x X R* Vi, c0€R, v1,v9€V,, xel.
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?

Figure 2.1: Fibers of a vector-bundle projection map are vector spaces of the same rank.

These conditions imply that the restriction of h to each fiber V, of w is an isomorphism of vector
spaces. In summary, V locally (and not just pointwise) looks like bundles of R*’s over open sets in
M glued together. This is in a sense analogous to an m-manifold being open subsets of R™ glued
together in a nice way. Here is a formal definition.

Definition 7.1. A real vector bundle of rank k is a tuple (M,V,n,-,+) such that
(RVB1) M and V are smooth manifolds and w: V — M is a smooth map;

RVB2) -: RxV —V is a map s.t. w(c-v)=n(v) for all (c,v) ERXV;

( )
(RVB3) +: VxyV—V is amap s.t. m(vi+ve)=m(v1)=m(ve) for all (vi,v2) EV X V;
( )

RVB4) for every point p € M there exist a neighborhood U of p in M and a diffeomorphism

h: Vg —UxRF such that

(RVB4-a) moh=m on V|y and

(RVB4-b) the map hly,: Vo, — xxR¥ is an isomorphism of vector spaces for all x€U.
The spaces M and V are called the base and the total space of the vector bundle (M, V,r). It is
customary to call m: V — M a vector bundle and V' a vector bundle over M. If M is an m-
manifold and V' — M is a real vector bundle of rank k, then V' is an (m+k)-manifold. Its smooth

charts are obtained by restricting the trivialization maps h for V', as above, to small coordinate
charts in M.

Example 7.2. If M is a smooth manifold and k is a nonnegative integer, then

w1 MxRF — M
is a real vector bundle of rank k over M. It is called the trivial rank k real vector bundle over M and
denoted 7: TE — M or simply 7: 7, — M if there is no ambiguity.

Example 7.3. Let M =S! be the unit circle and V =MB the infinite Mobius band of Example 1.8.
With notation as in Example 1.8, the map
TV —M, [s,t] — e2™*
defines a real line bundle (i.e. rank 1 bundle) over S!. Trivializations of this vector bundle can be
constructed as follows. With Uy =S —{41}, let
hi: Vg, — Up xR, [s,8] — (*™5,2);
2ms ¢ if s € (1/2,1];
he: Vg — U_xR,  [s,] — (62 ), ise(l/2 1]
(e*™s, —t), if s €[0,1/2).
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Both maps are diffeomorphisms, with respect to the smooth structures of Example 1.8 on MB and
of Example 1.7 on S'. Furthermore, m oh4 =7 and the restriction of h4 to each fiber of 7 is a
linear map to R.

Example 7.4. Let RP" be the real projective space of dimension n described in Example 1.9 and
Y = {(£,v) ERP" xR : per},

where £ C R"*! denotes a one-dimensional linear subspace. If U; CRP™ is as in Example 1.9, the
map
hit vy NU; xR — U; xR, (Z, (Uo,...,vn)) — (0, v;),

is a homeomorphism. The overlap maps,
hioh;': UinU; x R — U;NU; X R, (4, c) — (0, (X;/X;)c),

are smooth. By Lemma 2.6, the collection {(v, N U; x R"*! h;)} of generalized smooth charts
then induces a smooth structure on the topological subspace 7, C RP" x R"*!. With this smooth
structure, 7, is an embedded submanifold of RP"xR"*! and the projection on the first component,

T=m Y — RP™,

defines a smooth real line bundle. The fiber over a point £€RP"™ is the one-dimensional subspace
¢ of R™1! For this reason, v, is called the tautological line bundle over RP™. Note that ; — S!
is the infinite Mobius band of Example 7.3.

Example 7.5. If M is a smooth m-manifold, let

T™ = | | T,M, m:TM — M, =(v)=p if veT,M.
pEM

If po: Uy —>R™ is a smooth chart on M, let
Go: TM|y, =11 (Uy) — Uy x R™, Pa(v) = (T(v), dr(r)Pav). (7.3)
If pg: Us—+R™ is another smooth chart, the overlap map
FaoPy': UaNUs X R™ — UaNUp x R™

is a smooth map between open subsets of R?". By Corollary 2.7, the collection of generalized
smooth charts

{(x7"(Ua), 8a): (Uas 0a) €Frr}

where Fjs is the smooth structure of M, then induces a manifold structure on the set TM. With
this smooth structure on T'M, the projection 7: T'M — M defines a smooth real vector bundle of
rank m, called the tangent bundle of M.

Definition 7.6. A complex vector bundle of rank k is a tuple (M,V, =, ,+) such that
(CVB1) M and V are smooth manifolds and w: V — M is a smooth map;

(CVB2) -:CxV —V is a map s.t. w(c-v)=n(v) for all (c,v)eCxV;

41



(CVB3) +: VxpyV—V is a map s.t. m(vi+v2)=7(vy)=m(va) for all (v1,v2) EV X7/ V;

(CVB4) for every point p € M there exists a neighborhood U of p in M and a diffeomorphism
h: Vg —UxCF such that

(CVB4-a) moh=m on V|y and

(CVB4-b) the map hly, : Vi — 2 xC¥ is an isomorphism of complex vector spaces for all
reU.

Similarly to a real vector bundle, a complex vector bundle over M locally looks like bundles of
C?’s over open sets in M glued together. If M is an m-manifold and V — M is a complex vector
bundle of rank k, then V is an (m+2k)-manifold. A complex vector bundle of rank k is also a real
vector bundle of rank 2k, but a real vector bundle of rank 2k need not in general admit a complex
structure.

Example 7.7. If M is a smooth manifold and k is a nonnegative integer, then
7y M x Cct— M

is a complex vector bundle of rank k over M. It is called the trivial rank-k complex vector bundle
over M and denoted 7: T,;C — M or simply mw: 7, — M if there is no ambiguity.

Example 7.8. Let CP™ be the complex projective space of dimension n described in Example 1.10

and
Y = {(£,v) ECP"xC"t!: vel}.

The projection 7: vy, —» CP™ defines a smooth complex line bundle. The fiber over a point £ € CP™
is the one-dimensional complex subspace ¢ of C"t!. For this reason, 7, is called the tautological
line bundle over CP™.

Example 7.9. If M is a complex m-manifold, the tangent bundle TM of M is a complex vector
bundle of rank m over M.

8 Sections and Homomorphisms

Definition 8.1. (1) A (smooth) section of a (real or complex) vector bundle m: V — M is a
(smooth) map s: M —V such that mos=idyy, i.e. s(x) €V, for allze M.

(2) A vector field on a smooth manifold is a section of the tangent bundle TM — M.

If 7: V=M xRF — M is the trivial bundle of rank k, a section of 7 is a map s: M — V of

the form
s=(idps, f): M — M xRF

for some map f: M — R¥. This section is smooth if and only if f is a smooth map. Thus,
a (smooth) section of the trivial vector bundle of rank k over M is essentially a (smooth) map
M —RF.

If s is a smooth section, then s(M) is an embedded submanifold of V: the injectivity of s and ds is

immediate from mos=1ids, while the embedding property follows from the continuity of w. Every
fiber V,, of V is a vector space and thus has a distinguished element, the zero vector in V,, which
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: ‘ ‘ ‘
so(M)~M

Figure 2.2: The image of a vector-bundle section is an embedded submanifold of the total space.

we denote by 0,. It follows that every vector bundle admits a canonical section, called the zero
section,
so(z) = (z,0,) € V.

This section is smooth, since on a trivialization of V' over an open subset U of M it is given by the
inclusion of U as U x0 into U xR¥ or U x C¥. Thus, M can be thought of as sitting inside of V as
the zero section, which is a deformation retract of V; see Figure 2.2.

If s: M —V is a section of a vector bundle V — M and h: V| — U xR is a trivialization of V'
over an open subset U C M, then
hos=(idy,s): U — UxRF (8.1)

for some sp: U — RF. Since the trivializations h cover V and each trivialization h is a diffeomor-
phism, a section s: M —V is smooth if and only if the induced functions sp: U — R¥ are smooth
in all trivializations h: V]y — U xRF of V.

Every trivialization h: V| — U xR¥ of a vector bundle V. — M over an open subset U C M
corresponds to a k-tuple (s1,...,sg) of smooth sections of V' over U such that the set {s;(x)};
forms a basis for V, 57'('_1(56) for all z€U. Let ey, ..., ex be the standard coordinate vectors in R¥.
If h: V|y — U xRF is a trivialization of V, then each section

Si:h_lo(idUaei): U—>V|U7 51($) :h_l(xaei)v

is smooth. Since {e;} is a basis for RF and h: V, — 2 xR¥ is a vector-space isomorphism, {s;(x)};
is a basis for V, for all x € U. Conversely, if s1,...,s;: U — V| are smooth sections such that
{si(x)}; is a basis for V, for all x €U, then the map

V:UxRF — Vy, (x,c1,...,08) — c151(x) + ... + cpsp(x), (8.2)

is a diffeomorphism commuting with the projection maps; its inverse, h=1"", is thus a trivialization
of V over U. If in addition s: M — V is any bundle section and

Sp = (Sh,17"'7sh,k): U —)Rk
is as in (8.1), then
s(z) = h_l(:r, spi(z),. .., sh7k(m)) =spi(x)si(z) + ...+ spp(z)sp(x) Vael.

Thus, a bundle section s: M — V' is smooth if and only if for every open subset U C M and a
k-tuple of smooth sections si,...,s;: U— V| such that {s;(x)}; is a basis for V,, for all ze€U
the coefficient functions

1y U — R, s(z) = c1(x)s1(x) + ... + cp(x)sp(x) Vzel,
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are smooth.

For example, let w: V=TM — M be the tangent bundle of a smooth m-manifold M. If @, is a
trivialization of TM over U, C M as in (7.3),

<1 0

si(z) = @, (z,6;) = e Vo e U,

xT

is the i-th coordinate vector field. Thus, a vector field X : M — T'M is smooth if and only if for

every smooth chart o= (x1,...,2n) : Uy —> R"™ the coefficient functions
0 0
Cly..yem: U — R, X(p)Ecl(p)a— +...+emp)=—| VpelU,
1|, O0xm »

are smooth. If X: M — T M is a vector field on M and p€ M, sometimes it will be convenient to
denote the value X (p) €T, M of X at p by X,. If in addition feC>(M), define

XfM—R by {X[}0) = X,(f)  VpeM.
A vector field X on M is smooth if and only if X fe€C*>(M) for every feC>(M).

The set of all smooth sections of a vector bundle 7 : V' — M is denoted by I'(M;V). This is
naturally a module over the ring C°*°(M) of smooth functions on M, since fse€I'(M;V) whenever
feC>®(M) and s e T'(M;V). We will denote the set I'(M;TM) of smooth vector fields on M
by VF(M). It carries a canonical structure of Lie algebra over R, with the Lie bracket defined by

[,/]: VF(M) x VF(M) — VF(M),

(X, Y],(f)=X,(Yf) =Y, (Xf) VpeM, feC>®U),U C M open, peU; (8:3)
see Exercise 5.

Definition 8.2. (1) Suppose 7: V — M and ' V! — N are real (or complex) vector bundles.
A (smooth) map f:V —V' is a (smooth) vector-bundle homomorphism if f descends to a map
f: M — N, i.e. the diagram

(8.4)

commutes, and the restriction f: Vy —V(z) is linear (or C-linear, respectively) for all x€ M.

(2) If 7: V— M and 7' V! — M are vector bundles, “a smooth vector-bundle homomorphism
f:V—V' is an isomorphism of vector bundles if n'o f =7, i.e. the diagram

v/ (8.5)

commutes, and f is a diffeomorphism (or equivalently, its restriction to each fiber is an isomor-
phism of vector spaces). If such an isomorphism exists, then V and V' are said to be isomorphic
vector bundles.
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Let f : V — V' be a vector-bundle homomorphism between vector bundles over the same space M
that covers idys as in (8.5). If

h:Vlg — UxR¥  and  KW:V'|y — UxRF
are trivializations of V and V' over the same open subset U C M, then there exists
frn: U — Matg xR s.t. W ofo h=Y(z,v) = (:U, fh/h(m)v) VozeU, veRF. (8.6)

Since the trivializations h and A’ are diffeomorphisms that cover V and V', respectively, a vector-
bundle homomorphism as in (8.5) is smooth if and only if the induced function

]Ehh’: U — Matp R

is smooth for every pair, h: V| — UxR¥ and h/: V| — UxR¥ | of trivializations of V and V'
over U.

Example 8.3. The tangent bundle 7: TR™ — R" of R” is canonically trivial. The map
TR" — R" x R", v — (7(v);v(m), ..., v(m)),
where 7;: R” — R are the component projection maps, is a vector-bundle isomorphism.

Lemma 8.4. The real line bundle V. — S* given by the infinite Mobius band of Example 7.3 is
not isomorphic to the trivial line bundle S' xR —s ST,

Proof. In fact, (V,S1) is not even homeomorphic to (S! xR, S!). Since
STXR —50(S') = S'xR — S'x0 = S'xR™ U S xRT,

the space S xR — S! is not connected. On the other hand, V —s¢(S') is connected. If M B is
the standard Mobius Band and S' C M B is the central circle, M B—S! is a deformation retract of
V —S1. On the other hand, the boundary of M B has only one connected component (this is the
primary feature of M B) and is a deformation retract of M B—S'. Thus, V —S' is connected as
well. .

Lemma 8.5. If 7: V— M is a real (or complex) vector bundle of rank k, V is isomorphic to the
trivial real (or complex) vector bundle of rank k over M if and only if V admits k sections sq, ..., Sk
such that the vectors si(x),...,sg(x) are linearly independent over R (or over C, respectively) in
Vi for all ze M.

Proof. We consider the real case; the proof in the complex case is nearly identical.
(1) Suppose ¢ : M xR¥ — V' is an isomorphism of vector bundles over M. Let e1,...,e; be the
standard coordinate vectors in R¥. Define sections s, ..., s, of V over M by

si(x) = ¢ (z, €) Vi=1,...,k, x € M.

Since the maps x — (z, ¢;) are sections of M x R¥ over M and % is a bundle homomorphism, the
maps s; are sections of V. Since the vectors (z,e;) are linearly independent in z x R* and 4 is
an isomorphism on every fiber, the vectors si(z),...,sg(z) are linearly independent in V, for all
x €M, as needed.
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(2) Suppose s1, ..., sy are sections of V such that the vectors s1(z),. .., si(z) are linearly indepen-
dent in V, for all x€ M. Define the map

v: MxRF — v by (x,c1y...,c) =c1s1(x) + ...+ cgpsp(z) € V.

Since the sections s1,...,s; and the vector space operations on V are smooth, the map h is
smooth. It is immediate that 7(¢(z, c)) =2 and the restriction of 1) to z xR* is linear; thus, 1 is
a vector-bundle homomorphism. Since the vectors s1(z),. .., si(z) are linearly independent in V,,
the homomorphism ¢ is injective and thus an isomorphism on every fiber. We conclude that 1 is
an isomorphism between vector bundles over M. ]

9 Transition Data

Suppose m: V — M is a real vector bundle of rank k. By Definition 7.1, there exists a collection
{(Ua, ha)}aca of trivializations for V' such that |J,c 4 Ua = M. Since (Uy, hy) is a trivialization
for V,

ho: Vg, — Uy xRF

is a diffeomorphism such that mjoh, =7 and the restriction hq: Vy; — 2 xR¥ is linear for all z € U,.
Thus, for all a, B€ A,

hap=haohy': (UaNUp) x R¥ — (UaNUg) x R

is a diffeomorphism such that moh,g =1, i.e. hog maps x xRF to zxRF, and the restriction of
hag to zxRF defines an isomorphism of xR with itself. Such a diffeomorphism must be given by

(z,v) — (2, gap(z)v) Vv e R,
for a unique element g, s(z) € GLgR (the general linear group of R¥). The map hap is then given by
hap(x,v) = (w,gaﬁ(m)v) Vo € UsNUg, veRF,

and is completely determined by the map go5: UaNUs — GLiR (and gop is determined by hqp).
Since hog is smooth, so is gag.

Example 9.1. Let 7: V — S! be the Mobius band line bundle of Example 7.3. If {(Ux, h+)} is
the pair of trivializations described in Example 7.3, then

if Imp<0
h_ohT U NU_ xR — U NU_ xR, (p,v) — (p,g_4(p)v) = (p,v), i Imp<0,
(p, —v), if Imp>0,

-1, if Imp>0;

where g+ U nU_ = S'—{£1} — GLi1R=R*, g¢g_,(p) = )
1, if Imp<0.
In this case, the transition maps g,g are locally constant, which is rarely the case.

Suppose {(Ua,ha)}aca is a collection of trivializations of a rank k vector bundle 7 : V — M
covering M. Any (smooth) section s: M — V of 7 determines a collection of (smooth) maps
{54: Uy —+RF} 4c 4 such that

hoos(z) = (z,50(x)) VaeUs, = sa(x)=gap(®)sg(z) YzeUsNUs,a,feA,  (9.1)
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where {gos}apea is the transition data for the collection of trivializations {hq}aca of V. Con-
versely, a collection of (smooth) maps {s4: Uy — RF}4e4 satisfying the second condition in (9.1)
induces a well-defined (smooth) section of 7 via the first equation in (9.1). Similarly, suppose
{(Uq, h,) }aea is a collection of trivializations of a rank &’ vector bundle 7’: V! — M covering M.
A (smooth) vector-bundle homomorphism f : V —s V' covering idy; as in (8.5) determines a
collection of (smooth) maps

{fo: Us—MatpkR}aea st hipofohy'(z,v) = (2, fa(z)v) V(z,0)€UsxR"  (9.2)
— fo(2)gas(x) = ghs(2) fa(z) z€UNUs,a,BEA,

where {g;,5}a,pe4 is the transition data for the collection of trivializations {hg,}aea of V'. Con-
versely, a collection of (smooth) maps as in (9.2) satisfying (9.3) induces a well-defined (smooth)

vector-bundle homomorphism f: V — V'’ covering id,s as in (8.5) via the equation in (9.2).

By the above, starting with a real rank k vector bundle 7: V — M, we can obtain an open cover
{Ua}aca of M and a collection of smooth transition maps

{9ap: UaNUs — GLkR} 4 4.
These transition maps satisfy:
(VBT1) gaa = I, since hoo =hoohy !t =id;
(VBT2) gapgsa = Ik, since hogohg, =id;
(VBT3) 90898+9~va = Ik, since hoagohgyohyq=id.

The last condition is known as the (Cech) cocycle condition (more details in Chapter 5 of Warner).
It is sometimes written as

ganga_olazgaom =1 Yag, a1, a0 € A.
In light of (VBT2), the two versions of the cocycle condition are equivalent.
Conversely, given an open cover {Ug}aeca of M and a collection of smooth maps
{90p: UanNUs — GLyR} 4 4

that satisfy (VBT1)-(VBT3), we can assemble a rank k vector bundle 7’: V' — M as follows. Let

V' = < |_| aanka>/ ~, where

acA
(B,x,v) ~ (a,x,gaﬁ(m)v) Va,eA xcU,NUg, veERF.

The relation ~ is reflexive by (VBT1), symmetric by (VBT2), and transitive by (VBT3) and (VBT2).
Thus, ~ is an equivalence relation, and V' carries the quotient topology. Let

q: Uaanka—)V' and 7V — M, |a,z,v] — z,
acA
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be the quotient map and the natural projection map (which is well-defined). If f€.A and W is a
subset of Ug xR¥, then

( 6><W |_| axhag(W where
acA

hag: (UaﬂUg) x RF — (UaﬂUﬁ) x R, hag(z,v) = (a:,gag(x)v).

In particular, if 3 x W is an open subset of 3 x Upg xR*, then ¢! (q(ﬁx W)) is an open subset of
LpeqaxUs xR*. Thus, ¢ is an open continuous map. Since its restriction

o = Q|a><Ua><Rk

is injective, (g (ax U, xR¥), g7 1) is a smooth chart on V' in the sense of Lemma 2.6. The overlap
maps between these charts are the maps h,g and thus smooth.! Thus, by Lemma 2.6, these charts
induce a smooth structure on V’. The projection map 7’: V' — M is smooth with respect to this
smooth structure, since it induces projection maps on the charts. Since

T =7 0gy: axU,xRF — U, c M,

the diffeomorphism ¢, induces a vector-space structure in V for each x € U,, such that the restric-
tion of ¢, to each fiber is a vector-space isomorphism. Since the restriction of the overlap map hqg
to x xR*, with z € UaNUg, is a vector-space isomorphism, the vector space structures defined on
V. via the maps ¢, and gg are the same. We conclude that 7': V/— M is a real vector bundle of
rank k.

If {Us}aea and {gaﬁ : UaNUg — GLkR}a,ﬁGA are transition data arising from a vector bundle
7: V — M, then the vector bundle V' constructed in the previous paragraph is isomorphic to V.
Let {(Ua, ha)} be the trivializations as above, giving rise to the transition functions g,g. We define

fiV—V" by  f)=|ah(v)] if 7(v) € U,
If 7(v) e UaNUg, then

[8,h5(v)] = [0 hap(hs(v)] = [0, ha(v)] € V7,

i.e. the map f is well-defined (depends only on v and not on «). It is immediate that 7’0 f=m.
Since the map .
g lofohyt: UyxRF — axU, xRF

is the identity (and thus smooth), f is a smooth map. Since the restrictions of o and hg to every
fiber are vector-space isomorphisms, it follows that so is f We conclude that f is a vector-bundle
isomorphism.

In summary, a real rank k£ vector bundle over M determines a set of transition data with values
in GLR satisfying (VBT1)-(VBT3) above (many such sets, of course) and a set of transition data
satisfying (VBT1)-(VBT3) determines a real rank-k vector bundle over M. These two processes
are well-defined and are inverses of each other when applied to the set of equivalence classes of
vector bundles and the set of equivalence classes of transition data satisfying (VBT1)-(VBTS3).

!Formally, the overlap map is (8 — a) X hag.
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Two vector bundles over M are defined to be equivalent if they are isomorphic as vector bundles
over M. Two sets of transition data

{gaﬁ}a,BGA and {ggﬂ}a,BGA’

with A consisting of all sufficiently small open subsets of M, are said to be equivalent if there exists
a collection of smooth functions {f,: Uy —> GLgR}4e4 such that

g(lxﬁ:fagaﬁfg_l’ Va,ﬁeA,2

i.e. the two sets of transition data differ by the action of a Cech 0-chain (more in Chapter 5
of Warner). Along with the cocycle condition on the gluing data, this means that isomorphism
classes of real rank k vector bundles over M can be identified with H L(M; GLgR), the quotient of
the space of Cech cocycles of degree one by the subspace of Cech boundaries.

Remark 9.2. In Chapter 5 of Warner, Cech cohomology groups, H™, are defined for (sheafs of)
abelian groups. However, the first two groups, H and H', generalize to non-abelian groups as
well.

If 7: V— M is a complex rank k vector bundle over M, we can similarly obtain transition data
for V' consisting of an open cover {Ua}aeca of M and a collection of smooth maps

{gag : UaﬂUg —)GLkC}a?BeA
that satisfies (VBT1)-(VBT3). Conversely, given such transition data, we can construct a complex

rank k vector bundle over M. The set of isomorphism classes of complex rank k vector bundles
over M can be identified with H'(M; GL;C).

10 Restrictions and Pullbacks

If N is a smooth manifold, M C N is an embedded submanifold, and 7w: V — N is a vector bundle
of rank k (real or complex) over N, then its restriction to M,

7 Vipy=rY(M) — M,

is a vector bundle of rank k over M. It inherits a smooth structure from V by the Slice Lemma
(Proposition 5.3) or the Implicit Function Theorem for Manifolds (Theorem 6.3). If {(Uq, hq)} is
a collection of trivializations for V'— N, then {(MNUq, halr-1(vnv,))} is a collection of trivial-
izations for V|, — M. Similarly, if {gas} is transition data for V — N, then {gas|mrv.nus} s
transition data for V|y — M.

If f: M — N is a smooth map and 7: V — N is a vector bundle of rank k, there is a pullback
bundle over M:
FV=MxyV={{pv)eMxV: f(p)=n(v)} =5 M. (10.1)

2According to the discussion around (9.3), such a collection {fa}aca corresponds, via trivializations, to an
isomorphism between the vector bundles determined by {gas}a,sca and {gns}ta,sca-
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Note that f*V is the maximal subspace of M xV so that the diagram

fvVEsvy

M —N

commutes. By the Implicit Function Theorem for Maps (Corollary 6.7), f*V is a smooth subman-
ifold of M x V. By construction, the fiber of 71 over p€ M is px V) C M xV, ie. the fiber of 7
over f(p)€N:

(f*V)p=pxVip  VpeM. (10.2)
If {(Uqy,ha)} is a collection of trivializations for V — N, then {(f~1(U,), haof)} is a collection
of trivializations for f*V — M. Similarly, if {g.g} is transition data for V'— N, then {gss0 f}

is transition data for f*V — M. The case discussed in the previous paragraph corresponds to f
being the inclusion map.

Lemma 10.1. If f: V — V" is a vector-bundle homomorphism covering a smooth map f: M —s N
as in (8.4), there exists a bundle homomorphism ¢: V — f*V' so that the diagram

A
1% ¢ Fv sy
\\\ % iﬂ-,
M ! N

commutes.
Proof. The map ¢ is defined by
p:V — MxV',  $v) = ((v), f(v)).
Since for=7o f,
¢(v) € V' =M xy V' ={(p,v)eMxV': f(p)=n"(v))}.

Since f*V' € M x V' is a smooth embedded submanifold, the map ¢ : V — f*V’ obtained
by restricting the range is smooth; see Proposition 5.5. The above diagram commutes by the
construction of ¢. Since f is linear on each fiber of V', so is ¢. O

If f: M — N is a smooth map, then dp,f: T,M — Ty, N is a linear map which varies smoothly
with p. It thus gives rises to a smooth map,

df: TM — TN, v — dr(y) f(v). (10.3)

However, this description of df gives no indication that df maps v € T,M to Ty N or that
this map is linear on each T,M. One way to fix this defect is to state that (10.3) is a bundle
homomorphism covering the map f: M — N, i.e. that the diagram

™ — Y 7N (10.4)
M ! N
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commutes. By Lemma 10.1, df then induces a vector-bundle homomorphism from T'M to f*I'N
so that the diagram

™ Y TN TN (10.5)
|
x % ; \LW,
M- oL - N

commutes. The triangular part of (10.5) is generally the preferred way of describing df. The
description (10.4) factors through the triangular part of (10.5), as indicated by the dashed arrows.
The triangular part of (10.5) also leads to a more precise statement of the Implicit Function The-
orem, which is rather useful in topology of manifolds; see Theorem 11.11 below.

If 7: V— N is a smooth vector bundle, f: M — N is a smooth map, and s: N —V is a bundle
section of V', then

frs: M — f*V, {f*s}(p) = (p,s(f(p))) € f'V=MxyV C MxV,

is a bundle section of f*V — M. If s is smooth, then f*s: M — M xV is a smooth map with
the image in M x V. Since M xnyV C M xV is an embedded submanifold, f*s: M — f*V is
a smooth map by Proposition 5.5. Thus, a smooth map f: M — N induces a homomorphism of

vector spaces
[ T(N; V) — T(M; f*V), s — f*s, (10.6)

which is also a homomorphism of modules with respect to the ring homomorphism
[P CF(N) — C*(M), g—rgof.

In the case of tangent bundles, the homomorphism (10.6) is compatible with the Lie algebra
structures on the spaces of vector fields, as described by the following lemma.

Lemma 10.2. Let f: M — N be a smooth map. If X1,Xs € VF(M) and Y1,Y2 € VE(N) are
smooth vector fields on M and N, respectively, such that df(X;)= f*Y;eT'(M; f*TN) fori=1,2,
then

df ([X1, Xa]) = f*[11, Ya).

This is checked directly from the relevant definitions.

The pullback operation on vector bundles also extends to homomorphisms. Let f: M — N
be a smooth map and nyy : V — N and my : W — N be vector bundles. Any vector-bundle
homomorphism ¢: V — W over N induces a vector-bundle homomorphism f*p: f*V — f*W
over M so that the diagram

v 1% (10.7)

\ fw—=
A

M

o1



commutes. The vector-bundle homomorphism f*p is given by
(frlp=idx ) (fV)p=px Vi) — (FW)p=px Wy, (p,0) — (p, ¢p(v)),

where ¢, is the restriction of ¢ to the fiber Vi, =7, (f(p)) over f(p)EN.

11 Subbundles and Quotient Bundles

Definition 11.1. Let M be a smooth manifold.

(1) A rank k' subbundle of a vector bundle w: V — M is a smooth submanifold V' of V' such that
|y V! — M is a vector bundle of rank k'.

(2) A rank k distribution on M is a rank k subbundle of TM — M.

A subbundle of course cannot have a larger rank than the ambient bundle; so rk V' < rkV in
Definition 11.1 and the equality holds if and only if V/=V. By Exercise 17, the requirement that
wlyr: V! — M is a vector bundle of rank k' can be replaced by the condition that V;=V,NV" is a
k’-dimensional linear subspace of V,, for all pe M.

If f: M — N is an immersion, the bundle homomorphism df as in (10.5) is injective and the
image of df in f*T'N is a subbundle of f*I'N. In the case M C N is an embedded submanifold and
f is the inclusion map, we identify 7'M with the image of d¢ in f*T'N =TN|y;. By Lemma 10.2,
if Y7,Y2€ VF(N) are smooth vector fields on N, then

Vi, Y|y, € VE(M) CT(M;TN|y) = [V1,Y2]|,, € VF(M) C D(M;TN|u).

s

Definition 11.2. Let N be a smooth manifold.

(1) A collection {1 : My —> N}aca of injective immersions from m-manifolds is a foliation
of N™ if the collection {Im o }aeca covers N and for every q € N there exists a smooth chart
V: V—=R™R"™™ around q such that the image under 1, of every connected subset U C 1 (V)
under 1 is contained in Y~ (R™xy) for some yER™™™ (dependent on U ).

(2) A foliation {to : My —> N}aca of N is proper if i is an embedding and the images of 4
partition N (their union covers M and any two of them are either disjoint or the same).

Thus, a foliation of N consists of regular immersions that cover N and are regular in a systematic
way (all of them correspond to horizontal slices in a single coordinate chart); see Figure 2.3. Since
manifolds are second-countable and the subset ¢ (V) C M,, in Definition 11.2 is open, to (15 (V)
is contained in at most countably many of the horizontal slices 1)1 (R™ x 7). The images of di, in
TN determine a rank m distribution D on N. By Lemma 10.2, if Y7, Yo € VF (V) are vector fields
on N, then

Y1,Y, e I'(N;D) C VF(N) = [Y1,Y3] € I'(V;D) C VF(N). (11.1)

Definition 11.3. Let DCTN be a distribution on a smooth manifold N. An injective immersion
t: M — N s integral for D if

ImdpL:DL(p) cT, )N VpeM.

(»
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R™—™m
L1 (M1) N V

LQ(MQ) Nnv R™

Figure 2.3: A foliation of N in a smooth chart V.

If t: M — N is an integrable injective immersion for a distribution D on N, then in particular
dim M =rkD.

If N admits a foliation {¢q : My —> N}aea by injective immersions integral to a distribution D
on N, then I'(N; D) C VF(N) is a Lie subalgebra. By Frobenius Theorem, the converse is also true.

Example 11.4. The collection of embeddings
lo: R — R"=R"xR"™™ | 14(x) = (z,), acR"™™,
is a proper foliation of R™ by m-manifolds. The corresponding distribution D C TR" is described by
D=R"x (R"x0) C R" x R" =TR".
Example 11.5. The collection of embeddings
Lot ST — g2t - ot La(ew) = e, ae St
is a proper foliation of S?"*! by circles. The corresponding distribution D C T'S?"*! is described by
D= {(p, irp): pe §2ntt, TER} c T8+ ¢ T(C”"'I‘SQ,Hr:l = §nFlycntt.
The embedded submanifolds of this foliations are the fibers of the quotient projection map
m: 8l g2ntl gl _ opn

of Example 1.10. This is an S'-bundle over CP™. In general, the fibers of the projection map
m: N — B of any smooth fiber bundle form a proper foliation of the total space N of the bundle.
The corresponding distribution D CT'N is then the vertical tangent bundle of 7:

D, = kerd,m C T,N VpeN.

Example 11.6. Let 7: V — M be a smooth vector bundle and D C TV the vertical tangent

bundle of 7 as in Example 11.5. For each pe M, let ¢,,: V, — V' be the inclusion of the fiber over p
and define

iV ={(v,w)eVXV: 7(v)=n(w)} — TV, i(v,w) = dytp(w) = %(v+tw) o € T,V.

93



This map is linear on the fibers of 7*V, TV —V (i.e. linear in w above) and injective (since ¢, is an
immersion). If ¢: U —R™ is a smooth chart on M and (r, h): V|y — U xR¥ is a trivialization
of V,

h: Vv, — Vv x R”, fz(v,w) = (v,hg(w)),
H:TV|y, — Vg x R"xR*,  H(w) = ('(w), w(por), w(ha)),
are trivializations of the vector bundles 7*V —V and #’: TV — V. Since
Hoioh™: Vg xRF — V| x R™" xR, (v,w) — (v,0,w),

is a smooth map, it follows that 7 is a smooth injective bundle map over V. Since d,(i(v,w))=0
for all (v,w)en*V, ImiCD. Since 7*V and D are vector bundles over 7*V of the same rank k,
i: ™V — D is an isomorphism of vector bundles over (the total space of) V. In particular, there
is a short exact sequence

0— 7V -5 TV 5 2 TM — 0 (11.2)

of vector bundles over V.

Example 11.7. An example of a foliation, which is not proper, is provided by the skew lines on
the torus of the same irrational slope 7:

la: R — ST St 14(s) = (aeis,eins), aeStcc.

If n € Q, this foliation is proper. In either case, the corresponding distribution D on S!x 8! is
described by
Dieity oita) = d(tm)q({(r, nr) € R? :T(tl,tg)Rz: rER}),

where ¢: R2 — 5! x S! the usual covering map.

If V is a vector space (over R or C) and V' CV is a linear subspace, then we can form the quotient
vector space, V/V'. If W is another vector space, W/ CW is a linear subspace, and g: V— W is
a linear map such that g(V’) CW’, then g descends to a linear map between the quotient spaces:

g: VIV — W/W.

If we choose bases for V and W such that the first few vectors in each basis form bases for V'
and W', then the matrix for g with respect to these bases is of the form:

(A B
9=\ 0o bp )
The matrix for g is then D. If g is an isomorphism from V' to W that restricts to an isomorphism

from V' to W, then g is an isomorphism from V/V’ to W/W’. Any vector-space homomorphism
@: V—W such that V' C ker ¢ descends to a homomorphism ¢ so that the diagram

V2w

l 7

q Ve
o

P

V/V!

o4



comimutes.

If V/'CV is a subbundle, we can form a quotient bundle, V/V’/— M, such that
(V/V’)p:V;)/Vp' VpeM.

The topology on V/V' is the quotient topology for the natural surjective map ¢ : V.—V/V’. The
vector-bundle structure on V/V’ is determined from those of V' and V' by requiring that ¢ be a
smooth vector-bundle homomorphism. Thus, if s is a smooth section of V', then gos is a smooth
section of V/V’; so, there is a homomorphism

L(M;V) — T(M;V/V'), s —>qos,
of C°°(M)-modules. There is also a short exact sequence® of vector bundles over M,
0—V —Vv-Lv/iv —o,

where the zeros denote the zero vector bundle Mx0— M. We can choose a system of trivializations
{(Uasha)}aca of V such that

ha(V'[0,) = Ua x (RF' x0) € Uy xR Vac A (11.3)

Let g : RF — R¥* be the projection onto the last (k—k’) coordinates. The trivializations for
V/V' are then given by {(Ua,{id X g} 0 hqa)}. Alternatively, if {gog} is transition data for V/
such that the upper-left &’ x k’-submatrices of g, correspond to V' (as is the case for the above
trivializations hy) and gag is the lower-right (k—k')x(k—k") matrix of g,s, then {gns} is transition
data for V/V'. Any vector-bundle homomorphism ¢ : V. — W over M such that ¢(v) =0 for
all v €V’ descends to a vector-bundle homomorphism ¢ so that ¢ = @oq. We leave proofs of the
following lemmas as an exercise.

Lemma 11.8. If f: M — N is a smooth map and W, W' — N are smooth vector bundles,
Fr(W/W') = (fW)/(f*W')
as vector bundles over M.

Lemma 11.9. Let V— M and W — N be vector bundles over smooth manifolds and f: M — N
a smooth map. A vector-bundle homomorphism f:V — W covering f as in (8.4) and vanishing
on a subbundle V' CV induces a vector-bundle homomorphism

vV —w
covering f; this induced homomorphism is smooth if the homomorphism f 18 smooth.

If ©: X — M is an immersion, the image of d¢ in +*T'M is a subbundle of (*T'M. In this case, the

quotient bundle,
Nyt = L*TM/ImdL — X,

3exact means that at each position the kernel of the outgoing vector-bundle homomorphism equals the image of
the incoming one; short means that it consists of five terms with zeros (rank 0 vector bundles) at the ends
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is called the normal bundle for the immersion ¢. If X is an embedded submanifold and ¢ is the
inclusion map, T'X is a subbundle of (*T'M =T M |x and the quotient subbundle,

NuX =Ny =0TM /Inde =TM|x /TX — X,
is called the normal bundle of X in M; its rank is the codimension of X in M.

The following lemma provides a geometric way to identify the normal bundle to a submanifold. Its
converse is known as the Tubular Neighborhood Theorem; see [3, (12.11)] for the general case and
Proposition 16.9 below for the compact case.

Lemma 11.10. Suppose X is an embedded submanifold of M and V — X is a vector bundle. If
there exists a diffeomorphism between neighborhoods W and W' of X in'V and in M, respectively,

fwW—w s.t. f(p)=p VpeX,

then V is isomorphic to the mormal bundle Ny X of X in M. If in addition, M is a complex
manifold, X is a complex submanifold, V — X is a complex vector bundle, and the linear map

dpf: T,V/T,X — T,M/T,X

is C-linear for allpe X (as is the case if f is a holomorphic map between complex manifolds), then
V and Ny X are isomorphic as complex vector bundles.

Proof. The bundle map ¢ of Example 11.6 induces an isomorphism
V— NxV =TV|x/TX

of (complex) vector bundles over X; so, it is sufficient to show that NxV,NxM — X are
isomorphic vector bundles. If f is a diffeomorphism as above, the differential

df‘XS TV‘X — TM|X
is an isomorphism that restricts to the identity on TX. Thus, df|x induces an isomorphism
TV|x/TX — TM|x/TX = NuX (11.4)

of vector bundles over X. If V, TM, and TX are complex bundles and df|x is C-linear, then the
bundle isomorphism between the quotient bundles above is also C-linear. Combining (11.4) with
the first isomorphism, we obtain the lemma. O

If f: M — N is a smooth map and X C M is an embedded submanifold, the vector-bundle
homomorphism df in (10.5) restricts (pulls back by the inclusion map) to a vector-bundle homo-
morphism

df\X:TM|X—>(f*TN){X

over X, which can be composed with the inclusion homomorphism T'X — T M| x,

X — TM|x X (p7TN)|
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If in addition Y C N is an embedded submanifold and f(X) C Y, the above sequence can be
composed with the f*-pullback of the projection homomorphism ¢: TN|y — NNY,

dflx

TX — TM|x L5 (f7N)|, 25 prany . (11.5)

This composite vector-bundle homomorphism is 0, since d, f(v) € Tf(,)Y for all z € X. Thus, it
descends to a vector-bundle homomorphism

df: NuX — f*NyY (11.6)

over X. If fMyY as in (6.1), then the map TM|x — f*NyY in (11.5) is onto and thus the
vector-bundle homomorphism (11.6) is surjective on every fiber. Finally, if X = f~1(Y), the ranks
of the two bundles in (11.6) are the same by the last statement in Theorem 6.3, and so (11.6) is an
isomorphism of vector bundles over X. Combining this observation with Theorem 6.3, we obtain
a more precise statement of the latter.

Theorem 11.11. Let f: M — N be a smooth map and Y C N an embedded submanifold. If
fANY as in (6.1), then X = f~1(Y) is an embedded submanifold of M and the differential df
induces a vector-bundle isomorphism

NuX F*(NNY) (11.7)
\ /

Since the ranks of Ny X and f*(NyY) are the codimensions of X in M and Y in N, respectively,
this theorem implies Theorem 6.3. If Y ={q} for some ¢€ N, then NyY is a trivial vector bundle
and thus so is Ny X ~ f*(NyY). For example, the unit sphere S™ C R™*! has trivial normal
bundle, because

Sm = (1), where f:R™ — R, f(z)=|z%
A trivialization of the normal bundle to S™ is given by
TR™/TS™ — S xR, (x,v) — (z,z-v).

Corollary 11.12. Let f: X — M and g: Y — M be smooth maps. If fMyrg as in (6.5), then
the space

XxyY ={(z,y)eXxY: f(z)=g(y)}

18 an embedded submanifold of X XY and the differential df induces a vector-bundle isomorphism

d(form d(gom
Ny (X x 3 V) —ImHAGm)_ o euppg — oz g* T (11.8)
XXMY

Furthermore, the projection map m1=7nx: X XY — X is injective (immersion) if g: Y — M
is injective (immersion).

This corollary is obtained by applying Theorem 11.11 to the smooth map
fxg: XxY — MxM.

All other versions of the Implicit Function Theorem stated in these notes are special cases of this
corollary.
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12 Direct Sums and Duals

If V and V' are two vector spaces, we can form a new vector space, VAV’ =V xV’, the direct sum
of V and V’. There are natural inclusions V, V' — V@&V’ and projections V@V’ — V, V', Linear
maps f: V—W and f': V/— W' induce a linear map

fof:veV — Waoew'.

If we choose bases for V., V!, W, and W’ so that f and f’ correspond to some matrices A and D,
then with respect to the induced bases for V@V’ and Wa W/,

ea(15)

If 7: V— M and 7’: V' — M are smooth vector bundles, we can form their direct sum, VoV,
so that
(VaeV),=V,aV, VpeM.

The vector-bundle structure on V&V’ is determined from those of V and V' by requiring that
either the natural inclusion maps V, V' — V@V’ or the projections V@V’ — V, V' be smooth
vector-bundle homomorphisms over M. Thus, if s and s’ are sections of V and V', then s®s’ is a
smooth section of V@ V' if and only if s and s are smooth. So, the map

D(M;V)eD(M; V') — T(M; VeV,
(5,8") — 5@, {s®s'}(p) =s(p) @' (p) VpeM,

is an isomorphism of C°°(M)-modules. If {gos} and {g[z} are transition data for V' and V7,
transition data for V@&V is given by {gas® gfw}, i.e. we put the first matrix in the top left corner
and the second matrix in the bottom right corner. Alternatively,

axa VXV —s MxM
is a smooth vector bundle with respect to the product structures and
VoV =d(VxV), (12.1)
where d: M — M x M, d(p) = (p,p) is the diagonal embedding.

The operation @ is easily seen to be commutative and associative (the resulting vector bundles are
isomorphic). If 7o=M — M is trivial rank 0 bundle,

T®VxV
for every vector bundle V. — M. If n€Z=0, let

nWw=Vo..eV;
—_———

n

by convention; 0V =75. We leave proofs of the following lemmas as an exercise.
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Lemma 12.1. If f: M — N is a smooth map and W, W' — N are smooth vector bundles,
fFrwew)=(fw)e (W)
as vector bundles over M.

Lemma 12.2. Let V,V' — M and W,W' — N be vector bundles over smooth manifolds and
f: M — N a smooth map. Vector-bundle homomorphisms

fV—W  and f:V —W
covering f as in (8.4) induce a vector-bundle homomorphism
fof - vev — waew’
covering f; this induced homomorphism is smooth if and only z'ff and f’ are smooth.

If V, V' — M are vector bundles, then V' and V' are vector subbundles of V@ V', It is immediate
that
VeV V=V and (VeV)/V' =V.

These equalities hold in the holomorphic category as well (i.e. when the bundles and the base
manifold carry complex structures and all trivializations and transition maps are holomorphic).
Conversely, if V' is a subbundle of V', by Section 14 below

VaV/iVieV

as smooth vector bundles, real or complex. However, if V and V' are holomorphic bundles, V' may
not have the same holomorphic structure as (V/V')&V’ (i.e. the two bundles are isomorphic as
smooth vector bundles, but not as holomorphic ones).

If V is a vector space (over R or C), the dual vector space is the space of the linear homomorphisms
to the field (R or C, respectively):

V* = Homg (V,R) or V* = Homc(V, C).
A linear map g: V — W between two vector spaces induces a dual map in the “opposite” direction:
g W — V¥, {g*(L)}(v) =L(g(v)) VLeW* veV.

If V=RF and W =R", then ¢ is given by an n x k-matrix, and its dual is given by the transposed
k X n-matrix.

If m: V— M is a smooth vector bundle of rank k (say, over R), the dual bundle of V' is a vector
bundle V* — M such that
V)=V, VpeM.

The vector-bundle structure on V* is determined from that of V' by requiring that the natural map

VeV =V xyV* —R(or C),  (v,L) — L(v), (12.2)
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be smooth. Thus, if s and v are smooth sections of V and V*,

P(s): M —R,  {i(s)}p) = {v(p)}(s(p)).

is a smooth function on M. So, the map
D(M; V) x T'(M;V*) — C*(M), (s,9) — ¥(s),

is a nondegenerate pairing of C°°(M)-modules. If {g,g} is transition data for V, i.e. the transitions
between smooth trivializations are given by

haohgl: UaNUg x RF — UaNUg x R*, (p,v) — (p, gaﬂ(p)v),
the dual transition maps are then given by
UaNUgz x RF — UaNUg x R*, (p,v) — (p, gag(p)trv).

However, these maps reverse the direction, i.e. they go from the a-side to the S-side. To fix this
problem, we simply take the inverse of g,s(p)™:

UaNUs x R¥ — U,nUs x RE, (p,0) — (p, {gap(p)™} 1v).

So, transition data for V* is {(ggﬁ)*l}. As an example, if V' is a line bundle, then g4 is a smooth
nowhere-zero function on U,NUg and (g*),g is the smooth function given by 1/g.3. We leave
proofs of the following lemmas as an exercise.

Lemma 12.3. If f: M — N is a smooth map and W — N is a smooth vector bundle,
[TV = (frw)
as vector bundles over M.

Lemma 12.4. Let V— M and W — N be vector bundles over smooth manifolds and f: M — N
a diffeomorphism. A vector-bundle homomorphism f:V — W covering f as in (8.4) induces a
vector-bundle homomorphism 3

ffowr —= v
covering f~1; this induced homomorphism is smooth if and only if the homomorphism [ is.
The cotangent bundle of a smooth manifold M, w: T M — M, is the dual of its tangent bundle,
TM — M, ie. T*M = (TM)*. For each p € M, the fiber of the cotangent bundle over p is the

cotangent space Ty M of M at p; see Definition 3.7. A section a: M —T*M of T*M is called a
1-form on M; it assigns to each p€ M a linear map

ap=a(p): T,M — R.
If in addition X is a vector field, then
a(X): M — R, {a(X)}(p) = ap(X(p)),

is a function on M. The section « is smooth if and only if a(X) € C>°(M) for every smooth vector
field X on M. If p=(x1,...,2p): U—R™ is a smooth chart, the sections

0 0
Ory 7 Oz, € VF(U)

60



form a basis for VF(U) as a C*°(U)-module. Since
da:~i = 0;j Vi,g=1,2 m
pL 81;] - Y1 7]_ Y Syt I
dz;(X) € C*(U) for all X € VF(U) and {dpz;}; is a basis for Ty M for all pe U. Thus, dz; is a
smooth section of T*M over U and the inverse of the map

UxR™ — T*M|y, (p,c1,y... em) — adpzr + ... 4+ edpz,,

is a trivialization of T*M over U; see Section 8. By (4.16), this inverse is given by

TM|U—>U><R s U—><W(U),U<am>,,u<%)>,

where 7: T*"M — M is the projection map. Thus, a 1-form o on M is smooth if and only if for
every smooth chart @, =(x1,...,2n) : Uy —>R"™ the coefficient functions

0 0
Cl:a(@m)"“’cm: (axm) U — R, ap = c1(p)dpzr + ... + em(p)dpa, VpeU,

are smooth. The C°°(M)-module of 1-forms on M is denoted by E'(M).

13 Tensor and Exterior Products

If V and V' are two vector spaces, we can form a new vector space, V®V’, the tensor product of
Vand V. If g: V—W and ¢': V' — W' are linear maps, they induce a linear map

g4 VeV — WeW'.

If we choose bases {e;}, {e},}, {fi}, and {f;,} for V, V', W, and W, respectively, then {e;®e], }(;n)
and {f;® f,’n}(Lm) are bases for V@V’ and W @W’. If the matrices for g and ¢’ with respect to the
chosen bases for V, V', W, and W' are (gi;)i,; and (g,,,,)m,n, then the matrix for g®g¢’ with respect
to the induced bases for V&V’ and WeW” is (gi9n) (i,m),(j,n)- The rows of this matrix are indexed
by the pairs (7, m) and the columns by the pairs (j,n). In order to actually write down the matrix,
we need to order all pairs (i,m) and (j,n). If the vector spaces V and W are one-dimensional, g
corresponds to a single number g;;, while g®g¢’ corresponds to the matrix (gmn)m,» multiplied by
this number.

Ifr:V— M and n’: V' — M are smooth vector bundles, we can form their tensor product,
V@V’ so that
VeV, =VeV, VpeM.

The topology and smooth structure on V®V’ are determined from those of V' and V'’ by requiring
that if s and s’ are smooth sections of V' and V', then s ® s’ is a smooth section of V®V’. So,
the map

L(M;V)@T(M; V') — T(M; VaV'),
(5,8") — s®4, {s®s’}(p) =s(p) @ s (p) VpeM,
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is a homomorphism of C'°°(M)-modules (but not an isomorphism). If {gas} and {g,;} are transi-
tion data for V' and V', then transition data for V@V’ is given by {gag®g,s}, i.e. we construct a
matrix-valued function gas®g,,5 from {gas} and {g/ 5} as in the previous paragraph. If V' and V’
are line bundles, then g,s and g5 are smooth nowhere-zero functions on UaNUps and (9®g')ag is
the smooth function given by gasg,s-

The operation ® is easily seen to be commutative and associative (the resulting vector bundles are
isomorphic). If 71 — M is the trivial line bundle,

VsV
for every vector bundle V — M is a vector bundle. If n€Z™, let

VI=Veg..eV, V= =yrig..eV
——— ~—_——

n n

by convention, V®°=7;. We leave proofs of the following lemmas as an exercise.

Lemma 13.1. If f: M — N is a smooth map and W, W' — N are smooth vector bundles,
fFrwew)=(fw)e(f'W)

as vector bundles over M.

Lemma 13.2. Let V,V' — M and W,W' — N be vector bundles over smooth manifolds and
f: M — N a smooth map. Vector-bundle homomorphisms

f:V—WwW and [V —W
covering f as in (8.4) induce a vector-bundle homomorphism
fof veV — WaWw’
covering f; this induced homomorphism is smooth iff and f’ are smooth.

Lemma 13.3. Let V,V/ — M and W — N be vector bundles over smooth manifolds and f :
M — N a smooth map. A bundle map

VeV =VxyV —W

covering [ as in (8.4) such that the restriction of f to each fiber Vpx V), is linear in each component
induces a vector-bundle homomorphism

VeV —Ww
covering f; this induced homomorphism is smooth if the homomorphism f 18.

If V is a vector space and k is a nonnegative integer, we can form the k-th exterior power, AV,
of V. A linear map g: V— W induces a linear map

Afg: APV — AW
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If n is a nonnegative integer, let Si(n) be the set of increasing k-tuples of integers between 1 and n:

Sk(n) = {(il, L ,’ik)EZk: 1< <in<... < ’kan}
If {e;}j=1,..n and {fi}i=1,...m are bases for V and W, then {en}nesk(n) and {fu}uesk(m) are bases
for A¥V and A*W, where
€ segn) = Em N N Eny and f(m,..-,uk) = fuy Ao N fupe

If (gij)i=1,...m,j=1,..n is the matrix for g with respect to the chosen bases for V and W, then

(det ((gﬂrﬂs)m=1~-»’f))(umefk(m)xfk(n)

is the matrix for A*g with respect to the induced bases for A¥V and A*IW. The rows and columns of
this matrix are indexed by the sets Si(m) and Sk(n), respectively. The (i, n)-entry of the matrix
is the determinant of the k x k-submatrix of (gi;);; with the rows and columns indexed by the
entries of 1 and 7, respectively. In order to actually write down the matrix, we need to order the
sets Sp(m) and Si(n). If k=m=n, then A*V and A*W are one-dimensional vector spaces, called
the top exterior power of V' and W, with bases

{61/\.../\6k} and {fl/\.../\fk}.

With respect to these bases, the homomorphism A¥g corresponds to the number det (9ij)ij- fk>n
(or k>m), then A*V (or A¥W) is the zero vector space and the corresponding matrix is empty.

If 7: V— M is a smooth vector bundle, we can form its k-th exterior power, A¥V, so that
(A*V), = A%V,  VpeM.

The topology and smooth structure on A*V are determined from those of A*V by requiring that
if s1,..., s, are smooth sections of V, then sy A...Asy, is a smooth section of A¥V. Thus, the map

A (D(M;V)) — T(M; AFV),
(S1y--+,8K) —> SIA... NSk, {s1A...Asp}(p) = s1(p)A.. . Ask(p) VpeM,

is a homomorphism of C°°(M)-modules (but not an isomorphism). If {g,s} is transition data for
V, then transition data for AV is given by {Akgag}, i.e. we construct a matrix-valued function
Akgag from each matrix g,g as in the previous paragraph. As an example, if the rank of V' is k,
then the transition data for the line bundle AV, called the top exterior power of V, is {det GaB}-
By definition, AOV:T]lR is the trivial line bundle over M.

It follows directly from the definitions that if V — M is a vector bundle of rank k£ and L — M is
a line bundle (vector bundle of rank one), then

APP(VaL) =AM Y VeL) = A"V @ L= APV L.
More generally, if V, W — M are any two vector bundles, then

APP(VOW) = (APV) @ (APW)  and  AF(VeW)= @ AV)a(WW).
i+j=k

We leave proofs of the following lemmas as exercises.
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Lemma 13.4. If f: M — N is a smooth map, W — N is a smooth vector bundle, and k € Z=°,
JH(AMW) = AR (W)
as vector bundles over M.
Lemma 13.5. Let V— M be a vector bundle. If k,1€Z>°, the map
D(M; A*V) @ T(M; AWV) — T(M; A*V)
(s1,82) — s1/As2, {s1A\s2}(p) = s1(p)As2(p) VpeM,
is a well-defined homomorphism of C°°(M )-modules.

Lemma 13.6. Let V— M and W — N be vector bundles over smooth manifolds and f: M — N
a smooth map. A vector-bundle homomorphism f: V — W covering f as in (8.4) induces a vector-

bundle homomorphism 3
AR F ARV — AP

covering f; this induced homomorphism is smooth if the homomorphism f 18.

Lemma 13.7. Let V— M and W — N be vector bundles over smooth manifolds and f: M — N
a smooth map. A bundle homomorphism

fikV=Vxy.. xuV —W
N————
k

covering [ as in (8.4) such that the restriction off to each fiber Vpk s linear in each component
and alternating induces a vector-bundle homomorphism

fANV — W
covering f; this induced homomorphism is smooth if the homomorphism f is.

Remark 13.8. For complex vector bundles, the above constructions (exterior power, tensor prod-
uct, direct sum, etc.) are always done over C, unless specified otherwise. So if V' is a complex
vector bundle of rank k over M, the top exterior power of V' is the complex line bundle AV over M
(could also be denoted as A(’EV). In contrast, if we forget the complex structure of V' (so that it
becomes a real vector bundle of rank 2k), then its top exterior power is the real line bundle A2V
(could also be denoted as AZFV).

If M is a smooth manifold, a section of the bundle A*(T*M) — M is called a k-form on M. A
smooth nowhere-vanishing section s of A*P(T*M), i.e.

s(p) € AP(TEM) =0 VpeM,

is called a volume form on M; Corollary 15.2 below provides necessary and sufficient conditions for
such a section to exist. The space of smooth k-forms on M is often denoted by E¥(M), rather
than T'(M; AF(T*M)).
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14 Metrics on Fibers

Definition 14.1. A Riemannian metric in a smooth real vector bundle w: V — M s a smooth
map
() VxyV ={(v,w)eVxV: r(v)=r(w)} — R

such that the restriction
(,): VaxVy — R, (v,w) — (v,w),
is an inner-product on V, for every x€ M.

Thus, a Riemannian metric in 7: V — M is a smoothly varying family of inner-products in the
fibers V, ~R* of V. We leave a proof of the following lemma as an exercise.

Lemma 14.2. Let m: V— M be a real vector bundle and (,): VxpyV — R a map such that the
restriction
(,): VaxVy — R, (v,w) — (v,w),

s an inner-product on Vy for every x € M. The following statements are equivalent:
(1) the map (,) is a Riemannian metric in V;
(2) the section {,) of the vector bundle (V@V)* — M is smooth;

(3) if s1,s2 are smooth sections of the vector bundle V.— M, then the map

<31,32>:M—>R, p— <sl(p),32(p)>,
is smooth;

(4) if h: V]g — U xRF is a trivialization of V', then the matriz-valued function,
B: U — MatiR  s.t. <h*1(p, v),hil(p,w)> =v'B(p)w V¥ pel, v,weRF,
18 smooth.

Every real vector bundle admits a Riemannian metric. Such a metric can be constructed by
covering M by a locally finite collection of trivializations for V' and patching together inner-products
on each trivialization using a partition of unity; see Definition 14.3 below.

Definition 14.3. A smooth partition of unity subordinate to the open cover {Uy}aca of a smooth
manifold M is a collection {ny}aca of smooth functions on M with values in [0,1] such that

(PU1) the collection {suppna}aca is locally finite;

(PU2) suppno CU, for every a€ A;

(PU3) Z No = 1.

acA
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If (,) is a Riemannian metric on a vector bundle 7: V — M and W CV is a vector subbundle,
then the orthogonal complement

Wt = {veV: (v,w)=0 Vwe W}
of W in V is also a vector subbundle of V and
V=wWaew

Furthermore, the quotient projection map ¢g: V. — V/W induces a vector bundle isomorphism
from W+ to V/W so that
VaWae (V/W).

Definition 14.4. A Hermitian metric in a smooth complex vector bundle w: V — M is a smooth
map (,): VXV — C such that the restriction

(,): VoxV, — C, (v,w) — (v, w),
s a hermitian inner-product on V, for every xe€ M.

Thus, a Hermitian metric in 7: V — M is a smoothly varying family of Hermitian inner-products
in the fibers V,~CF of V. We leave a proof of the following lemma as an exercise.

Lemma 14.5. Let w: V. — M be a complex vector bundle and (,): V x pyV — C a map such
that the restriction
(,): VoxV, — C, (v,w) — (v,w),

is an inner-product on Vy for every x€ M. The following statements are equivalent:
(1) the map (,) is a Hermitian metric in V;
(2) the section (,) of the vector bundle (V@rV)* — M is smooth;
(3) if s1,82 are smooth sections of the vector bundle V.— M, then the map
<51,52>:M—>C, p— <sl(p),52(p)>,
is smooth;
(4) if h: V|y — U xCF is a trivialization of V, then the matriz-valued function,
B:U — Mat;C s.t. <h_1(p, U),h_l(p,w)> =v'B(p)w VY peU, v,weCF,
15 smooth.

Similarly to the real case, every complex vector bundle admits a Hermitian metric. If (,) is a
Hermitian metric on a complex vector bundle 7w : V. — M and W C V is a complex vector
subbundle, then the orthogonal complement

wt= {veV: (v,w)=0 VwEWW(U)}
of W in V is also a complex vector subbundle of V' and

V=Waow.
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Furthermore, the quotient projection map ¢: V. — V/W induces a vector bundle isomorphism
from W+ to V/W so that V ~ W & (V/W).

If V— M is a real vector bundle of rank k£ with a Riemannian metric (,) or a complex vector
bundle of rank k with a Hermitian metric (,), let

SV ={veV:(vv)=1} — M

be the sphere bundle of V. In the real case, the fiber of SV over every point of M is S*~1.
Furthermore, if U is a small open subset of M, then SV|U%U><S]€_1 as bundles over U, i.e. SV is
an S*~1-fiber bundle over M. In the complex case, SV is an S%~!-fiber bundle over M. If V— M
is a real line bundle (vector bundle of rank one) with a Riemannian metric (,), then SV — M
is an SO-fiber bundle. In particular, if U is a small open subset of M, SV|y is diffeomorphic to
U x{+£1}. Thus, SV — M is a 2: 1-covering map. If M is connected, the covering space SV is
connected if and only if V is not orientable; see Section 15 below.

15 Orientations
If V is a real vector space of dimension k, the top exterior power of V, i.e.
APy = AFYV

is a one-dimensional vector space. Thus, APV —0 has exactly two connected components. An
orientation on V' is a component C of A*PV —0. If C is an orientation on V, then a basis {e;} for V'
is called oriented (with respect to C) if

et N...Neg €C.

If {f;} is another basis for V" and A is the change-of-basis matrix from {e;} to {f;}, i.e.

i=k
(fla"'ufk):(ela'”vek)A <~ f]:ZAlje’Lv
i=1

then
fiN A fre=(det A)es A... Neg.

Thus, two different bases for V' belong to the same orientation on V' if and only if the determinant
of the corresponding change-of-basis matrix is positive.

Suppose V — M 1is a real vector bundle of rank k. An orientation for V' is an orientation for each
fiber V, ~R¥, which varies smoothly (or continuously, or is locally constant) with x € M. This
means that if

h:V]y — UxRF

is a trivialization of V and U is connected, then h is either orientation-preserving or orientation-
reversing (with respect to the standard orientation of R¥) on every fiber. If V admits an orientation,
V is called orientable.

Lemma 15.1. Suppose V. — M is a smooth real vector bundle.
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(1) V is orientable if and only if V* is orientable.

(2) V is orientable if and only if there exists a collection {Uy, ho} of trivializations that covers M
such that
det gog: UsNUg — R,

where {gag} is the corresponding transition data.
(3) V is orientable if and only if the line bundle A**PV —s M is orientable.

(4) If V is a line bundle, V is orientable if and only if V is (isomorphic to) the trivial line
bundle M xR.

(5) If M is connected and V' is a line bundle, V is orientable if and only if the sphere bundle SV
(with respect to any Riemann metric on V') is not connected.

Proof. (1) Since A*P(V*) ~ (A*PV)* and a line bundle L is trivial if and only if L* is trivial, this
claim follows from (3) and (4).

(2) If V has an orientation, we can choose a collection {Uy, hq } of trivializations that covers M such
that the restriction of h, to each fiber is orientation-preserving (if a trivialization is orientation-
reversing, simply multiply its first component by —1). Then, the corresponding transition data
{gap} is orientation-preserving, i.e.

det gog: UsNUz — RT.
Conversely, suppose {U,, hqo} is a collection of trivializations that covers M such that
det gog: UoNUg — RT.
Then, if z €U, for some «, define an orientation on V, by requiring that
ho: Ve — X RF

is orientation-preserving. Since det gop is RT-valued, the orientation on V, is independent of «
such that x € U,. Each of the trivializations h,, is then orientation-preserving on each fiber.

(3) An orientation for V is the same as an orientation for APV since
APy = AtoP (AtOPV).

Furthermore, if {(Uy, hq)} is a collection of trivializations for V' such that the corresponding tran-
sition functions g, have positive determinant, then {(U,, A*Ph,)} is a collection of trivializations
for A*PV such that the corresponding transition functions A*Pg,3 = det(go3) have positive de-
terminant as well.

(4) The trivial line bundle M xR is orientable, with an orientation determined by the standard ori-
entation on R. Thus, if V' is isomorphic to the trivial line bundle, then V is orientable. Conversely,
suppose V is an oriented line bundle. For each x € M, let

Cr, C APV =V
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be the chosen orientation of the fiber. Choose a Riemannian metric on V and define a section s of
V' by requiring that for all x€ M

(s(z),s(z)) =1 and s(z) € Cy.

This section is well-defined and smooth (as can be seen by looking on a trivialization). Since it
does not vanish, the line bundle V is trivial by Lemma 8.5.

(5) If V is orientable, then V' is isomorphic to M xR, and thus
SV =S(MxR) =MxS>=MuM

is not connected. Conversely, if M is connected and SV is not connected, let SV be one of the
components of SV. Since SV — M is a covering projection, so is SV — M. Since the latter is
one-to-one, it is a diffeomorphism, and its inverse determines a nowhere-zero section of V. Thus,
V' is isomorphic to the trivial line bundle by Lemma 8.5. O

If V is a complex vector space of dimension k, V' has a canonical orientation as a real vector space
of dimension 2k. If {e;} is a basis for V' over C, then

{el,iel, .. .,ek,iek}

is a basis for V over R. The orientation determined by such a basis is the canonical orientation
for the underlying real vector space V. If {f;} is another basis for V over C, B is the complex
change-of-basis matrix from {e;} to {f;}, A is the real change-of-basis matrix from

{el,iel,...,ek,iek} to {fl,ifl,...,fk,ifk},

then
det A = (det B)det B € R™.

Thus, the two bases over R induced by complex bases for V' determine the same orientation for V.
This implies that every complex vector bundle V — M is orientable as a real vector bundle.

A smooth manifold M is called orientable if its tangent bundle, TM — M, is orientable.
Corollary 15.2. Let M be a smooth manifold. The following statements are equivalent:
(1) M s orientable;

(2) the bundle T*M — M is orientable;

(8) M admits a volume form;

(4) there exists a collection of smooth charts {(Uy, 9a)}aca that covers M such that

det j((paowgl)z >0 Vaeeps(UaNUp), a, B A.

Proof. The equivalence of the first three conditions follows immediately from Lemma 15.1. If
{(Ua, ¥a)}aca is a collection of charts as in (4), then

ha=@¢a: TM|y, — Ug xR™, v — (ﬂ(v),v(goa)),
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is a collection of trivializations of TM as in Lemma 15.1-(2) for V=TM, since
gbaogégl: UsNUg x R™ — U,NUg x R™ | (p,v) — (p, j(gpaogpfgl)%(p)v),
haohg': UaNUg x R™ — UaNUg X R™,  (p,v) — (P, gap(p)v)-

In particular, if such a collection of charts exists, then T'M is orientable. Conversely, suppose
{(Uq;s ha)aca is a collection of trivializations of TM as in Lemma 15.1-(2), {(Uy, ¢a)}aca is any
collection of smooth charts on M, and U, is connected. In particular,

P © h;lz Uy xR™ — Uy xR™ | (p,v) — (p, {h;l(p,v)}(goa)),
is a smooth vector-bundle isomorphism. Thus, there is a smooth map
Ay: Uy — GL,R s.t. {(h Y (p,0)} (pa) = Aa(p)v YoeER™.

Since U, is connected, det A, does not change sign on U,. By changing the sign of the first
component of ¢, if necessary, it can be assumed that det A, (p) >0 for all pe U, and o€ A. Thus,

det j(apaogpgl)%(p) = det Ay (p) - det gos(p) - det Agl(p) >0 VpeU,NUg, a, B A.
Thus, the collection {(Uy, ¢a)}aca satisfies (4). O

An orientation for a smooth manifold M is an orientation for the vector bundle TM — M: a
manifold with a choice of orientation is called oriented. A diffeomorphism f: M — N between
oriented manifolds is called orientation-preserving (orientation-reversing) if the differential

dpf: TpM — Tf(p)N

is an orientation-preserving (orientation-reversing) isomorphism for every p € M; if M is connected,
this is the case if and only if d,, f is orientation-preserving (orientation-reversing) for a single point
peM.

If M is a smooth manifold, the sphere bundle
T S(AtOPT*M) — M

is a two-to-one covering map. By Lemma 15.1 and Corollary 15.2, if M is connected, the domain
of 7 is connected if and only if M is not orientable. For each p€ M,

7r—1(p) = {QIH _Qp} C S(AtOpT;M) - AtOpT;M

is a pair on nonzero top forms on 7,;M, which define opposite orientations of T,,M. Thus,
S(AYPT*M) can be thought as the set of orientations on the fibers of M; it is called the ori-
entation double cover of M.

Smooth maps f,g: M — N are called smoothly homotopic if there exists a smooth map

H:Mx[0,1]] — N  s.t. H(p,0) = f(p), H(p,1)=g(p) VpeM.

Diffeomorphisms f,g: M — N are called isotopic if there exists a smooth map H as above such
that the map
Ht:M—>Na p—>(pat)7

is a diffeomorphism for every t € [0, 1]. We leave proofs of the following lemmas as an exercise; both
can be proved using Corollary 15.2.
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Lemma 15.3. The orientation double cover of any smooth manifold is orientable.

Lemma 15.4. Let f,g: M — N be isotopic diffeomorphisms between oriented manifolds. If f is
orientation-preserving (orientation-reversing), then so is g.

16 Connections

Definition 16.1. A connection in a smooth real vector bundle V. — M is an R-linear map
V:I'(M;V) —T(M;T*"M®V) s.t.
V(fs)=df®s+ fVs VYV feC®(M), seT'(M;V). (16.1)

If f is a smooth function on M supported in a neighborhood U of x € M such that f(z)=1 and
sel’(M;V), then
Vs|, = V(f9)], — def@s(2) (16.2)

by (16.1). The right-hand side of (16.2) depends only on &|y. Thus, a connection V in V' is a
local operator, i.e. the value of Vs at a point © € M depends only on the restriction of s to any
neighborhood U of z.

Let hq: V]y, — Uy xRF be a trivialization of V and
Sails - Sask € D'(Uas V), Seii(x) = h;l(x, €;), (16.3)

be a frame for V. By definition of V, there exist
i=k i=k
07 € T(Un; T*M) s.t. Vsaj = Zsaﬁf‘j = ZG%@Sa;i Vi=1,...,k.
i=1 i=1

We will call

0 = (9'94

)ijet.n € T(Uai T* M @ MatgiR) (16.4)

the connection one-form of V for the trivialization h,. For an arbitrary section of V— U,, by (16.1)

j=k i=k Jj=k
V<ij3a;j> = Zsa;i(dfi+29%fj) . (165)
j=1 i=1 j=1

Conversely, any 0% as in (16.4) defines a connection in V|, — Uy by (16.5). Thus, every vector
bundle V — M admits a connection, since one can be obtained by patching together connections
over trivializations via partitions of unity.

If hg: V|y, — UgxR¥ is another trivialization of V and
he © hEl(iL‘, w) = (z, gap(x)w) V (2,w) €U,NUz x RE,
then by (16.3) and (16.5)

=k i—k =k
Sﬁ?l‘UamUﬁ = Z(gaﬁ)jlsa;j‘uam(]ﬁ = Vsﬁ;l‘UamUB = Z Sa;i((dgaﬁ)il + Z 05 (gaﬂ)jl>
j=1 i=1 j=1

= 0% = 9660“90s + 950dgas - (16.6)
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Conversely, if {(Uqa,ha)}aca is a collection of trivializations covering M with transition data

{9ap}ta,peA, a collection
[0° €T (Ua; T* M @Maty 4 R) b aca

satisfying (16.6) determines a connection in V' by (16.5).

If V is a connection in a vector bundle w: V — M, a smooth map f: X — M induces a connection
VDX V) = T(X; T X FV)

in the vector bundle f*V — X as follows. Let {(Uq,ha)}aca be a collection of trivializations
for V' covering M with transition data {gns}asca and {6%},ca the corresponding collection of
connection one-forms. Then, {(f~1(U,), f*ha)}aca is a collection of trivializations for the vector
bundle f*V — X covering X with transition data {f*g.g}agea, while

{0 € T(f ' (Ua); T* X @ MatyxxR) faca

is a collection satisfying

F20° = (F*980) (F70)(F*9ap) + (F980)A(f* gas)

since f*d = df*. Thus, the collection {f*#4}aca determines a connection V7 in f*V. The connec-
tion V/ is independent of the choice of the collection {(Uy, ha)}aca, Since any two such collections
can be joined into one, while V/ is completely determined by any subcollection covering M.

Recall from Section 4 that a smooth curve on M is a smooth map ~: (a,b) — M. For t € (a,b),

the tangent vector to a smooth curve v at ¢ is the vector

d

7/(t) - a’}/(t) = dt’)’(ael‘t) € T’y(t)Mﬂ

where e; =1€R! is the oriented unit vector. In particular, v/ €T'((a,b); v*TM).

Definition 16.2. Let M be a smooth manifold and V a connection in the tangent bundle TM — M
of M. A V-geodesic is a smooth curve

v:(a,b) — M s.t. VY| =0 Vte (a,b). (16.7)

If V is a connection in TM and p=(x1,...,2y): U—R"™ is a smooth chart on M, there exists
Ffj € C*(U) such that

k=m i=m

8% => ) Tidr® Vi=1,2,....,m.

k=1 i=1

For any smooth map ~: (a,b) — U C M, let

(’yla'”?’ym) = pory: ((I,b) _>Rm

By the construction of V7 above,

k=mi=m k=mi= 9
(o) = & e (o) - & S (i)

k=1 i=1 k=1 =1
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for all j =1,2,...,m. Thus, by (16.5),

k=m d27k i=m j=m N d’)/ d,}/ . 0
Y~ (1) = —= Ty )= ' ) 16.
V4 (t) 321 2 +;j§( ”07)<dt><dt> dt ® <’Y 8xk> (16.8)

Thus, if to€R and 7: (a,b) — M is a V-geodesic, then so is
¥: (a—to,b—to) — M, 3(t) = ~v(t+2o).

Lemma 16.3. Let V be a connection in the tangent bundle TM — M of a smooth manifold M.
For every veTM, there exists a V-geodesic v: (—e,€) —> M such that 7' (0)=v. If

’77:7 : (_676) — M
are two such V-geodesics, then v=-y.

Proof. Let o= (z1,...,2m): (U,p)— (R™,0) be a smooth chart on M. By (16.8), v: (—¢,e) — U
is a V-geodesic such that v(0)=p and +/(0)=v if and only if

12 i=m j=m s dvys
= -y T o (%) (%

i=1 j=1

Vk=1,2,....m. (16.9)
W(0) =0, Q| =y(ay)
t=0

This system of m second-order ODEs is equivalent to a system of 2m first-order ODEs. By the
Ezistence Theorem for First-Order Differential Equations [1, A.2], this system has a solution

(’yla--')’)/m): (7656) — R™

for some € > 0. By the Uniqueness Theorem for First-Order Differential Equations [1, A.1], any
two solutions of this initial-value problem must agree on the intersection of the domains of their
definition. O

Corollary 16.4. Let V be a connection in the tangent bundle TM — M of a smooth manifold M.
If a,a € R™, b,b € RT, and v : (a,b) — M and 7 : (a,b) — M are V-geodesics such that
7/(0)=7(0), then

Proof. The subset 3 ~
A= {te(a,b)N(a,b): yv(t)=7(t)} C (a,b) N (a,b)

is nonempty (as it contains 0) and closed (as v and 7 are continuous). Since (a,b) N (a,b) is
connected, it is sufficient to show that S is open. If

toe S  and (to—e€, to+e€) C (a,b) N (a,b),
define smooth curves
a,B:(—e,e) — M by  aft) =7(t+t0), B(t) =7(t+1o).
Since v and 4 are V-geodesics, so are a and f3; see the sentence preceding Lemma 16.3. Since
o/(0) =/ (to) =¥ (to) = £'(0),
a=p by Lemma 16.3 and thus (to—e, to+e€) C (a,b) N (a@,b). O
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Corollary 16.5. Let V be a connection in the tangent bundle TM — M of a smooth manifold M .
For every veTM, there exists a unique mazximal V-geodesic vy : (ay, by) — M such that ~,,(0)=
where a, € [—00,0) and by, € (0,00]. If t € (ay,by), then

(a'}’{;(t)7 b’yqu(t)) = (av—t, bv—t), ’Y'/Yz,;(t)(_t) = . (1610)

Proof. (1) Let {va: (aa,ba) —> M}aca be the collection of all V-geodesics such that 4/, (0) = v.
Define

(a0, bo) = [ (@arba)s 0t (a0,00) — M, 75(t) = a(t) VEE (da,ba), @€ A.
acA

By Corollary 16.4, 7,(t) is independent of the choice of « € A such that ¢ € (aq,bs). Thus, v, is
well-defined. It is smooth, since its restriction to each open subset (aq,bs) is smooth and these
subsets cover (a,,by). It is a V-geodesic, since this is the case on the open subsets (aq, by ). It is
immediate that ] (0)=v. By construction, 7, is a maximal V-geodesic.

(2) If te (ay, by), define
vi(ay—t,by—t) — M by  (7) =y (T+1).
By the sentence preceding Lemma 16.3, v is a V-geodesic. Furthermore,
Y (0) =), A (=t) =7(0) =

Thus, by the first statement of Corollary 16.5,

(@02 ) 2 (@0 =800 =0, gl gy =7 = 1€ (agy byy)s Yy (D) =

= (@wbo) = (ay, 00y, 0) 2 (a0 +H by )
This confirms (16.10). O
If V is a connection in the tangent bundle TM — M of a smooth manifold M and t€R, let
Domy(V) = {veTM: te(ay,by)}, Ui Domy (V) — TM, W (v) =~ (t).

Proposition 16.6. If V is a connection in the tangent bundle w: TM — M of a smooth mani-
fold M, then

(1) Domg(V)=TM, expy=idryr, M CDomy(V) for all teR, and

TM = U Domy(V) = U Domy(V
>0 <0

(2) for all s,teR, Vepy=V,0U;: Dom(\I/So\I/t):\I/t_l(Doms(V)) —TM;
(3) for allveTM, there exist an open neighborhood U of v in TM and e ER™ such that the map
U: (—€,e)xU — TM, (t,0") — U, (V) = ~L(t), (16.11)

1s defined and smooth;
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(4) for all teR, Dom(V) C TM is an open subset;
(5) for all teR, V;: Domy(V) — Dom_+(V) is a diffeomorphism with inverse V_;.

Proof. (1) By Lemma 16.3, for each v €T M there exists a V-geodesic v: (—¢,€) — M such that
7'(0) =v. Thus, v € Dom/5(V) C Domg(V); this implies the first and last claims in (1). For the
third claim, note that any constant map R — M is a V-geodesic. The second claim follows from
the requirement that Wy(v)=+,(0)=v for all ve T M.

(2) Since Dom(¥,)=Dom,(V), Dom(¥,0¥;) =V, ! (Dom,(V)). If v€ ¥, ! (Dom,(V)),

s € (aw,w): buuw) = (@y 0, by 0)-
Thus, s+t € (ay, b,) by (16.10) and ¥; ! (Dom,(V)) € Dom(¥, ;). Define

Vi (@w, () bwyw)) — TM by (1) = (T+t);
by (16.10), v, (7+t) is defined for all 7€ (ay,(v), by, (v)). By the sentence preceding Lemma 16.3, ~
is a V-geodesic. Furthermore, v'(0)=",(t)=W;(v). Thus, by Corollary 16.5, 7=y, () and so
Ueii(v) = y(s+t) =v(s) = ’yq,(v)(s) = \IIS(\IIt(v))

for all s€ (ay, (), b\Ilt(v))'

(3) As in the proof of Lemma 16.3, the requirement for a smooth map ~: (a,b) — M to be
a V-geodesic with 7/(0) = v corresponds to an initial-value problem (16.9) in a smooth chart
around 7(v). Thus, the claim follows from the smooth dependence of solutions of (16.9) on the
parameters [1, A.4].

(4) Since Domy(V)=TM, it is sufficient to prove this statement for ¢ € R*. We consider the case
teRT; the case t €R™ is proved similarly. Let v € Dom;(V) and W C TM be an open neighborhood
of Uy(v)=~/(t) in TM. Since the interval [0,¢] is compact, by (3) and Lebesgue Number Lemma
(Lemma B.1.2), there exist € >0 and a neighborhood U of 7,(]0,t]) such that the map (16.11) is
defined and smooth. Let n€Z™ be such that t/n<e. We inductively define subsets W; CTM by

Wo =W, W, =W, (W)U = {, v} (Wip1) ¥i=0,1,...,n—1

By induction, W; CU is an open neighborhood of ~, (it/n), W; C \IJ;/; (Dom (¥ (,,—1—4)¢/n)), and thus
Vin—iytn = YimoVin_1-pm: Wi — U CTM

by (2). It follows that Wy CT'M is an open neighborhood of v in T'M such that Wy C Domy (V).

(5) By (16.10) and (2), Im ¥; = Dom_4(V) and ¥_, is the inverse of ¥;. If v € Dom;(V) and Wy
is a neighborhood of v in T'M as in the proof of (4), ¥¢|w, is a smooth map. Thus, ¥; is smooth
on the open subset Dom(V)CTM. O

Definition 16.7. Let V be a connection in the tangent bundle m: TM — M of M of a smooth
manifold M. The exponential map for V is the map

exp" : Dom; (V) — M, v— m(¥1(v)) =7 (1).
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Remark 16.8. A connection V in a vector bundle 7: V — M provides a splitting of the short
exact sequence (11.2), i.e. a vector-bundle homomorphism

jv: 7 TM — TV s.t. drm o jv = idpras
over (the total space of) V, as follows. If seI'(M; V), pe M, and weT,M, let
v (s(p), w) = dps(w) —1(Vys).

By a direct check in a trivialization, jv(fs(p),w)=jv(s(p),w) for any fe€ C>®(M) with f(p)=1.
Thus, the bundle homomorphism j is well-defined. A connection V in TM — M also determines
a smooth vector field Xy on T'M by

XV('U) :jv<vav) € Tv(TM>'

A smooth curve 7: (a,b) — M is a V-geodesic if and only if ': (a,b) — T'M is an integral flow
for vector field Xy on T'M; see Definition 17.1. Thus, Lemma 16.3, Corollaries 16.4 and 16.5, and
Proposition 16.6 are special cases of Lemma 17.2, Corollaries 17.3 and 17.4, and Proposition 17.7,
respectively. We include their proofs for the same of completeness, since the primary purpose of
Section 17 is completely independent of the primary purpose of this section.

By Proposition 16.6, expV is a smooth map from an open neighborhood of M in TM to M restricts
to the identity on M. By the construction of expV,

dpexpY = (idr, s, idr,ar) : Tp(TM) ~ T,M & T,M — T,M  VpeM (16.12)
under the canonical isomorphism T,(T'M) ~ T, M &T,M induced by the map ¢ of Example 11.6.

Proposition 16.9. If X is a compact submanifold of a smooth manifold M, there exists a diffeo-
morphism between neighborhoods W and W' of X in NxM and in M, respectively,

fwW—w s.t. flp)=p VpeX.

Proof. (1) Let V be a connection in the tangent bundle 7: TM — M and exp" : U — M its
exponential map, where U is a neighborhood of M in T'M. Let

TXt ={veTM|x: (v,w)=0 VweT X}

be the orthogonal complement of the subbundle TX C T'M|x with respect to a Riemannian met-
ric (,) in TM|x. Since TX+NU CU is a smooth submanifold, the restriction

exp: TX+*NU — M
is a smooth map which restricts to the identity on X. By (16.12),
dyexp: T,(TX*) = T,X 0T, X+ — T,M

is the inclusion map on each component and thus an isomorphism. By the Inverse Function
Theorem for Manifolds (Corollary 4.9), for each p € X there are neighborhoods U, and UI’) of p

in TX' and M, respectively, such that the restriction expV : Uy —>U]’3 is a diffeomorphism. Let

Uo=|JUp  Up={velp: (v,0)<1/k} Vk=1,2,...;
peX
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these are neighborhoods of X in TX*. Since exp is a local diffeomorphism on Uy, exp(Uy) C M
is an open subset. We show below that exp is injective on Uy, if k is sufficiently large and thus a
diffeomorphism from the neighborhood Uy, of X in TX" to the neighborhood exp(Ug) of X in M.
Since Nx M, TX+— X are isomorphic vector bundles, this implies the claim.

(2) Let vk, wy, € Uy, be two sequences such that vy #wy, but exp(vg) =exp(wy). Since X is compact,
after passing to subsequences if necessary, we can assume that vy — p and wr — ¢ for some
p,q € X. Since exp is injective on U, and v € U), for all k sufficiently large, wy & U, for all k
sufficiently large and thus p#q. Let Uzl) and Ué be disjoint neighborhoods of p and ¢ in M. Since
v € exp 1 (U}) and wy, € exp™(U)) for all k sufficiently large, exp(uvy) # exp(wy,) for such values
of k, contrary to the assumption. O

Exercises

1. Let m: V— M Dbe a vector bundle. Show that

(a) the scalar-multiplication map (7.1) is smooth;
(b) the space V x/V is a smooth submanifold of V' xV and the addition map (7.2) is smooth.

2. Let m: V. — M be a smooth vector bundle of rank k and {(Ug,ha)}aca a collection of
trivializations covering M. Show that a section s of 7 is continuous (smooth) if and only if the
map

So = Ta0hgos: Uy — R¥

where 79 : Uy xRF — R is the projection on the second component, is continuous (smooth) for
every a€ A.

3. Let m: V— M be a submersion satisfying (RVB1)-(RVB3) in Definition 7.1. Show that

(a) if s1,...,8,: U—V|y are smooth sections over an open subset U C M such that {s;(z)};
is a basis for V,, for all z€ U, then the map (8.2) is a diffeomorphism;

(b) m: V. — M is a vector bundle of rank k if and only if for every p € M there exist a
neighborhood U of p in M and smooth sections sy, ..., sx: U—V|y such that {s;(p)}; is
a basis for V.

4. Show that the two versions of the last condition on f in (2) in Definition 8.2 are indeed equiv-
alent.

5. Let M be a smooth manifold and X,Y, Z€ VF(M). Show that

(a) [X,Y] is indeed a smooth vector field on M and
[fX,gY] = flX, Y]+ f(Xg)Y —g(Y /)X  VfgeC®(M);
(b) [, is bilinear, anti-symmetric, and
(X, [V, Z]] + [V,[Z,X]] + [Z,[X,Y]] =0.

6. Verify all claims made in Example 7.5, thus establishing that the tangent bundle T'M of a
smooth manifold is indeed a vector bundle. What is its transition data?
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10.

11.

12.

13.

14.

15.

16.

Show that the tangent bundle T'S' of S! is isomorphic to the trivial real line bundle over S'.

. Show that the tautological line bundle v, — RP"™ is non-trivial for n>1.

. Show that the complex tautological line bundle 7, — CP" is indeed a complex line bundle as

claimed in Example 7.8. What is its transition data? Why is it non-trivial for n>17

Let q: M —s M be a smooth covering projection. Show that

(a) the map dg: M—Misa covering projection and a bundle homomorphism covering ¢ as
in (8.4);

(b) there is a natural isomorphism
VF(M) ~ VF(M)dq = {XGVF: dp, (X (p1)) =dp,q(X (p2)) Vp1,p2€ M s.t. q(pl):q(pg)}.
Let M be a smooth m-manifold. Show that

(TM1) the topology on T'M constructed in Example 7.5 is the unique one so that 7: T'M — M
is a topological vector bundle with the canonical vector-space structure on the fibers
and so that for every vector field X on T'M and smooth function f: U — R, where U
is an open subset of R, the function X (f): U — R is continuous if and only if X is
continuous;

(TM2) the smooth structure on 7'M constructed in Example 7.5 is the unique one so that
m: TM — M is a smooth vector bundle with the canonical vector-space structure on
the fibers and so that for every vector field X on T'M and smooth function f: U —R,
where U is an open subset of R, the function X (f): U — R is smooth if and only if X
is smooth.

Suppose that f: M — N is a smooth map and 7: V — N is a smooth vector bundle of rank &
with transition data {gng: UsNUg — GL,R}, gea. Show that

(a) the space f*V defined by (10.1) is a smooth submanifold of M xV and the projection
m: f*V — M is a vector bundle of rank k£ with transition data

{f*gaﬂ:gaﬁof: fﬁl(Ua)mfil(Uﬂ) — GLnR}a,BEA ;

(b) if M is an embedded submanifold of N and f is the inclusion map, then the projection
mo: f*V —V induces an isomorphism f*V — V|5 of vector bundles over M.

Let f: M —V be a smooth map and V' — N a vector bundle. Show that

(a) if V— N is a trivial vector bundle, then so is f*V — M;
(b) f*V — M may be trivial even if V— N is not.

Let f: M — N be a smooth map. Show that the bundle homomorphisms in diagrams (10.4)
and (10.5) are indeed smooth.

Verify Lemma 10.2.

Let f: M — N be a smooth map and ¢: V — W a smooth vector-bundle homomorphism
over N. Show that the pullback vector-bundle homomorphism f*p : f*V — f*W is also
smooth.
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17.

18.

19.

20.

21.
22,
23.

24.
25.
26.

Let m: V — M be a smooth vector bundle of rank k& and V' CV a smooth submanifold so that
V,=V,NV" is a k'-dimensional linear subspace of V,, for every p€ M. Show that

(a) for every pe M =so(M) there exist an open neighborhood U of p in V’ and smooth charts
0: U —R™"xR¥ and ¢:UNM —R™  st. tYor=moyp,

where 71: R x RF —R™ is the projection on the first component;
(b) V/CV is a vector subbundle of rank &’.

Let ¢ : V — W be a smooth surjective vector-bundle homomorphism over a smooth mani-
fold M. Show that
kerp = {veV: p(v)=0} — M

is a subbundle of V.

Let DCTM a rank 1 distribution on a smooth manifold M. Show that I'(M;D) C VF(M) is
a Lie subalgebra. Hint: use Exercise 5.

Let {to: My —> N}aca be a foliation of N™ by immersions from m-manifolds. Show that

D= ) | Imdpua TN
a€ApeEMy

is a subbundle of rank m.

Verify all claims made in Examples 11.4 and 11.5.

Verify all claims made in Example 11.7.

Let V — M be a vector bundle of rank k£ and V' CV a smooth subbundle of rank &’. Show that

(a) there exists a collection {(Uy, ha)}aca of trivializations for V' covering M so that (11.3)
holds and thus the corresponding transition data has the form

ga5:<3 I)IUaﬂUﬁﬂGLkR,

where the top left block is k' x k/;

(b) the vector-bundle structure on V/V’ described in Section 11 is the unique one so that the
natural projection map V —V/V’ is a smooth vector-bundle homomorphism;

(c) if ¢: V— W is a vector-bundle homomorphism over M such that ¢(v)=0 for all ve V’,
then the induced vector-bundle homomorphism @: V/V/— W is smooth.

Verify Lemmas 11.8 and 11.9.
Obtain Corollary 11.12 from Theorem 11.11.

Let f=(f1,..., fx) : R™ —R* be a smooth map, ¢ €R* a regular value of f, and X = f~1(q).
Denote by V f; the gradient of f;. Show that

TX ={(p,v) eXxR™: Vfil,v=0Vi=1,2,...,k}
under the canonical identifications TX C TR™|x and TR™ =R" xR"™. Use this description of
TX to give a trivialization of Ngm X.
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27.

28.

29.
30.

31.
32.

33.
34.

35.

36.
37.

Let V,V/ — M be smooth vector bundles. Show that the two constructions of V@V’ in
Section 12 produce the same vector bundle and that this is the unique vector-bundle structure
on the total space of
veV' = | | eV,
peEM
so that

(VBE@1) the projection maps V@V’ —V, V' are smooth bundle homomorphisms over M:;
(VBE2) the inclusion maps V, V' — V@V’ are smooth bundle homomorphisms over M.

Let 7y : V— M and my : W — N be smooth vector bundles and 7y, 7y : M XN — M, N
the component projection maps. Show that the total of the vector bundle

momyV e nyW — MxN
is VxW (with the product smooth structure) and ©=my X my .
Verify Lemmas 12.1 and 12.2.

Let M and N be smooth manifolds and wps, 7 : M x N — M, N the projection maps. Show
that dmys and dmy viewed as maps from T (M x N) to

(a) TM and T'N, respectively, induce a diffeomorphism T'(MxN) — TMxTN that commutes
with the projections from the tangent bundles to the manifolds and is linear on the fibers
of these projections;

(b) m3,TM and wTN, respectively, induce a vector-bundle isomorphism
T(MxN)— myTMo®nNTN.

Why are the above two statements the same?

Verify Lemmas 12.3 and 12.4.

Show that the vector-bundle structure on the total space of V* constructed in Section 12 is the
unique one so that the map (12.2) is smooth.

Verify Lemmas 13.1-13.3.

Show that the sets of isomorphism classes of real and complex line bundles form abelian group
under the tensor product.

Let V — M be a smooth vector bundle of rank k¥ and W C V' a smooth subbundle of V' of
rank k’. Show that
Ann(W) = {aEV;‘: a(w)=0YweW, pe M}

is a smooth subbundle of V* of rank k—k’.

Verify Lemmas 13.4-13.7.

Let m: V— M be a vector bundle. Show that there is an isomorphism
ARV — (AFV)*

of vector bundles over M.
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38.

39.
40.

41.

42.

43.

44.

45.

46.
47.

48.

49.

Let Q be a volume form an m-manifold M. Show that for every p € M there exists a chart
(x1,...,@m): U—R™ around p such that

Qly =dz1 A ... Adzy,.

Verify Lemmas 14.2 and 14.5.

Show that every real vector bundle over a smooth manifold admits a Riemannian metric and
every complex vector bundle over a smooth manifold admits a Hermitian metric.

Let : L— M be a real line bundle over a smooth manifold. Show that L®2 ~ 7 as real line
bundles over M.

Let V,W — M be vector bundles. Show that

(a) if V' is orientable, then W is orientable if and only if VO W is;
(b) if V and W are non-orientable, then V@&W may be orientable or non-orientable.

Let M be a connected manifold. Show that every real line bundle L — M is orientable if and
only if 71 (M) contains no subgroup of index 2.

Let M and N be nonempty smooth manifolds. Show that M x NV is orientable if and only if M
and N are.

(a) Let p: M — RY be an immersion. Show that M is orientable if and only if the normal
bundle to the immersion ¢ is orientable.

(b) Show that the unit sphere S™ with its natural smooth structure is orientable.
Verify Lemmas 15.3 and 15.4.

(a) Show that the antipodal map on S” CR"! (i.e. x — —x) is orientation-preserving if n is
odd and orientation-reversing if n is even.

(b) Show that RP™ is orientable if and only if n is odd.
(c¢) Describe the orientable double cover of RP™ xRP™ with n even.

Let v, — CP"™ be the tautological line bundle as in Example 7.8. If P: C"*! — C is a
homogeneous polynomial of degree d >0, let

sp: CP"—~7, {sp(0)}(¢, v®) = P(v) Y (£,v) €y, C CP"xC"HL,
Show that
(a) sp is a well-defined holomorphic section of ~*®¢;

n_
(b) if s is a holomorphic section of ~*®?

polynomial P: C"*! — C of degree d;

with d > 0, then s = sp for some homogeneous

(c) the line bundle 42 — CP™ admits no nonzero holomorphic section for any de€Z*.

Let v, — CP"™ be the tautological line bundle as in Example 7.8. Show that there is a short
exact sequence

0 — CP"XC —» (n+1)y% — TCP" —» 0

of complex (even holomorphic) vector bundles over CP™.
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50.

51.

Suppose k<n and let 7, — CP* be the tautological line bundle as in Example 7.8. Show that

the map
1: CP* — cP?, [Xo, ..., X3] — [Xo,..., Xk,0,...,0],

n—k

is a complex embedding (i.e. a smooth embedding that induces holomorphic maps between the
charts that determine the complex structures on CP* and CP") and that the normal bundle to
this immersion, J,, is isomorphic to

=k =39 &
—_———
n—k
as a complex (even holomorphic) vector bundle over CP*. Hint: there are a number of ways of
doing this, including:
(i) use Exercise 49;
(ii) construct an isomorphism between the two vector bundles;
(ili) determine transition data for N, and (n—Fk)v;;
(iv) show that there exists a holomorphic diffecomorphism between (n — k)v} and a neighbor-

hood of ((CP¥) in CP", fixing +(CP¥), and use Lemma 11.10.

Let v, — CP"™ and APTCP™ — CP"™ be the tautological line bundle as in Example 7.8 and
the top exterior power of the vector bundle TCP"™ taken over C, respectively. Show that there

is an isomorphism
BTCP™ ~ 200t = o @~
—_——

n+1

of complex (even holomorphic) line bundles over CP™. Hint: see suggestions for Exercise 50.
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Chapter 3

Frobenius Theorems

17 Integral Curves

Recall from Section 8 that a vector field X on a smooth manifold M is a section of the tangent
bundle TM — M. Thus, X : M — TM is a map such that X(p) € T,M for all p e M. If
o= (x1,...,2m): U—>M is a smooth chart on M, then

i=m 9
X(p) =) alp)y Vpel,
; €Ty
=1 p
for some functions ¢y, . .., ¢y, : U—R. The vector field X is smooth (as a map between the smooth
manifolds M and T'M) if and only if the functions ¢y, ..., ¢, corresponding to every smooth chart

on M are smooth. This is the case if and only if X(f): M — R is smooth function for every
feC>(M).

As defined in Section 4, a smooth curve on M is a smooth map v: (a,b) — M. For t€ (a,b), the
tangent vector to a smooth curve v at ¢ is the vector

d
7/(t) - aﬁ}/(t) = dtV(ael‘t) € T’y(t)Mﬂ

where e; =1€R! is the oriented unit vector.

Definition 17.1. Let X be a smooth vector field on a smooth manifold M. An integral curve for X
18 a smooth curve

~v:(a,b) — M s.t. v (t) = X (y(t)) Vte (a,b). (17.1)
For example, a smooth vector field X on R? has the form

9
ox

0

X(:E,y):f(x,y) +g($’y)87y

(z,9) (z,9)
for some f,g€ C(R?). A smooth map v = (71,72): (a,b) — R? is an integral curve for such a

vector field if

=M o| 0n® o
Ot delypy Ot dylyy — {%(t) = F(n(t).2(1))
A RO (0 = 9(n(0), (1)
o) LAICTO)
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This is a system of two ordinary autonomous first-order differential equations for v=(v1,72) as a
function of t.

Lemma 17.2. Let X be a smooth vector field on a smooth manifold M. For every pe M, there
exists an integral curve y: (—e,e) — M for X such that v(0)=p. If 7,5 : (—€,€) — M are two
such integral curves, then vy=4.

Proof. Let o= (x1,...,%m): U—R™ be a smooth chart on M around p and ci,...,¢p: U—R
smooth functions such that

=m
d
X(p) = Zci(p/)ax‘ vp' eU.
i=1 tlp!

For any smooth map ~: (a,b) — U C M, let
(’717"'7%%) = po: (a>b) — R™.

By the chain rule (4.5) and the definition of the coordinate vector fields (4.12), the condition (17.1)
on <y is then equivalent to

{pon} (t) = dip(v' (1)) = i ci(y(t)) 0 = yt) =ciop (n(t),- (b)) Vi
i=1

81‘1'

e(v(1))

1

Since the functions ¢;op™" are smooth on R™ the initial-value problem

{%f(t) = ciop (0, () i=1,2,..m (17.2)

(72(0), .-, 7m(0)) = ¢(p)
has a solution (v1,...,7vm): (—€,¢) — R™ for some € > 0 by the Ezistence Theorem for First-
Order Differential Equations [1, A.2]. By the Uniqueness Theorem for First-Order Differential

Equations [1, A.1], any two solutions of this initial-value problem must agree on the intersection of
the domains of their definition. O

Corollary 17.3. Let X be a smooth vector field on a smooth manifold M. If a,a€R™, b, beR™,
and v: (a,b) — M and 7: (a,b) — M are integral curves for X such that v(0)=4(0), then
Nawn@s = iabn@s -

Proof. The subset 3 ~
A= {te(a,b)N(a,b): y(t)=7(t)} C (a,b) N (a,b)

is nonempty (as it contains 0) and closed (as v and 4 are continuous). Since (a,b) N (a,b) is
connected, it is sufficient to show that S is open. If

toeS and  (to—e to+e€) C (a,b) N (a,b),
define smooth curves

a,B:(—€,¢) — M by o) =(t+to), B(t) =F(t+to).
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Since v and 4 are integral curves for X,

o (t) = %’Y(tﬂo) = X (v(t+t0)) = X («(t)), gl(t) = %’?(tﬂo) = X (3(t+t0)) = X (B(1)).

Thus, a and 3 are integral curves for X. Since

a(0) = ~(to) = 7(to) = 5(0),

a=/ by Lemma 17.2 and thus (to—¢,to+€) C (a,b) N (a,b). O

Corollary 17.4. Let X be a smooth vector field on a smooth manifold M. For every p € M,
there ezists a unique mazimal integral curve 7y, : (ap,b,) — M for X such that ~,(0) = p, where
ap € [—00,0) and b, €(0,00]. If t€(ap,by), then

(@ (1), b)) = (ap—t bp—1), (=) = p. (17.3)

Proof. (1) Let {74 : (aa,ba) — M}aeca be the collection of all integral curves for X such that
7a(0)=p. Define

(ap;bp) = | (@arba), Wt (ap,bp) — M, 9p(t) = Yalt) VEE(aq,ba), @€ A.
acA

By Corollary 17.3, 74(t) is independent of the choice of o € A such that t € (aq,by). Thus, 7, is
well-defined. It is smooth, since its restriction to each open subset (aq, by ) is smooth and these sub-
sets cover (ap,bp). It is an integral curve for X, since this is the case on the open subsets (aq,bq).
It is immediate that 7,(0) =p. By construction, v, is a maximal integral curve for X.

(2) If te (ap, by), define
v: (ap—t,by—t) — M by V(1) = Yp(T+1).

This is a smooth map such that

Y(0) = (),  A(=t)=%0)=p, (1) = d%vp(ﬂrt) = X (yp(r+1)) = X (7(1));

the second-to-last equality above holds because v, is an integral curve for X. Thus, 7 is an integral
curve for X such that v(0)=+,(t). In particular, by the first statement of Corollary 17.4,

(@30 ) 2 (@p=t: =)y V)] (@) =7 = —tE (a0 bym)s Y1) =P
= (@) = (@, (0: Dy () 2 (a0 by H).
This confirms (17.3). O
If X is a smooth vector field on M, for each t€R let
Domy(X) = {peM: te(ap,by)}, X¢: Domy(X) — M, Xu(p) = v(t).

The map X; is called the time t flow of vector field X.
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Example 17.5. Let X be the smooth vector field on M =R given by

X(x) = —1'2%

If peR, the integral curve vy, for X is described by

/ _ 2 _ _ p
Wt)=—n®)" w0 =p = Bt)= Topt
Thus,
(—o0,—1/t), if t<O0;
Domy(X) = ¢ (—00,00), if t=0; Xi: Domy(X) — R, Xy(p) = J;tp

(—1/t,00), if t>0;

Example 17.6. Let ¢: R — S, § — ¢®™%_ be the usual covering map and X the vector field
on S' defined by

X (™) = dgq(er),

where e; =1 is the usual oriented unit vector in R=TyR. If ¢q(01) =q(62), there exists n € Z such
that 6o =61 +n. Define
hp: R— R by 0 — 0+n.

Since dg, h(e1)=e; and ¢g=qoh,, by the chain rule (4.5)
dg,q(e1) = do,q(do, hn(er)) = do, {gohn}(e1) = dg,q(er)-

Thus, the vector field X is well-defined (the value of X at e?™9 depends only on €*™  and not
on ). This vector field is smooth, since e; defines a smooth vector field on R, while ¢: R — 1
and dg: TR — T'S! are covering projections (and in particular local diffeomorphisms). If p€ S1,
pEq ' (p)CR, and v: (a,b) — S! is a smooth curve such that v(0) =p, let 7: (a,b) — R be the
continuous lift of v over ¢ such that 4(0)=p; since ¢ is a local diffeomorphism, this map is smooth.
The integral curve -, is then described by

W) =1, 30)=p <=  FHt)=p+teR
— ’Yp(t) _ q( ( )) 27r1 (p+t) _ e27r1p 2mit _ e27rit pE Sl )

Thus, v,(t) is defined for all t€R, and the time ¢t flow of X is given by
X¢: Domy(X)=8' — S, p — iy,
This is the rotation by the angle 27t.

Proposition 17.7. If X is a smooth vector field on a smooth manifold M, then

(1) Domy(X)=M, Xo=idps, and

M = | Dom(X) = | Dom,(X
t>0 t<0
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(2) for all s,teR, X1y =X;0X;: Dom(X;0Xy) =X, ! (Dom, (X)) — M;
(8) for all pe M, there exist an open neighborhood U of p in M and e €R™ such that the map
Xi(—e,e)xU — M,  (t,p) — X(p)) = w (1), (17.4)
1s defined and smooth;
(4) for all teR, Domy(X) C M is an open subset;
(5) for all teR, X;: Domy(X) — Dom_4(X) is a diffeomorphism with inverse X_;.

Proof. (1) By Lemma 17.2, for each p € M there exists an integral curve v: (—e, e) — M for X
such that v(0)=p. Thus, p€ Dom/5(X)CDomg(X); this implies the first and last claims in (1).
The middle claim follows from the requirement that Xo(p)=+,(0)=p for all pe M.

(2) Since Dom(X,)=Dom,(X), Dom(X,0X;)=X; ! (Dom,(X)). If peX; ! (Domy (X)),

s € (ax,(p) bz () = (3,00 (1)
Thus, s+t € (ap,by) by (17.3) and X; ! (Domy(X)) € Dom(Xs;)." Define

Vi (0 b)) — M by y(7) = w(TH0);

by (17.3), vp(7+t) is defined for all 7€ (ax, (), bx,(p))- The map 7 is smooth and satisfies

H0) =) =Kulp), A7) = () = X (3p(r+0)) = X (5();

the second-to-last equality holds because 7, is an integral curve for X. Thus, by Corollary 17.4,
Y =% (p) and s0
Xt (p) = p(s+t) = v(s) = () (s) = Xs (Xe(p))

for all s € (ax, (p), bx, (p))-

(3) As in the proof of Lemma 17.2, the requirement for a smooth map v: (a,b) — M to be an
integral curve for X passing through p corresponds to an initial-value problem (17.2) in a smooth
chart around p. Thus, the claim follows from the smooth dependence of solutions of (17.2) on the
parameters [1, A.4].

(4) Since Domg(X) = M and Dom_;(X) =Dom;(—X), it is sufficient to prove this statement for
teR*. Let p€Domy(X) and W C M be an open neighborhood of X;(p) =, (¢) in M. Since the
interval [0,¢] is compact, by (3) and Lebesgue Number Lemma (Lemma B.1.2), there exist ¢ >0
and a neighborhood U of 7,([0,t]) such that the map (17.4) is defined and smooth. Let n€Z" be
such that t/n<e. We inductively define subsets W; C M by

Wo=W,  Wi=X_! (W) U = {Xynlv} " (Wip1) Vi=0,1,...,n—1.

By induction, W; CU is an open neighborhood of v, (it/n), W; CX;/il(Dom(X(n_l_i)t/n)), and thus

Xn—iytyn = Xeyn o Xno1-iytyn: Wi —m U C M

!The domain of Xs4; might be larger than Dom (X 0X;). For example, if s=—t, the former is all of M.
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by (2). It follows that Wy C M is an open neighborhood of p in M such that Wy C Domy(X).

(5) By (17.3) and (2), ImX; = Dom_;(X) and X_; is the inverse of X;. If p€Dom,(X) and W} is
a neighborhood of p in M as in the proof of (4), X¢|w, is a smooth map. Thus, X; is smooth on
the open subset Domy(X)C M. O

Lemma 17.8. Let X be a smooth vector field on a smooth manifold M and pe M. If X(p)#0,
there exists a smooth chart

©=(x1,...,Tm): U — (=6,6)x R™™1

around p on M such that
0

X(p) = B
p/

vy e U. (17.5)

Proof. By Proposition 17.7-(3), there exist an open neighborhood U of p in M and ¢ € R* such
that the map (17.4) is smooth. Let U’ be a neighborhood of p in U and

d=y1, ... ym): (U, p) — (R™,0)

a smooth chart such that (17.5) holds with 2 replaced by y; for p’ =p; such a chart can be obtained
by composing another chart with a rigid transformation of R™. Define

Y: (—e,e) xR — M by Y(z1, T2, ) = Xgy (gb_l(O,xg,...,xm)).

This smooth map sends (x1, s, ..., 7;) to the time z;-flow from the point ¢=1(0,z3,...,2,,) on
the coordinate hyperplane ¢~1(0xR™1); see Figure 3.1. Note that
d d 0
( 81‘(;3(10)) dt o dt —0 o1 |,
do? (0, ):izp(o ...,0,¢,0,...,0) :igﬁ*l(o 0 0,4,0,...,0)] = 0 Vi>2;
7 (b(p) dt 9 s Yy Uy Yy 9 -0 dt 9 y Yy by Yy ) o 8y1 , —

on the second line, ¢ is inserted into the i-th slot. Thus, the differential of v at 0,
doyp: ToR™ — T,M

is an isomorphism. By the Inverse Function Theorem for Manifolds (Corollary 4.9), there are
neighborhoods U of p in M and V of 0 in R™ such that ¢: V — U is a diffeomorphism. The
inverse of this diffeomorphism is a smooth chart around p on M satisfying (17.5). O

Corollary 17.9. If D C TM is a rank 1 distribution on a smooth manifold M, there exists a
foliation {to: R— M}aea by injective immersions integral to the distribution D on M.

Proof. Let h: D|yy — W xR be a trivialization of D over an open subset W C M and
X(p)=htp,)eD,CT,M VYpcW.

Since h is a smooth, X is a smooth nowhere 0 vector field on the open subset W C M. Since the
rank of D is 1, D,=RX(p) for all pe W. Let

0= (T1,. .. Tm) : U — (=5,0) xR™1
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Figure 3.1: Flows of a nonvanishing vector field and integral immersions of a rank 1 distribution
are horizontal slices in a coordinate chart.

be a coordinate chart on W C M satisfying (17.5) and ¢ : R — (—4,d) any diffeomorphism.
For y€R™~!, define

ty: R— M by Ly(t):cp_l(qﬁ(t),o,...,()).

This is an injective immersion such that Im¢, is contained in (in fact is) the horizontal slice
o Y (Rxy) and

0
Imdity =R-—| =RX () =D,u  VteR
01,1
Thus, {ty},crm-1 is a foliation of the open subset U C M by immersions integral to D. O

The flows of a vector field X provide a way of differentiating other vector fields and differential
forms in the direction of X.

Definition 17.10. Let X be a smooth vector field on a smooth manifold M and pe M.

(1) The Lie derivative of a smooth vector field Y € VF (M) on M with respect to X at p is the vector

_ iy BwX-(Y (X)) ~ Y (p)

t—0 t

d

(LXY)p = det(p)x—t (Y(Xt(P)))

€T,M.

t=0

(2) The Lie derivative of a smooth k-form o€ E*(M) on M with respect to X at p is the alternating
k-tensor

d

(LxY)p, = =X} (a(Xi(p)))

_ i (X)) — alp)
at -

t—0 t

c AP (TyM).
t=0

Thus, the Lie derivative Lx measures the rate of change of a smooth vector field Y at p by bringing
Y (Xi(p)) € Tx, (pyM back to T),M by the differential of the inverse flow X_;. Similarly, Ly measures

the rate of change of a smooth k-form « at p by pulling a(X¢(p)) € A* (T3, (p)M) back to Ak(T;M) by
X; = AF(dpXq) " AF(T, () M) — AM(T; M),

As indicated by the following proposition, (LxY"), and (Lxa), typically depend on the germ of X
at p, and not just on X (p).

Proposition 17.11. Let X be a smooth vector field on a smooth manifold M and pe M.
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(1) If feC=(M), (Lx [)p = Xp(f).
(2) If Y EVF(M), (LxY), = [X,Y].
(3) If a € E*(M) and Y1,Ys, ..., Y €VF(M),

(Lx (a(Y1,...,Yy))), = {Lxatp(Yilp), .., Yi(p))

1=k
+3 ap(Yi(p),- . Yic1 (p), (LxYi)p, Yira (p), - - - Yi(p)).-
=1

Corollary 17.12. If X, Y € VF(M) are smooth vector fields on a smooth manifold M,

Lixy] = [Lx,Ly| = Lx oLy — Ly o Lx: VF(M) — VF(M), E¥(M) — E*(M).

Exercises

1. Let V be the vector field on R3 given by

0 g 0
V(z,y,2) =Yy —xa—y—l-%.

Explicitly describe and sketch the flow of V.
2. Let X be a smooth vector field on a manifold M. Show that

(a) if v: (a,b) —> M is an integral curve for X such that 7/(¢)=0 for some ¢ € (a,b), then v is
a constant map.

(b) if X is compactly supported, i.e.

supp X = {pEM: Xp;éO}
is a compact subset of M, then Domy(X)=M for all teR.

3. (a) Let M be a smooth compact manifold and X € VF(M) a nowhere-zero vector field on M,
ie. X(p)#0 for all pe M. Show that the flow X;: M — M of X has no fixed points for
some t€R.

(b) Show that S™ admits a smooth nowhere-zero vector field if and only if n is odd. Hint:
Exercises 47 and 8 in Chapter 2 might be helpful for n even.

(c) Show that the tangent bundle of S™ is not trivial if n>1 is even. (In fact, T'S™ is trivial if
and only if n=1,3,7 [2].)

4. Let 7: (a,b) — R? be an integral curve for a smooth vector field X on R2. Show that v is an
embedding.

5. Let X be a smooth vector field on a smooth manifold M. Show that

(a) for teR, Dom_;(X)=Dom;(—X);
(b) if s,t€R have the same sign, then Dom(X;;) = Dom(X;0Xy);
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10.

11.

. Let X be the vector field on R™ given by X = Z Ti—

(c) if Domy(X) = M for some t€R™, then Dom;(X) = M for all teR™.

. Suppose X and Y are smooth vector fields on a manifold M. Show that for every pe M and

feC=(M),
lim f(st(Xft (YS(Xt(p))))) - f(p)

5,t—0 st

= [X,Y],f €R.

Do not forget to explain why the limit exists.

0

ox;’
=1 ¢

(a) Determine the time ¢t-flow X;: R” — R”™ of X (give a formula).

(b) Use (a) to show directly from the definition of the Lie derivative Lx that the homomorphism
defined by

1
Ry : E¥(R") — EF(R™), fdxiy AN da, — (/ sk_lf(sa:)ds) dai, A .. A dw,
0

is a left inverse for Lx if £>1.
(¢) Is Ry also a right inverse for Lx for k>17 What happens for k = 07

. Verify Corollary 17.12.

. Let U and V be the vector fields on R? given by

U,y 2) = 2 and  Vi(ey2) = Fle,y,2) 2

0
o ay_*—G(xvva)i

0z’

where F' and G are smooth functions on R3. Show that there exists a proper foliation of R3
by 2-dimensional embedded submanifolds such that the vector fields U and V' everywhere span
the tangent spaces of these submanifolds if and only if

F(z,y,z) = f(y, 2) eh(@y:2) and G(z,y,2) = g(y, 2) eh(@w:2)
for some f, g€ C°°(R?) and he C>®(R?) such that (f, g) does not vanish on R2.
Let a be a k-form on a smooth manifold M and Xy, ..., X € VF(M). Show that

i=k

da(Xo,. .., Xp) =Y (1) Xi(a(Xo, ..., Xi, ..., X))
1=0

+ 3 (D) a([Xi, X ] Xoy oo Xiv oo, Xy X).
1<j

Hint: first show that the values of both sides at any point p€ M depend only on the values of
vector fields X;|, at p and on the restriction |y of a to any neighborhood U of p; then compute
in a smooth chart.

Let a be a nowhere-zero closed (m—1)-form on an m-manifold M. Show that for every pe M
there exists a chart (x1,...,2,): U—R" around p such that

aly =dzg Adas A ... Adag,.

Hint: Exercises 38 in Chapter 2 and 3 in Appendix A might be helpful.
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12. Let w be a smooth closed everywhere nondegenerate? two-form on a smooth manifold M.
(a) Show that the dimension of M is even and the map
™M — T*M, X —ixw,

is a vector-bundle isomorphism (ix is the contraction w.r.t. X, i.e. the dual of XA).

(b) If H: M — R is a smooth map, let Xy € VF(M) be the preimage of dH under this
isomorphism. Assume that the flow

@:RxM — M, (t,p) — @i(p)

of Xy is defined for all (¢,p). Show that for every ¢t €R, the time-t flow ¢;: M — M is a
symplectomorphism, i.e. p;w=w.

13. Suppose M is a 3-manifold, « is a nowhere-zero one-form on M, and p€ M. Show that

(a) if there exists an embedded 2-dimensional submanifold P C M such that p€ P and «|rp =0,
then (o A da)|, =0.

(b) if there exists a neighborhood U of p in M such that (a A da)|y = 0, then there exists an
embedded 2-dimensional submanifold P C M such that pe P and «a|rp=0.

14. Let a=dx1 + fdas be a smooth 1-form on R? (so f € C>°(R?)). Show that for every p € R?
there exists a diffeomorphism

¢:(y17y27y3): U—V

from a neighborhood U of p to an open subset V of R3 such that «|y = gdy; for some g€ C*°(U)
if and only if f does not depend on x3.

15. Let X be a non-vanishing vector field on R?, written in coordinates as

0 0 0
X(:c,y,z):f%—kgafy—kh% for some f,g,h € C®(R?).
(a) Find a one-form o on R? so that at each point of R? the kernel of « is orthogonal to X,
with respect to the standard inner-product on R3.

(b) Find a necessary and sufficient condition on X so that for every point p€R? there exists a
surface S CIR3 passing through p which is everywhere orthogonal to X (i.e. S is a smooth
two-dimensional submanifold of R? and 7,5 C T,R3 is orthogonal to X(q) for all g€ S).

2This means that w, € A2T5M is nondegenerate for every pe€ M, i.e. for every v €T, M —0 there exists v’ € T,M
such that wy(v,v") #0.
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Chapter 4

de Rham Cohomology

We leave a proof of the following lemma as an exercise.

Lemma 17.13. If f,g: M — N are smoothly homotopic maps,
[ =9" Hyer(N) — H{jer (M).
Corollary 17.14. If M is a smoothly contractible manifold,

R, if k=0;

Hign (M) = {0 if k0.

Proposition 17.15. If g: M —s M is a smooth reqular covering map with a finite group of deck
transformations G, the homomorphism

q*: H:ikeR(M) — H:ikeR(M)G = {aeH::lkeR(M): g*a:a VQEG}

s an tsomorphism.

18 Stokes Theorems

The following corollary improves the statement of Lemma 15.4 for compact manifolds.

Corollary 18.1. Let f,g: M — N be smoothly homotopic diffeomorphisms between compact
oriented manifolds. If f is orientation-preserving (orientation-reversing), then so is g.
Exercises

1. Verify Lemma 17.13.
2. Show that the inclusion map S™ — R"*!—0 induces an isomorphism in de Rham cohomology.

3. Show that a one-form a on S! is exact if and only if

ffa=0
[0,1]

for every smooth function f:[0,1] — S* such that £(0)=f(1).
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. Let M be a smooth connected manifold such that 1 (M)=0.

(a) Let a € EY(M) be a closed one-form and v: [0,1] — M a smooth map. Show that the

number
/ acelR
.

depends only on v(0) and (1), and not on v itself.
(b) Conclude that H} (M) = 0.

. Let D CRR? be the closed unit disk centered at the origin.

(a) State Stokes’ Theorem for integration of top forms on manifold for D.

(b) Show that it reduces to Green’s theorem of calculus

. Let S?2 CR? be the unit sphere with its standard smooth structure and orientation. Find

/ (z1dzoA dzg + zodmay A dag + z3dai A dag).
5‘2

. Suppose M is a compact oriented 3-manifold with boundary and OM = T? = S1x S1. Let
w1,y T2 — St

be the two projection maps. Show that it is impossible to extend both (as opposed to at least
one of) a; =77df and ay=73df to closed forms on M.

(a) Show that every diffeomorphism f: S™ — S™ that has no fixed points is smoothly homo-
topic to the antipodal map (x is a fized point of f if f(x)=x).

(b) Show that if 7: S™ — M is a smooth covering projection and | (M)| # 2, then M is
orientable.

. Let X be a path-connected topological space and let (S.(X),d) be the singular chain complex
of continuous simplices into X with integer coefficients. Denote by Hy(X;Z) the corresponding
first homology group.

(a) Show that there exists a well-defined surjective homomorphism
h:m (X, z0) — Hi1(X;Z).

(b) Show that the kernel of this homomorphism is the commutator subgroup of m (X, zg) so
that h induces an isomorphism

D: 7T1(X, l‘o)/[ﬂ'l(X, 1}0),71’1(X, $0)] — Hl(X,Z)
This is the first part of the Hurewicz Theorem.

Hint: For each x € X, choose a path from zg to . Use these paths to turn each 1-simplex into
a loop based at zg and construct a homomorphism

S1(X) — Wl(X,l’o)/[ﬂ'l(X, J:o)jwl(X,xo)].

Show that it vanishes on 0S3(X), well-defined on ker 9 (may not be necessary), and its compo-
sition with @ is the identity on 71 (X, zo)/[m1(X, zo), 71 (X, z0)]. Sketch something.
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Chapter 5

Mayer-Vietoris Theorems

19 Chain and Cochain Complexes

20 Mayer-Vietoris for de Rham Cohomology

Corollary 20.1 (Mayer-Vietoris for de Rham Cohomology). If M is a smooth manifold, U,V C M
are open subsets, and M =UUV , then there exists an exact sequence

O — ngR(M) A ngR(U)@ngR(V) & ngR(UmV) i}
20 Bl (M) L5 Hin(U)@ Hin (V) 25 Hip(UNV) 2

o1
Al

where fi(a) = (alu, aly) and gi(8,7) = Blunv — Ylunv.
Corollary 20.2. The de Rham cohomology of spheres is given by Show that for alln>0 and peZ,

R?2, if k=n=0;
Hir(S") ~ (R, if k=0,n, n#£0;
0, otherwise.

Lemma 20.3.
Corollary 20.4.

Corollary 20.5. The de Rham cohomology of a smooth compact connected orientable surface X
of genus g is given by

R, ifp=0,2;
Hir(3g) = (R, if p=1;
0, otherwise.

The g=0 case of this corollary is the n=2 case of Corollary 20.2. The g=1 case can be obtained
from the n =1 case of Corollary 20.2 using Corollary 20.1. The remaining cases are obtained by
induction, using

Eg ~ 29_1#21
along with Corollary 20.4.
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21 Compactly Supported de Rham Cohomology

22 Mayer-Vietoris for Singular (Co)homology

23 Universal Coefficient Theorems

Exercises

1. Compute the singular cohomology of the point directly from the definition (with coefficients in
a ring K).

2. Suppose M is a compact connected orientable n-dimensional submanifold of R®*!. Show that
R™*1— M has exactly two connected components. How is the compactness of M used?

3. Verify Corollary 20.2.

4. Show that S™ is not a product of two positive-dimensional manifolds.

5. Let T=5'xS! be the two-torus and K =7/Z? the Klein bottle. Describe bases for H} . (T)

and Hj ,(K).
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Chapter 6

Cech Cohomology

Suppose X is a topological space and P ={Sy; pUy} is a presheaf on X. Let

SU = {(Uaafa)ozEA: U,CcU open, U= U UOé;fOCESUa;

acA
Va,8c A, peU,NUg 3IW CcU,NUg open s.t. p€ W, pwyyafa:pwyUﬁfg}/ ~,
where (Uas fa)aca ~ (UL, fi)aea if YVaeA o €A, peU,nU.,
AW Cc U,NU., st. peW, pW7Uafa:pW,Ué/fC’!,.

Whenever U CV are open subsets of X, the homomorphisms pyy induce homomorphisms

puv: Sy — Su, [(Va, fa)aea] — [(VanU, pvaavva fa)ac ],
so that 755{5)(; puv} is a presheaf on X. Show that
(a) P =a(B(P));
(b) the presheaf homomorphism {py}: P — P
eu: Sy — Su, f— [, N},
is injective (resp. isomorphism) if and only if P satisfies 5.7(C) (resp. is complete);
(¢) if R is a subsheaf of S, then a(S/R) =~ a(S)/a(R).

Hint: see 5.8 for (b) and Chapter 5 #2,5 (p216) for (c).

24 Sheaves and Vector Bundles

We have defined Cech cohomology for sheaves or presheaves of K-modules. All such objects are
abelian. The sets H? and H! can be defined for sheaves or presheaves of non-abelian groups as
well. The main example of interest is the sheaf S of germs of smooth (or continuous) functions to
a Lie group G over a smooth manifold (or topological space) M.}

1A Lie group G is a smooth manifold and a group so that the group operations are smooth. Examples include

O(k), SO(k), U(k), SU(k).
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Let U = {Uy}aca be an open cover of M. Analogously to the abelian case, the set C*(U;S) of
Cech k-cocycles is a group under pointwise multiplication of sections:

L CHULS) x CHU;S) — CHUSS),
{f : g}aoal-..ak(p) = faom...ak (p) : gaoay..ak(p) Vag,a,...,a5 €A, PEUayNUa, N.. 'mUak ’

where fagar...an Jaoar..ax © Uag MUy N...NUy, — G are smooth (or continuous) functions (or
equivalently sections of ). The identity element e€ C*(U;S) is given by

€apar..an(p) = idg Vag,aq,...,0,€ A, peUyNUy, N...NU,, .
Define the two bottom boundary maps by
do: C°(U;8) — CH(U;S), (dof)
d;: CHU;S) — C*(U;S

apon — faO'UaOﬂUal ‘fojll‘UaomUal

); (d19)aparar = 9a1a2‘Ua0mUa1mUa2' ga_ola2|UaOﬂUalmUa2' Jaoan ‘UQOmUalmUag’
for all ag, ay, s €.A. We also define an action of C°(U;S) on C'(U;S) by

#: COUU S)x CHU; ) — CHU5S), {Figtavar = faoly, w, Go0ar far |, 7, € T (Uao W3 S)-
Show that

(a) HO(U;S) = kerdy = d ' (e) is a subgroup of C°(U; S);

(b) for every Cech 1-cocycle g (i.e. g€kerd;) for an open cover U={Uq,}acA,

Joa = €|u,, 9aB9Ba = e\UamU5, 9ap9ByGya = e‘UaﬂUgﬂU.ya Va,B,7 € A;

(c) * is a left action of CO(U;S) on C'(U;S) that restricts to an action on kerd; and
Imdy ¢ CO(U; S)e.
By part (c), we can define
HYU;S) =kerd,/C°(U;S);

this is a pointed set (a set with a distinguished element).

If U ={U!}aen is a refinement of U = {U, }aec, any refining map p: A — A induces group
homomorphisms
pi: CHU;S) — CHU';S),
which commute with dg, di, and the action of C%(-;S) on C''(-;S), similarly to Section 5.33. Thus,
1 induces a group homomorphism and a map
RYy: HY(U;8) — HO(U;S)  and  Rpy: HY(U;S) — H'(U;S).
(a) Show that these maps are independent of the choice of .

Thus, we can again define H%(M;S) and H'(M;S) by taking the direct limit of all H°(U;S) and
H'(U;S) over open covers of M. The first set is a group, while the second need not be (unless S
is a sheaf of abelian groups). These sets will be denoted by H°(M;G) and H'(M;G) if S is the
sheaf of germs of smooth (or continuous) functions into a Lie group G. As in the abelian case,
HO(M;S) is the space of global sections of S.
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(a) Show that there is a natural correspondence

{isomorphisrn classes of rank k real vector bundles over M } — 0! (M ; O(k))

(b) What are the analogues of these statements for complex vector bundles? (state them and

indicate the changes in the argument; do not re-write the entire solution).

Hint: For (a) and (b), you might want to look over Sections 9 and 11 in Lecture Notes. Do not
forget that H'(M;S) is a direct limit.

Exercises
1. Let K=7 and let m: So — R be the corresponding skyscraper sheaf, with the only non-trivial

stack over 0€R; see 5.11. What is Sy as a topological space?
2. Let f€C>®(M). Show that £~1(0) = Int £71(0).
3. Give an example of a fine sheaf which contains a subsheaf which is not fine.
4. Show that the correspondence

{isomorphism classes of real line bundles over M } «— H Y(M; Zs)

of the previous problem is a group isomorphism.

5. Show that there is a natural group isomorphism
{isomorphism classes of complex line bundles over M } «— H 2(M; 7).

Hint: Snake Lemma.

6. Suppose X is a connected topological space such that 71(X) ~Z. Let VW — X be non-

orientable vector bundles. Show that the vector bundle V@W — X is orientable.

99



Chapter 7

Hodge Theory
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Appendix A

Linear Algebra

A.1 Bilinear Pairings

If V is a vector space over R, an inner-product on V is a symmetric bilinear map
(,): VXV —R, (v,w)— (v,w), s.t. (v,v) >0 Yve V-0.

If {,) and (,)’ are inner-products on V and a,a’ €R™ are not both zero, then
a(,)+d'(,): VxV — R, {a(,)+d'(,) }(v,w) = a{v,w) + d' (v, w)’,

is also a positive-definite inner-product. If W is a subspace of V and (,) is a positive-definite
inner-product on V, let
Wt = {veV: (v,w)=0VweW}

be the orthogonal complement of W in V. In particular,
V=WwWaeWw
Furthermore, the quotient projection map
TV —V/W
induces an isomorphism from W+ to V/W so that

VaWae (V/W).

Let (V,()) be an n-dimensional real inner-product space. Extend () to all of AV by

det((vi, w;))ij=1,..k, if k=m;

VIA. . Vg, W1 N. .. W = .
< m> {07 otherwise.

if e1,..., e, is an orthonormal basis for V', then

{6]} = {1} U {eil/\.../\eik: 1§i1<...<ik§n}
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is an orthonormal basis for AV
If V is a vector space over C, a nondegenerate Hermitian inner-product on V' is a map

(,):VxV —C, (v,w)— (v,w),

which is C-antilinear in the first input, C-linear in the second input,

(w,v) = (v,w) and (v,v) >0 YveV-0.

If {,) and (,)" are nondegenerate Hermitian inner-products on V and a,a’ € R are not both zero,
then a(, )+a’(,)" is also a nondegenerate Hermitian inner-product on V. If W is a complex subspace
of V and (,) is a nondegenerate Hermitian inner-product on V, let

Wt ={veV: (v,w)=0VweW}
be the orthogonal complement of W in V. In particular,
V=wWaeWw.
Furthermore, the quotient projection map
mV—V/W
induces an isomorphism from W+ to V/W so that

VaWae((V/W).

A.2 Orientations

Since V is n-dimensional, A"V is one-dimensional. An orientation on V is a choice of a component
of A"V —0. Given such an orientation on V', a basis {ej,...,e,} for V is called oriented if ejA. . .Ae,
lies in the chosen component of A"V —{0}.

A.3 Hodge Star

Define
x: AV — AV
by requiring that for every oriented orthonormal basis {e1,...,e,} for V
x1 = el A... Nep, *(el/\.../\en) =1, *(elA.../\ek) = eg+1N. . . Nep,.

sx = (=1)P=R) on ARV (v, w) = *(v A xw) = *(w A *v) for all v,w eV, W.
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Exercises

1. Let V be a finite-dimensional vector space and v€V —0. Show that
(a) if we A*V, vAw=0 € A*1V if and only if w = vAu for some u € A*~1V;
(b) the sequence of vector spaces
0 — AOV 225 Aty 2R A2y M
is exact.

2. Let V be a vector space of dimension n and w € A’V an element such that w™ #0 € A*"V.
Show that the homomorphism

WEA - APTRY s ATTRY w—s WP Aw,
is an isomorphism for all k € Z*.

3. Let V be a vector space of dimension n and Q € A"V* a nonzero element. Show that the
homomorphism
V — Ay, v —> 1,9,

where i, is the contraction map, is an isomorphism.

4. Show that every short exact sequence of vector spaces,

0—>AL>BL>C—>O

induces a canonical isomorphism A'*PA @ A*PC — A'PB (the isomorphism is determined
by f and g).

5. Let {e1,...,ex} and {f1,..., fr} be C-bases for a vector space V over C. Let A be the com-
plex change-of-basis matrix from {e;} to {f;} and B the real change-of-basis matrix from

{e1,ie1,...,ex,iex} to {f1,if1,..., fr,ifx}. Show that

det B = (det A)det A.

6. Let K be any ring containing 1. For each i€Z™, let V;= K. Whenever i < j, define
pji:Vi—V; by pji(v) =27

this is a homomorphism of K-modules. Since py; = prjpji whenever i < j <k, {pjiti<; is a
directed system. Let
— .
Voo =1limV; = lim V.
7+ T—>00
(a) Suppose 2=0€ K (e.g. K=Zs). Show that Voo ={0}.
(b) Suppose 2 is a unit in K (e.g. K =R). Show that Vo~ K as K-modules.

(¢) Suppose 2 is not a unit in K, but 2#0 € K, and K is an integral domain (e.g. K =7).
Show that the K-module V, is not finitely generated.

103



Appendix B

Topology

B.1

Lemma B.1.1. Let M be a set and {@y: Uy —>Ma}aeA a collection of bijections from subsets
U, of M to topological spaces M, such that

paops’: 0s(UanUs) — ¢a(UaNUs)

is a homeomorphism between open subsets of Mg and M,, respectively, for all o, € A. If the
collection {Uqy}aea covers M, then M admits a unique topology Trr such that each map o is a
homeomorphism. If in addition

(1) the collection {Uy}aca separates points in M, then the topology Tyr is Hausdorff;

(2) there exists a countable subset Ay C A such that the collection {Uq}aca, covers M and M, is
second-countable for all a€ Ay, then the topology Tar is second-countable.

A basis for the topology Tas consists of the subsets U C M such that U C U, and ¢, (U) C M, is
open for some a € A.

Lemma B.1.2 (Lebesgue Number Lemma,[8, Lemma 27.5]). Let (M, d) be a compact metric space.
For every open cover {Uy}aca of M, there exists § €R with the property that for every subset S C M
with diamg(S) <e there exists a € A such that S CU,.

B.2 Fundamental Group and Covering Projections

Exercises

1. Show that every Hausdorff locally Euclidean space is regular.
2. Show that every regular second-countable space is normal.

3. Verify Lemma B.1.1.
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Index

chart
smooth, 3
cotangent bundle, 60

diffeomorphism, 8
local, 8
distribution, 52

foliation, 52
proper, 52

geodesic, 72

immersion, 24
integral, 52
regular, 28

integral curve, 83

isotopic, 70

Lie bracket, 44
Lie derivative, 89
line bundle, 40

line with two origins, 2

locally Euclidean, 2

manifold
orientable, 69
smooth, 3
topological, 2

normal bundle
immersion, 56

submanifold, 56

orientation double cover, 70

partition of unity, 65
projective space
complex, 6
real, 5

smooth map, 8

smooth structure, 3
product, 8
quotient, 12
subspace, 8

smoothly homotopic, 70

submanifold, 24

tautological line bundle
complex, 42
real, 41

vector bundle
complex, 41
direct sum, 58
dual, 59
exterior product, 63
orientable, 67
quotient, 55
real, 40
section, 42
tensor product, 61
zero section, 43
vector field, 42
flow, 85
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