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Abstract

Our previous paper introduces topological notions of normal crossings symplectic divisor and
variety and establishes that they are equivalent, in a suitable sense, to the desired geometric
notions. Friedman’s d-semistability condition is well-known to be an obstruction to the smootha-
bility of a normal crossings variety in a one-parameter family with a smooth total space in the
algebraic geometry category. We show that the direct analogue of this condition is the only ob-
struction to such smoothability in the symplectic topology category. Every smooth fiber of the
families of smoothings we describe provides a multifold analogue of the now classical (two-fold)
symplectic sum construction; we thus establish an old suggestion of Gromov in a strong form.
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1 Introduction

Flat one-parameter families of smoothings are an important tool in algebraic geometry and raise
considerable interest in related areas of symplectic topology. The Gross-Siebert program [11] for
a direct proof of mirror symmetry has highlighted in particular the significance of log smooth
degenerations to log smooth algebraic varieties. A central part of this program is the study of
Gromov-Witten invariants (which are fundamentally symplectic topology invariants) under such
degenerations. Such a study is undertaken from an algebro-geometric perspective in [1, 3, 12]. The
almost complex analogue of the log smooth category provided by the exploded manifold category
of [19] underlines a similar study of Gromov-Witten invariants in [20]. Log smooth varieties in-
clude varieties with normal crossings (or NC) singularities, i.e. singularities of the form z;...zx =0
in complex coordinates. Purely symplectic topology notions of an NC symplectic variety and of a
one-parameter family of smoothings of such a variety are introduced in [4] and in this paper, re-
spectively. It is straightforward to show that the direct analogue of the well-known triple point
condition of algebraic geometry is an obstruction for an NC symplectic variety to admit a one-
parameter family of smoothings. The main construction of this paper produces such a family for
every NC variety satisfying this direct analogue and thus establishes the necessity and sufficiency
of this condition. A non-central fiber of such a family is a representative of the deformation equiva-
lence class of the multifold symplectic sum construction on the central fiber envisioned in [10, p343].

For a symplectic submanifold V' in a symplectic manifold (X, w), the normal bundle

TX|yv
TV

of V in X inherits a fiberwise symplectic form w|a,v from w. The space of complex structures
on the fibers of (1.1) compatible with (resp. tamed by) w|yv is non-empty and contractible;
we call such complex structures w-compatible (resp. w-tame). The now classical symplectic sum
construction, indicated in [10, p343] and carried out in [9, 14], smooths out the union of two
symplectic manifolds (X7,w;) and (X2,ws) glued along a common compact smooth symplectic
divisor V' = Xj5 such that

NxV = ~TVY = {vel,X: zeV, w(v,w)=0VweT,V} —V (1.1)

c1(Nx, X12) + c1(Nx, X12) = 0 € H*(X12; Z) (1.2)

into a new symplectic manifold (X4, wy). From the complex geometry point of view, this construc-
tion replaces the nodal singularity z1zo =0 in C™, i.e. the union of the two coordinate hyperplanes,
by a smoothing z;2zo =\ with Ae C*.

In this paper, we describe a multifold version of the symplectic sum construction of [9, 14]; it in
particular smooths out the union of several symplectic manifolds identified along transversely inter-
secting smooth divisors with a single smoothing parameter A\. From the complex geometry point of
view, this construction replaces the singularity z;...zy =0 in C”, i.e. the union of the N coordinate
hyperplanes, by a smoothing z;...zxy =X with A€ C*. An inverse degeneration construction, which
includes a multifold version of the symplectic cut procedure of [13], is described in [6]. The precise
relation between the smoothing/sum construction of the present paper and the degeneration/cut
construction of [6] is the subject of [7].

The topological restriction (1.2) is equivalent to the existence of an isomorphism

NX1X12 ®CNX2X12 ~ X1oxC (1.3)



of complex line bundles over Xi2. The topological type of X4 in [9] depends only on the homotopy
class of such an isomorphism. With such a choice fixed, the construction of [9] involves choosing an
wi-compatible almost complex structure on Nx, X2, an we-compatible almost complex structure
on Nx,Xi2, and a representative for the above homotopy class. Because of these choices, the
resulting symplectic manifold (Xy,wy) is determined by (X1,w1), (X2,w2), and the choice of the
homotopy class only up to symplectic deformation equivalence. Since the symplectic deformations
of the tuple

(X1, X2, X12), (w1, w2)) (1.4)

do not affect the deformation equivalence class of (X4, wy), it would have been sufficient to carry
out the symplectic sum construction of [9] only on a path-connected set of representatives for each
deformation equivalence class of the tuples (1.4). This change in perspective turns out to be very
useful for smoothing out NC symplectic varieties, including unions of several symplectic manifolds
glued along transversally intersecting smooth divisors.

The one-parameter family zi...zxy = A of smoothings of the union of the N coordinate hyper-
planes (Cfv in CV involves compatible complex structures on (Cfv that preserve all coordinate sub-
spaces (ny CCN. For each i=1,..., N, the union of the codimension 2 coordinate subspaces Cf}’
with j #i is a simple crossings (or SC) Kihler divisor in C¥. Analogues of this notion and of the
related notion of an SC variety in the symplectic category are introduced in [4] and reviewed in
Section 2.1 of the present paper; see Definitions 2.1 and 2.5. In the terminology of Definition 2.5,
the tuple (1.4) is a 2-fold SC symplectic configuration and the tuple

(X1Ux,, X2, (w1, w2)) (1.5)

is the associated NC symplectic variety. As noted at the end of Section 2.1, an SC symplectic vari-
ety Xy comes with a natural complex line bundle Ox, (Xjy) over its singular locus Xp; see (2.14).
We call it the normal bundle of X in Xj; it reduces to the left-hand side of (1.3) in the setting of [9].
By Theorem 2.8, an SC symplectic variety Xy is smoothable in a one-parameter family if and only
if the line bundle Ox, (Xy) is trivial. Furthermore, the possible families of smoothings are again
classified by the homotopy classes of its trivializations. We give two examples in Section 2.3. In [5],
we extend Theorem 2.8 to arbitrary NC symplectic varieties and give more elaborate examples of
the associated smoothings.

Theorem 2.8 leads to and has further potential for very different applications in symplectic topol-
ogy. First and foremost, it includes a new surgery construction for symplectic manifolds and thus
opens the possibility of generating new symplectic manifolds. Furthermore, it fits naturally with
a decade-long program to develop decomposition formulas for Gromov-Witten invariants under
one-parameter families of almost Kéhler (or projective) degenerations; approaches to this problem
appear in [1, 3, 12, 20]. An immediate consequence of Theorem 2.8, along with [4, Theorem 2.17],
is that the decomposition formulas arising from [20] include splitting formulas for Gromov-Witten
invariants of the N-fold symplectic sums of Theorem 2.8. Since the decomposition formulas of [20]
have connections with tropical geometry, Theorem 2.8 may have applications in this field as well.
It should also have applications in the theory of singularities, as an isolated singularity can often
be studied by smoothing it and then applying symplectic techniques as in [16, 23]. Theorem 2.8
provides a purely topological condition for the smoothability of a singularity symplectically after a
sequence of blowups that turns it into a simple crossings form (even though it may not be smooth-



able algebraically).

Surgery constructions on 4-dimensional symplectic manifolds along pairwise positively intersecting
immersed surfaces are described in [25, 26]. While these are called N-fold symplectic sum con-
structions, this terminology agrees with ours (which is consistent with algebraic geometry and [10,
p343]) only for N =3. In particular, the setting of [26, Theorem 2.7] is a specialization of the N =3
case of the setting of our Theorem 2.8. The output of [26, Theorem 2.7] is then symplectically
deformation equivalent to the smooth fibers of the one-parameter family provided by Theorem 2.8.
The perspectives taken in [26] and the present paper are fundamentally different as well. The
viewpoint taken in the former is that of surgery on 4-dimensional manifolds; our viewpoint is that
of smoothing a variety in a one-dimensional family with a smooth total space. The configurations
in [26] with N >4 correspond to varieties, such as

{(m,y,z,w)e(C4 : xy=0, zw:0}, (1.6)

that do not even admit such smoothings. The total space of the natural one-parameter smoothing
of (1.6), i.e. with 0 replaced by A€C, is singular at the origin. On the other hand, the total space
of this family is smooth in the logarithmic category central to the mirror symmetry program of [11]
and in the exploded manifold category of [20]. Unfortunately, symplectic topology analogues of
the singularity described by (1.6) are yet to be defined.

Notions of symplectic regularizations for an SC divisor {V;};cs in X and a configuration X are
introduced in [4, Sections 2.2,2,3] and recalled in Sections 3.1 and 3.2 of the present paper; see
Definitions 3.5 and 3.7. Such regularizations provide essential auxiliary data for the multifold sym-
plectic smoothing/sum construction of Theorem 2.8, just as they did in the N =2 case addressed
in [9, 14]. By [4, Theorem 2.17], the space Symp™(X) of symplectic structures on X is weakly
homotopy equivalent to the space Aux(X) of pairs consisting of a symplectic structure on X and
a compatible regularization. In Section 3.3, we show that a given trivialization of the complex
line bundle Ox,(Xy) can be homotoped to be compatible with a given symplectic regularization
for X in a suitable sense and that any two compatible trivializations are homotopic to each other
through compatible trivializations. While the projection map from Aux(X) to Symp™(X) need not
be surjective in general (in contrast to the N =2 case), this is not an issue for typical applications
in symplectic topology.

In Section 4, we show that the triviality of Ox,(Xjy) is sufficient for the existence of a one-parameter
family of smoothings of the symplectic variety associated to an SC symplectic configuration, up to
symplectic deformation equivalence. By Proposition 5.1, this condition is necessary and in fact ev-
ery one-parameter family of smoothings determines a homotopy class of trivializations of Ox,(Xp).
By Proposition 5.5, the homotopy class determined by a one-parameter family constructed as in
Section 4 is the homotopy class used in its construction. Appendix A collects some basic facts
concerning connections on vector bundles. Appendix B provides a more intrinsic perspective on
the smoothability criterion of Theorem 2.8.

We would like to thank E. Lerman for pointing out related literature and B. Parker and D. Sullivan
for related discussions.



2 Main theorem
We begin by introducing the most commonly used notation. If N €Z=% and IC{1,..., N}, let
[N]={1,...,N}, CY={(z1,...,2n)€C": z;=0VieI}.

Denote by P(N) the collection of subsets of [N] and by P*(NN) CP(NV) the collection of nonempty
subsets. If N'—V is a vector bundle, N/ CN, and V' CV, we define

J\fqyﬂ ZZJVWyH NN (2.1)

Let I=]0, 1].

2.1 Preliminaries

We first recall the notions of simple crossings (or SC) symplectic divisor and variety introduced,
described in more detail, and illustrated with examples in [4, Section 2.1]. We then define a natural
complex line bundle Oy, (Xy) over the singular locus X5 of an SC symplectic variety Xj.

Let X be a (smooth) manifold. For any submanifold V' C X, let

TX|y

NxV = v

—V

denote the normal bundle of V' in X. For a collection {V;};cs of submanifolds of X and I C S, let

WEﬂ%CX.
el

Such a collection is called transverse if any subcollection {V;};c; of these submanifolds intersects
transversely, i.e. the homomorphism

X0 PV — PLX, (v(v)ier) — W+viier, (2.2)
el i€l

is surjective for all x € V;. Each subspace V; C X is then a submanifold of X and the homomorphisms

NxVi — @PNxVi|,, VICS, My Vi — NxVi|,, Vielcs,
“ (2.3)
D My Vi — My, Vi Y I'cIcS

iel-I'

induced by inclusions of the tangent bundles are isomorphisms.

If X is an oriented manifold, a transverse collection {V;};cs of oriented submanifolds of X of even
codimensions induces an orientation of each submanifold V; C X with |I| > 2, which we call the
intersection orientation of V7. If V; is zero-dimensional, it is a discrete collection of points in X
and the homomorphism (2.2) is an isomorphism at each point = € V7; the intersection orientation
of Vi at x € VI then corresponds to a plus or minus sign, depending on whether this isomorphism
is orientation-preserving or orientation-reversing. For convenience, we call the original orientations



of X=Vj and V;=VJ;, the intersection orientations of these submanifolds V7 of X with |I|<2.

Suppose (X,w) is a symplectic manifold and {V;};cs is a transverse collection of submanifolds
of X such that each V; is a symplectic submanifold of (X,w). Each V then carries an orientation
induced by w|y,, which we will call the w-orientation. If V7 is zero-dimensional, it is automatically
a symplectic submanifold of (X, w); the w-orientation of V; at each point x €V corresponds to the
plus sign by definition. By the previous paragraph, the w-orientations of X and V; with ¢€ I also
induce intersection orientations on all Vj.

Definition 2.1. Let (X,w) be a symplectic manifold. An SC symplectic divisor in (X,w) is a
finite transverse collection {V;};cs of closed submanifolds of X of codimension 2 such that V7 is a
symplectic submanifold of (X,w) for every I C S and the intersection and w-orientations of V; agree.

The intersection and symplectic orientations of V; agree if |I| <2. Thus, an SC symplectic divisor
{Vi}ies with |S|=1 is a smooth symplectic divisor in the usual sense. If (X, w) is a 4-dimensional
symplectic manifold, a finite transverse collection {V;};cs of closed symplectic submanifolds of X
of codimension 2 is an SC symplectic divisor if all points of the pairwise intersections V;, NV;, with
i1 # 19 are positive; these are the cases considered in [25, 26].

Definition 2.2. Let X be a manifold and {V;};cs be a finite transverse collection of closed sub-
manifolds of X of codimension 2. A symplectic structure on {V;};cs in X is a symplectic form w
on X such that V7 is a symplectic submanifold of (X,w) for all ICS.

For X and {V;};cs as in Definition 2.2, we denote by Symp(X, {V;}ics) the space of all symplectic
structures on {V;};cs in X and by

Symp™ (X, {Vi}ties) C Symp(X, {Vi}ies)
the subspace of the symplectic forms w such that {V;};cs is an SC symplectic divisor in (X,w).

Definition 2.3. Let N €Z'. An N-fold transverse configuration is a tuple { X1} rep+ () of manifolds
such that {X;};e(n)—; is a transverse collection of submanifolds of X; for each i€ [N] and

k
X{ij1,...,ijk} = mXijm = Xijl...jk v jl, c.. ,jk € [N] —1.
m=1
Definition 2.4. Let N€Z* and X={Xr};cp+(n) be an N-fold transverse configuration such that
Xij is a closed submanifold of X; of codimension 2 for all 7, j € [N] distinct. A symplectic structure
on X is a tuple

N
(wi)ie[N] S H Symp(sz {Xz‘j}je[N]—i)

=1

such that w;, |Xm.2 :a)i2|Xm.2 for all i1,i9 € [N].

For an N-fold transverse configuration as in Definition 2.3, let

N
X@_(I_IXi)/N’ XZ‘B.’L'N(IJEXj VxEXZ'jCXZ‘,Xj,Z‘%j, (2.4)
i=1
Xo= |JXrcXxy. (2.5)
I€EP(N),|I|=2



Xk
Figure 1: A 3-fold simple crossings configuration and variety.

The SC variety X associated to a 3-fold SC configuration is shown in Figure 1. For k€ Z2°, we
call a tuple (w;);e[n] @ k-form on Xy if w; is a k-form on X; for each i€ [N] and

Vi, j€[N].

Wilx, = Wj‘Xij

For X as in Definition 2.4, let Symp(X) denote the space of all symplectic structures on X and

N
Symp™ (X) = Symp(X) N H Symp™ (Xi, {Xij}je[N]—i) . (2.6)
i=1
Thus, if (w;)eqn] is an element of Symp™ (X), then {X;;},ein—; is an SC symplectic divisor in
(Xi,w;) for each i € [N].

Definition 2.5. Let N €Z". An N-fold simple crossings (or SC) symplectic configuration is a tuple

X = ((X1)1ep+(v)s (@i)ieny) (2.7)

such that {X;};ep«(n) is an N-fold transverse configuration, X;; is a closed submanifold of X;
of codimension 2 for all i, j € [N] distinct, and (w;);c(n] € Symp™(X). The SC symplectic variety
associated to such a tuple X is the pair (Xg, (wi)ie[n)-

Suppose (X,w) is a compact symplectic manifold and V' C X is a smooth symplectic divisor,
i.e. |S|=1 in the notation of Definition 2.1. Fix an identification ¥ of a tubular neighborhood D5 V'
of V in NxV with a tubular neighborhood of V in X (i.e. a regularization of V in X in the sense
of Definition 3.1) and an w-tame complex structure i on NxV. Let

Ox(V) = (U mh v Nx Vw(pg, vy U (X =V) xC) /~ — X, (2.8)
\Ifil*Tl'j\/'XvNXV‘q/(Dg(V) > (‘Il(v),v,cv) ~ (\I/(v),c) € (X-V)xC.

This is a complex line bundle over X with ¢;(Ox(V))=PDx([V]x), where [V]x is the homology
class in X represented by V. The space of pairs (¥,1i) involved in explicitly constructing this line
bundle is contractible.

Suppose X is an SC symplectic configuration as in (2.7). If 7, j, k € [N] are distinct, the inclusion
(XK, Xijr) — (X}, X;;) induces an isomorphism

TXiklx,. ~ TXjlx.,
X = I8k R T T Rk X 2.9
A Xigh TX 1 TX;lx N, Xii ., (2.9)

ijk



of rank 2 real vector bundles over Xjj;; this is a special case of the second isomorphism in (2.3)
for X=Xj;. Thus, the rank 2 real vector bundles Nx, Xij|x,;, and Ny, Xik|x,,, are canonically
identified with NXijijk- Let

/
U e N

’Lj]—>X]’ Z',jE[N],Z'#j,
be a collection of identifications of tubular neighborhoods of X;; in N x;Xij and in X so that

\IJZ],] }/\[i/j;ijXijijk = \I’ik;k ‘Nilk;kmNXijijk (210)

for all i, j, k€ [N] with k, j #i.

Since the intersection and wj-orientations of
Xijk = Xij N Xjk C Xj

agree, the isomorphism (2.9) is orientation-preserving with respect to the orientations induced
by (wjlx;)l N, Xii and wj| Nx,X;;- Thus, we can choose a collection of wj-tame complex struc-
tures i;;;; on the vector bundles Nj.; so that

iies = ik 2.11

for all i, j, k€ [N] with k, j #i.

For 4, j € [N] distinct, let O, (X;;) be the complex line bundle over X; constructed as in (2.8) using
the identification W;;.; and the complex structure i;;;;. By (2.10) and (2.11), there are canonical
identifications

Ox; (Xij)‘xjk - OXjk(Xijk) = Ox, (Xik)‘Xjk (2.12)
for all 4, j, k€ [N] with j, k#i. For each i€ [N]
Oxe(X;) = ( | |Ox, (X3 ) ~— Xi= | JX; C X, (2.13)
€[N]—{i} JEINT—{i}

OXj (Xij)‘Xjk SU~UE OXk( zk)‘Xjk Vluju ke [N]’ ja ]{:752,
is thus a well-defined complex line bundle. Let Ox,(X;)=0x¢(Xi)|x,-

We call the complex line bundle

Ox,(Xp) = ®(’)X8 (2.14)

the normal bundle of the singular locus Xg in Xj. The space of the collections of pairs (¥;;.5,1i5:5)
involved in explicitly constructing this line bundle is contractible. By (2.12),

Ox,(Xo)| ., = Nx, Xij @ Nx, Xi; ® QR Ox,, (Xiju) Vi, je[N], i#j.
ke[N]—{i.j}

In the N =2 case, this line bundle is the left-hand side of (1.3).



2.2 Statement

We now describe the setup for our smoothing/sum construction in the symplectic topology category.
Theorem 2.8 provides a necessary and sufficient topological condition for when it can be carried
out.

Definition 2.6. If (£,wz) is a symplectic manifold and A CC is a disk centered at the origin, a
smooth surjective map m: Z — A is a nearly regular symplectic fibration if

e Zo=n"1(0)=X1U...UXy for some SC symplectic divisor {X;};en in (2, wz),
e 7 is a submersion outside of the submanifolds X; with |I|>2,

e for every A€ A—{0}, the restriction wy of wz to Z) = 7~ !(\) is nondegenerate.

Let (Z,wz), m, and X be as above. For each I C[N], the derivatives of 7 along the normal bundles
NzX; of X; in Z induce a homomorphism

Dim: QNzXi|,, — C (2.15)
el

that vanishes along X; with I C J C [N]. If I ={i}, Dyr is the homomorphism induced by the
differential
dm: TZ‘XI — ToC=C

of m; its restrictions to T'X; and T Z|x, with I C J C [N] vanish. If I C [N] is non-empty and
J=1IU{j}, then D is the homomorphism induced by the differential of
d{D]Tr}: TX]’XJ — HomR<®NgXi,(C>
el
via the natural identification Nz X;|x, =Nx, X .

Definition 2.7. Let (Xp, (wi)ie[n)) be the SC variety associated to an SC symplectic configura-
tion (2.7). A one-parameter family of smoothings of (X, (wi)ic|n]) is a nearly regular symplectic
fibration as in Definition 2.6 with

X;=()XiCcXy=2 CZ VIEP(N)
el
such that the homomorphism

NzXz"x — C, v; — Dim((v5)jer), (2.16)

is an orientation-preserving isomorphism for all i€ I C [N], x € X with ¢ X ; if I CJ C[N], and
vj €Nz X;|,—{0} for jeI—{i}.

We call (the deformation equivalence class of) an SC symplectic variety (X, (w;)ic[n)) smoothable
if some SC symplectic variety (Xp, (w})ic;n]) deformation equivalent to (Xg, (w;);c[n) admits a one-
parameter family of smoothings. Theorem 2.8 below provides a necessary and sufficient topological
condition for the smoothability of an SC symplectic variety.



Theorem 2.8. Let X be an N-fold SC symplectic configuration as in (2.7). The associated SC
symplectic variety (Xg, (wi)ic(n)) s smoothable if and only if the normal bundle Ox,(Xy) of its
singular locus is trivializable. Furthermore, the germ of the deformation equivalence class of the
smoothing (Z,wz, ) provided by the proof of this statement is determined by a homotopy class of
trivializations of Ox,(Xy). If in addition Xp is compact, the deformation equivalence class of a
smooth fiber (Zy,wy) is also determined by a homotopy class of these trivializations.

Remark 2.9. In a future paper, we expect to show that the deformation equivalence class of
any one-parameter family of smoothings of (Xg, (wi)ie|n]) corresponds to a homotopy class of
trivializations of (2.14). This is equivalent to every such smoothing being equivalent to a smoothing
as constructed in Section 4.

By standard Cech cohomology considerations and (2.14), the complex line bundle Ox,(Xp) is
trivializable if and only if

N
D e1(0x,(X:)) =0 € H* (X0 Z). (2.17)
i=1

By [24, Corollary 6.9.5], the Cech and singular cohomologies of Xy (as well as of all other spaces
in this paper) are canonically isomorphic.

If N=1, (2.17) imposes no condition. In this case, we can take (Z,wz) to be the product symplectic
manifold (X1,w;) x (A, wc), where we is the standard symplectic form on C. The N =2 case of
Theorem 2.8 is the symplectic sum construction of [9, 14] for the SC symplectic variety (1.5). It
glues two symplectic manifolds (Xj,w;) and (Xs,w2) along normal circle bundles of a common
symplectic divisor (Xj2,wi2) if

c1(Ox,(X1)) + c1(0x,(X2)) = 1 (Nx, X12) + 1 (Nx, X12)
=0€ H*(X12;Z) = H*(Xp; Z),

e. (1.2) is satisfied.

In general, the condition (2.17) implies that

o1 (Nx, Xij) + 1 (Nx, Xij) + Z [Xijk]xij =0 Vi,je[N], i#j. (2.18)
ke[N]—{i,j}

The latter implies the former if at most one of the restriction homomorphisms

H'(Xi;;Z) —  @PH (X Z), i, €[N], i #3, (2.19)
ke[N]—{i,5}

is not surjective, but not in general; see Example 2.11. In the most basic case of the N =3 situ-
ation of Theorem 2.8 with X;; and X, being symplectic surfaces in a 4-dimensional manifold X;
intersecting transversely and positively at a single point, the conditions (2.17) and (2.18) reduce
to the simple condition on the self-intersection numbers of these surfaces stated in [26, Theorem 2.7].

The algebro-geometric analogue of (2.17),

Ox,(Xp) = Ox,,

10



is called d-semistability in [8, Definition (1.13)]. It is well-known to be an obstruction to the
existence of a one-parameter family of smoothings of X in the algebraic geometry category; see
[8, Corollary (1.12)]. As shown in [22], it is not the only obstruction in the algebraic category, even
in the N =2 case. The algebro-geometric analogue of (2.18),

NXiXij ®NXinj by ®0X”(X1jk) ~ OXij v ivj € [N]a i 7& ja
ke[N]—{i,j}

is known as the triple point condition; see [21, Proposition 2.4.3].

As in the N =2 case of Theorem 2.8 addressed in [9], the construction of 7: (Z,wz) — A involves
some auxiliary data for X and a compatible choice of a trivialization of the complex line bun-
dle (2.14) in a given homotopy class. We call the former regularizations and recall their definition
in Sections 3.1 and 3.2. Proposition 3.9, proved in Section 3.3, ensures that each homotopy class
of trivializations of (2.14) contains a representative compatible with a given regularization for X.
The main part of the proof of Theorem 2.8 is carried out in Section 4, where the chosen auxiliary
data for X and a compatible trivialization of (2.14) are used to construct a one-parameter fam-
ily m: Z— A of smoothings of (Xp, (wj)ic;n7). By Proposition 5.1 proved in Section 5.1, every
one-parameter family 7: Z — A of smoothings of (X, (w})ic[n]) determines a homotopy class of
trivializations of (2.14). By Proposition 5.5 proved in Section 5.2, the homotopy class determined
by the family constructed in Section 4 is the homotopy class used to construct it.

2.3 Examples

We now give two examples. The first one describes a 3-fold case of Theorem 2.8. The second
example shows that condition (2.18) is in general weaker than condition (2.17).

Example 2.10 ([26, Example 2.8]). Let P2 be the blowup of P? at a point p, E,L C P2 be the
exceptional divisor and the proper transform of a line through p, respectively, and P=FENL. We
take X1, X2, X3 =P? and identify E C X; with L C X, E C X2 with L C X3, and E C X3 with
L C Xy; see Figure 2. By adjusting the size of the blowup as in [15, Section 7.1], we can ensure
that the identifications can be made symplectically. Since

(1(Ng,E), E) = -1 and (c1(N3, L), L) =0,

the resulting 3-fold configuration ((X7);cp+(3), (wi)icj3)) satisfies (2.18) for all i, j € [3] distinct. Since
all three homomorphisms (2.19) are surjective in this case, this configuration thus satisfies (2.17).
The singular locus Xy of the NC symplectic variety Xy to be smoothed out consists of 3 copies
of P! with one point in common. Since Xy is simply connected, there is only one homotopy class
of trivializations of (2.14). The symplectic deformation equivalence class (of a smooth fiber) of the
corresponding 3-fold symplectic sum is P2. This is illustrated in the second diagram in Figure 2
from the symplectic cut perspective of [6] applied in a toric setting (the big triangle corresponds
to P?).

Example 2.11. Let X; =P? with its standard symplectic form, X2 ~P? be a linear subspace,
and X3 CP? be a cubic surface transverse to Xi2. The intersection X923 of X2 and X3 is then
a plane cubic, i.e. a genus 1 curve. For i=2, 3, define

L1 = Nx, X1; ® Ox,,(X123) =~ Ops (4)‘)(11. — X4,
X; :P(ﬁli@(’)xu), X7 :P(ﬁli@o) ~ Xy,

11



Figure 2: The NC variety of Example 2.10 and a toric representation of the corresponding sym-
plectic sum.

see the left diagram in Figure 3. There are canonical isomorphisms
Li2|x155 & (Nx; X12@Nx, X13) [x125 & (N X13@Nx, X12) [ X125 = L13] X124 - (2.20)

The homotopy classes of all isomorphisms Li2]x,,5 ~ £13]x,,; in the category of complex (not
holomorphic) line bundles correspond to the homotopy classes of continuous functions X193 — 51,
i.e. to the elements of

HY(X193;7) =~ 7.
Any such isomorphism p induces an identification

Yhy: P(ﬁm@((:)‘xms — P(ﬁm@@)’xug ,

which can be assumed to be holomorphic by pushing the holomorphic structure forward; the zero
element of H'(X123;7) corresponds to the identification induced by (2.20). The SC variety
Xp=X1UXoUX3,  Xoz = P(L128O0xy,) |y, ~ut, PL13EO0x) |,

23

is then Kéhler and satisfies the vanishing condition in (2.18) over X129 and Xj3. If p corresponds to
a nonzero element of H'(X123;7), then (2.17) is not satisfied over X15UX13 because the connecting
homomorphism ¢ in the exact sequence

H'(X1;Z) & H'(X13;Z) — H'(X123;Z) — H*(X1UX13; )
is injective (X2 and Xj3 are simply connected). Let
X3 =P(080x,,,) , X5 ="P(L1280)|x,55 C P(L12BO0x,,)| X105 »
and 7: Xo3 — X123 be the projection map. Using
Nx, Xog = m*Nx,, X123 = 7" (Ops (T—2i)|x,,,)  for i=2,3,
we find that
Ny X203 @ Nx3 Xo3 @ Ox,5(X123) = 7 (Opa(4)] x125) ® Oxps (X753) # Oxts -

In order to achieve (2.18) over all smooth strata of Xy, we replace Xo by its blowup )A(g along X ?23;
see the right diagram in Figure 3. The proper transform of Xog is still Xs3, but its normal bundle
in )?2 18

NX2X23 ® OX23(_X?23) = NX2X23 ® OX23(_XS3) ® 7" (OIP’S(_4)’X123) :
Thus, the modified 3-fold SC symplectic configuration satisfies the vanishing condition in (2.18)
over all smooth strata of Xg.

12



Figure 3: The two NC varieties in Example 2.11.

3 Regularizations

In [4, Sections 2.2,2 3], we introduced notions of symplectic regularizations for an SC divisor {V; }ics
in X and an SC configuration X; we recall them in Sections 3.1 and 3.2. Such regularizations
provide essential auxiliary data for the symplectic smoothing/sum construction of Theorem 2.8,
just as they did in the N =2 case addressed in [9, 14]. By [4, Theorem 2.17], the space Symp™ (X)
defined in Section 2.1 is weakly homotopy equivalent to the space Aux(X) of pairs consisting of
an element of Symp™(X) and a compatible regularization. Proposition 3.9, which is established
in Section 3.3, adjusts this weak homotopy equivalence property to incorporate trivializations
of (2.14); see also (3.12) and Remark 3.12.

3.1 SC divisors

If B is a manifold, possibly with boundary, and k€ Z=% we call a family (w;);ep of k-forms on X
smooth if the k-form w on B x X given by

welz(v1, .. vg), if o, . o €T X,

w Vly-v, V) =
v (V1 2 {0, if v, €T} B;

is smooth. Smoothness for families of other objects is defined similarly.

We call 7: (L, p, V) —V a Hermitian line bundle if V' is a manifold, L —V is a smooth complex
line bundle, p is a Hermitian metric on L, and V is a p-compatible connection on L. We use the
same notation p to denote the square of the norm function on L and the Hermitian form on L
which is C-antilinear in the second input. Thus,

p(v) = p(v,v), pliv,w) =ip(v,w) = —p(v,iw) V (v,w)€ Lxy L.

Let p® denote the real part of p. Each triple (L, p, V) as above induces a connection 1-form a, v
on the principal S'-bundle SL of p-unit vectors; see Appendix A. Via the canonical retraction
L-V — SL, o, v extends to a 1-form on L—V. A smooth map h: V/—V pulls back a Hermitian
line bundle (L, p, V) over V to a Hermitian line bundle

W (L,p,V) = (h*L, h*p, h*V) — V.

A Riemannian metric on an oriented real vector bundle L — V' of rank 2 determines a complex
structure on the fibers of L. A Hermitian structure on an oriented real vector bundle L —V of
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rank 2 is a pair (p, V) such that (L, p, V) is a Hermitian line bundle with the complex structure i,
determined by the Riemannian metric p®. If © is a fiberwise symplectic form on an oriented vector
bundle L — V of rank 2, an Q-compatible Hermitian structure on L is a Hermitian structure (p, V)
on L such that Q(-,i,") = p®(-, ).

If (L;, pi, V@)icr is a finite collection of Hermitian line bundles over a symplectic manifold (V,w),
TN = @ L;—V,
iel
and pry,;_;: N — L; is the component projection map for each i€ I, then

~0 * 1 *
Yips, Ve = T W t 2 Z prl?l_id(piapi,v(i)) (3.1)
el

is a well-defined closed 2-form on the total space of N; it is nondegenerate on a neighborhood
of Vin N. By (A.9), this definition agrees with [4, (2.10)] whenever (p;, V() is an Q;-compatible
Hermitian structure on L;

If U: V' —V is an embedding, I’ C I, (L;, pi, V?);e; is a finite collection of Hermitian line bundles
over V, and (L, p,, V' (0));ep is a finite collection of Hermitian line bundles over V”, a vector bundle

homomorphism
v:PL,—PL
el’ i€l

covering W is a product Hermitian inclusion if
qj: (L;, :0;7 V,(Z)) — \Il*(L% Pi; v(z))

is an isomorphism of Hermitian line bundles over V' for every i € I’. We call such a morphism a
product Hermitian isomorphism covering W if |I'|=|I|.

Definition 3.1. Let X be a manifold and V C X be a submanifold with normal bundle N'xV — V.
A regularization for V' in X is a diffeomorphism ¥: A/ — X from a neighborhood of V' in NxV
onto a neighborhood of V' in X such that ¥(z)=x and the isomorphism

T, X

Ny Vs = TNy V — TNy V 23 17, — —

EN)(Vh

is the identity for every x€V.

If (X,w) is a symplectic manifold and V' is a symplectic submanifold in (X,w), then w induces a
fiberwise symplectic form w|xr, v on the normal bundle NxV of V in X via the isomorphism (1.1).
We denote the restriction of w|y, v to a subbundle L CNxV by w|f.

Definition 3.2. Let X be a manifold, V C X be a submanifold, and

Nva@Li

el

be a fixed splitting into oriented rank 2 subbundles.

14



(1) If w is a symplectic form on X such that V is a symplectic submanifold and w|r, is nonde-
generate for every i € I, then an w-regularization for V in X is a tuple ((p;, V¥);er, ¥), where
(pi, V@) is an w| ,-compatible Hermitian structure on L; for each i € I and ¥ is a regularization
for V in X, such that

* o ~e
Viw = “0i.VD)ier ‘DOIH(‘I’)'

(2) If B is a manifold, possibly with boundary, and (w)ep is a smooth family of symplectic forms
on X which restrict to symplectic forms on V', then an (w;)icp-family of regularizations for V'
in X is a smooth family of tuples

(Ro)ies = ((pri, VO icr, Vi), (3:2)
such that R; is an wy-regularization for V' in X for each t€ B and
{(t,v)e BxNxV: veDom(¥;)} — X, (t,v) — Wy (v),
is a smooth map from a neighborhood of BxV in BxNxV.

Suppose {V;};cs is a transverse collection of codimension 2 submanifolds of X. For each I C S, the
last isomorphism in (2.3) with I’=() provides a natural decomposition

T Nx‘/jz@NVI_iVI — VI

el

of the normal bundle of V; in X into oriented rank 2 subbundles. We take this decomposition as
given for the purposes of applying Definition 3.2. If in addition I' C I, let

Ny = @NVI,iV] =Ny, Vi — V.
iel—I

There are canonical identifications
./\/’];[,[/ :NXv[/‘VI, Nxv[:ﬂ';;p./\/‘[;[,p :W;;I’NXVI’ VI/CIC[N]. (3.3)
The first equality in the second statement above is used in particular in (3.7).

Definition 3.3. Let X be a manifold and {V;};cs be a transverse collection of submanifolds of X.
A system of regularizations for {V;};cs in X is a tuple (¥;);cg, where ¥y is a regularization for V7
in X in the sense of Definition 3.1, such that

U (N,rNDom(¥;)) = VpNIm(¥) (3.4)
forall I'CICS.
Given a system of regularizations as in Definition 3.3 and I'CICS, let

NI/;I’ :N];pﬂDOm(\I’]), ‘I’I;p = \I’I’NI/-N:NI/;P — ‘/]/ .

The map W;.;v is a regularization for V; in V. As explained in [4, Section 2.2, ¥ determines an
isomorphism

33\111;1/2777;1/./\/[;[_[/ (35)

R NxVp

NI/;I VI/ﬂIm(\I/[)
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of vector bundles covering W;.;» and respecting the natural decompositions of Nr.;_p =NxVp |y,
and Nx V. By the last assumption in Definition 3.1,

9\1’1;1/

=id: Np.—pr — NxVrly, (3.6)

Nl
under the canonical identification of N7.;_p with NxVp|y,.

Definition 3.4. Let X be a manifold and {V;},cg be a transverse collection of submanifolds of X.
A regularization for {V;};es in X is a system of regularizations (¥;)rcg for {V;}ies in X such that

Dom(¥;) = DV 1711/ (Dom(¥p)), W;=Vp oDV p|pomw,) (3.7)
forall I’'cICS.

If (U)rcs is a regularization for {V;}ies in X, then (3.6) and (3.7) imply that

/ /
oo =Nirly, Vivnrur =Y |\ ,
g TuJg;I'uJ (3 8)
Q\I}IU‘]J,U‘] T rosNIosa—1ua - Q\IJI;I/ T N p .
1010 IV INOUIING 5o LU I ING G

for all I'cIcS and JC S—1I. Furthermore,

\I/.N:\I’/.NO@‘I/./ @\I/.NZCD\I’/.NO@‘I’./ . 39

Il 11 LNy, Il 11 LI lwe Ny o v, (3.9)

forall I"cI'cICS.

Definition 3.5. Let X be a manifold and {V;};cs be a finite transverse collection of closed sub-
manifolds of X of codimension 2.

(1) If w € Symp™ (X, {V;}ies), then an w-regularization for {V;};cs in X is a tuple

(R)rcs = ((pra, VI )ier, U1) ;g (3.10)

such that R is an w-regularization for V7 in X for each I C S, (¥;)rcs is a regularization
for {Vi}ies in X, and the induced vector bundle isomorphisms (3.5) are product Hermitian
isomorphisms for all I'CICS.

(2) If B is a manifold, possibly with boundary, and (w;)tep is a smooth family of symplectic forms
in Symp™ (X, {V;}ics), then an (w;)iep-family of regularizations for {V;};cs in X is a smooth
family of tuples

(Renien,ics = ((puri VT )ier, Vir)iepics (3.11)

such that (Re)rcs is an wi-regularization for {V;}ics in X for each t€ B and (R¢;1)tep is an
(wi)te p-family of regularizations for V7 in X for each I CS.
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3.2 SC varieties

This section is the analogue of Section 3.1 for SC symplectic configurations, especially those sat-
isfying the topological condition (2.17). Definition 3.7(2) topologizes the set Auxy(X) of triples
((wi)ien), R, @) consisting of a symplectic structure (w;);e[n] on a transverse configuration X, an
(wi)ie[n)-regularization R for X, and a compatible trivialization ® of (2.14) in a homotopy class h.
By Proposition 3.9 at the end of this section, the projection

Awxy(X) — Sympg (X) € Symp™(X), (wi)ieng: R, @) — (wi)ien)s (3.12)

to the space of SC symplectic configurations satisfying (2.17) induces isomorphisms on 7 for all
kez="—{1}.

Suppose { X1} rep=(n) is a transverse configuration in the sense of Definition 2.3. For each I € P*(V)
with [I]>2, let
i NX = @PNx, X1 — X1

el

If in addition I' C I, let
TI:q - N];p = @NXI%X] — X7.

ic€l-I

By the last isomorphism in (2.3) with X =X for any i€ I’ and {V;}jes ={Xi;}jcn—i

Nip =Nx, X VI'CIC[N], I'#0.
Similarly to (3.3), there are canonical identifications
Nrir-r =NXpl|x,, NX;i=nppNprp=m1pNXp vV I'CICI|NJ; (3.13)
the first and last identities above hold if |I'| > 2.

Definition 3.6. Let N € Z* and X:{X]}IE’])*(N) be a transverse configuration. A regularization
for X is a tuple (¥r,)ierc[n), Where for each i € I fixed the tuple (Vr,;)icrc(n) is a regularization
for {Xi;}jeny—s in X; in the sense of Definition 3.4, such that

Vi, ‘Nj;ilizﬂDom(\III;il) = Vri, ’NI;ilmﬂDom(‘lﬁ;Q) (3.14)
for all i1,ip€ I C[N].
Given a regularization as in Definition 3.6 and I’ C I C[N] with [I|>2 and I' #0, let
Ni.p=NppNDom(¥r;), Vpp :xpmN;;ﬂ: Nip — Xp ifiel’; (3.15)
by (3.14), ¥;.;(v) does not depend on the choice of i€I’. Let
DVrir: 71 pNrioa—-r) N — N (W) (3.16)

be the associated vector bundle isomorphism as in (3.5). If |I'| > 2, we define an isomorphism of
split vector bundles

Q\I/[;[/: 71';;[/./\/];[_]/

—)NX[/

NI/;I Im(‘IjI;I’) ’

o0 (3.17)

= Q\I’[;i;p v iGI’;

m* N, ’
;17 Liu(I=17) !
NI;I/
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by (3.14), the last maps agree on the overlaps.

By (3.15)-(3.17) and (3.8),

/ /
rorrur =Nrelx, o Yonros = Yne| ;
3 ’ uJ IuJ;1’'uJg (3 18)
@\If I’ * — @ql I’ ’
TOJ;I'0J WIUJ;I/UJNIUJ;(I—I’)UJ‘N’ LI ‘W;;I/NI;I—I’|N’

TuJ;I'ug TuJ;I'ug

for all I'C I C[N] and J C[N]—1 with |I| >2 in all three cases, [I'| > 1 in the first two cases, and
|I'| >2 in the last case. By (3.15), (3.17), and (3.9),

\III;I” = \IJ]’;I” (e] :D\I/I;I’

Q\IJ.//:@\I//.NOQ\IJ./ «
N L1 I LI N (3.19)

for all I” C I' C I C [N] with |I’| > 2 in both cases, |I”| > 2 in the first case, and |I”| > 2 in the
second case.

Definition 3.7. Let N €Z" and X={X/};cp(n) be a transverse configuration.

(1) If (wi)ie[n is a symplectic structure on X in the sense of Definition 2.4, an (w;);c[n)-regularization
for X is a tuple

R = (Ri)1ep+(v) = (1, VI, \Pl;i)iE[C[N] (3.20)
such that (Wr;);ercin) is a regularization for X in the sense of Definition 3.6 and for each
i€ [N] the tuple

I;j
((pl;j) v( J))jEIfiv \Illn')iEIC[N]

is an wj-regularization for {X;;},cnv—; in X; in the sense of Definition 3.5(1).

(2) If B is a smooth manifold, possibly with boundary, and (wt.i)icp,ic(n] i @ smooth family of
symplectic structures on X, then an (wt;i)tegjie[N]-family of regularizations for X is a family of
tuples

(%t)teB = (Rt;1>teB,IeP*(N) = (Pt;f;ia v(t;f;i)’ \Ijtﬂ?i)teB,ieIC[N] (3-21)
such that (Rer)rep+(v) 18 an (w;)iev)-regularization for X for each t € B and for each i€ [N]
the tuple
iy
((pt;[;ja v(t J))jel—ia ‘yt;l;i)tGB,’iEIC[N]

is an (wy;;)iep-family of regularizations for {Xy;};c(n—; in X; in the sense of Definition 3.5(2).

The assumptions in Definition 3.7(1) imply that the corresponding isomorphisms (3.17) are prod-
uct Hermitian isomorphisms covering the maps (3.15).

The precise definition of the total space of the complex line bundle Ox,(Xp) in (2.14) depends on
the choices of identifications W;;.; of neighborhoods of X;; in X; and in X; and of the w;-tame
complex structures i;;,; on (the fibers of) Nx, X;; that satisfy (2.10) and (2.11), respectively. For
a smooth family (Xgp,we.)e Biie[N] of SC symplectic varieties as in Definition 2.5, such choices can
be made continuously with respect to t € B. We then obtain a complex line bundle

mB0: OB x, (X@) = U{t}XOt;XB (X@) — Bx Xy, (3.22)
teB
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where Oy.x,(Xy) — Xy is the line bundle corresponding to the symplectic structure (we.i)ie[n]
on X@.

If m: L— M is a complex line bundle, we call a smooth map ®: L — C a trivialization of L if ®
restricts to an isomorphism on each fiber of L. We call a family (%;)iep of homotopy classes of
trivializations of Oy x,(Xy) continuous if for each ¢y € B there exist a neighborhood U of ¢y in B
and a trivialization ® of Op.x, (X®)|7r§_13(U) such that the restriction of ® to {t} x O x,(Xp) lies

in Ay for every teU.

A regularization R for X as in Definition 3.7(1) specifies the identifications W;;,; and complex
structures i;5,; needed for the construction of the complex line bundles in (2.12) and (2.13). Given
a regularization R, we thus view the line bundles Ox, (Xijx), Ox,(X:), and Ox,(Xp) as explicitly
specified and denote them by O x, (Xijk), On;x,(Xi), and On,x,(Xp), respectively. By (3.18),

(Xijj/k’)’ij,k = O%;Xj/k( ij'k ‘X (323)

Omejk (Xijk)‘ij/ OSRX ii'k

Ji'k
for all i, 7,5, k€ [N] with i,k # j,j" and i#k. An (wei)epicn)-family (R¢)iep of regularizations
for X completely specifies the complex line bundle (3.22).

Let s, denote the standard section of the line bundle O, Xjk(Xijk):

Sik Z( ) _ {(.Z‘, U, U) € \Ijzjk JkTrl]k JkMJk? gk if x:\pijk;jk(v); (3_24)

(z,1) € (X;5—Xij5) xC, if € Xjp— Xijk .
This section is well-defined on the overlap by definition of O x, (Xijx); see (2.8). By (3.18),
sjk;i]ij/k = sj/k;i\xjj/k Vi, 3,5 k€[N, ik #7,7, i#k. (3.25)
If IC[N], j,k€l are distinct, and i€ I, let
Omn;x, (Xi) = Om§Xjk(Xijk)|XI ; 81 = Sjlc;z’lxl .

By (3.23) and (3.25), On.x,(X;) and sr,; are independent of the choice of j,k€l. By (3.24), sr
does not vanish outside of X ; C X7.

For every I C[N] with |I|>2, define a smooth bundle map
Hg)q;]i NX[ = @NXI%X] — O%;XB(X@)‘XI = ®NX1714X[ ® ® O{R;X] (XZ),
i€l i€l igl

o7 ((vrsi)ier) ®Uu ® ®Su V (vri)ier € NXq|,, € X7. (3.26)
i€l €1

This map is surjective over the complement X7 of the submanifolds X C X7 with I' D 1.

Definition 3.8. Let X be an SC symplectic configuration as in (2.7) and R be a regularization
for X as in (3.20). A trivialization ® of the complex line bundle O, x,(Xy) over Xy is 9-compatible
if

Oy, (DY, (vr,rsvrr-1))) = (U (vr,rs v 1)) (3:27)
and I'C I C[N] with |I'|>2.

for all (UI;I’,UI;I—I’) S W?;[/NI;]—I’ N
I;I
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Let X ={X1}ep-(n) be an N-fold transverse configuration such that X;; is a closed submanifold
of X; of codimension 2 for all i, j € [N] distinct and (wy;;)se  ic|v] be a family of symplectic structures
on X. Suppose the tuples

1

(%El))teg = (Pt;l;iav(t;hi)’ ;I;’i)tGB:iEICW]7

(%EQ))teB = (pt;f;ivv(t;m)? ’

v
v )
t;1i) te BicIC[N]

are (W )seB,ic|N)-families of regularizations for X. We define

()15 = ()

e = (3.28)

teB

if the two families of regularizations agree on the level of germs, i.e. there exists an (we;)se Bi€[N]-
family of regularizations as in (3.21) such that

Dom (V1) C Dom(\Ilg;lf);i), Dom(\llg])ﬂ-) Viri = (3:29)

(1) (2)
‘lltﬂ;i ‘Dom(\I/t;I;i)’ \Ptﬂ.;i }Dom(\I/t;I;i)

for all t€ B and i€ I C[N].

A family (3.21) satisfying (3.29) provides a canonical identification of the line bundles (3.22) de-
termined by Eﬁgl) and 9{122). This identification is independent of the choice of a family (3.21)
satisfying (3.29). Thus, the line bundles (3.22) determined by (w¢.i)ic B ic|v]-families of regulariza-
tions for X satisfying (3.28) are canonically identified.

Proposition 3.9. Let NeZ", X = {X]}Iep*(N) be a transverse configuration such that X;; is a
closed submanifold of X; of codimension 2 for all i,j € [N] distinct, and X} C X; for each i€ [N]
be an open subset, possibly empty, such that X NX;=0 for all i€ IC[N] with |I|=3. Suppose

e B is a compact manifold, possibly with non-empty boundary OB, such that the restriction homo-
morphism H'(B;Z) — HY(0B;Z) is surjective,

e N(9B),N'(0B) are tubular neighborhoods of 9B C B such that N'(0B) C N(0B),

(Wti)teB,ic[N] 8 a smooth family of elements of Symp™(X) such that the associated line bundle
OB.x,(Xp) is trivializable,

(ht)tem is a continuous family of homotopy classes of trivializations of the line bundles Oy, x,(Xp)
determined by (wt;i)ie[N] for allte B,

(Re)enop) 15 an (Wii)ien@B) ic[N)-family of regularizations for X, and

(‘I’t)teN(aB) is a smooth family of R¢-compatible trivializations of the complex line bundles
Own,.x,(Xp) in the homotopy class hy.

Then there exist a smooth family (jiri)iep rericin) of 1-forms on Xy, an (W 1:)iep icn-family
(5{,5)1563 of regularizations for X, and a smooth family (&)t)teB of E)T{t—compatible trivializations of
O, x,(Xp) in the homotopy class by such that

(wt,m‘Ewt;i"‘dﬂtﬁ;i)ie[m € Symp™(X), 05 =0, supp(p.r;i) C (B=N'(0B))x(Xi—X;)
for allte B, T€l, and i€ [N], and

(%t)teN/(aB) = (mt)teN'(aBy (&)t)teN/(aB) - ((I>t)t€N’(aB)' (3.30)

20



3.3 Existence of compatible isomorphisms

We prove Proposition 3.9 below by making trivializations of O, x,(Xg) R-compatible over neigh-
borhoods of the strata of Xj. This argument in a sense adapts the setup of the proof of [4, Theo-
rem 2.17] to deal with bundle trivializations. The key inductive step in this case is carried out by
Lemma 3.11.

Let X be an SC symplectic configuration as in (2.7), R be a regularization for X as in (3.20), and
W C X5. We call a trivialization ® of O, x,(Xg)|lw 9R-compatible if (3.27) is satisfied whenever
v, € \I]]_;[l/(W)’XIOW-

Proof of Proposition 3.9. With all references to the line bundle Ox,(Xy) dropped, Proposi-
tion 3.9 is a special case of [4, Theorem 2.17]. Thus, we can assume that (R¢).ep is an (wWe;i)re B ic(N)-
family of regularizations for X as in (3.21) and that Op.x,(Xp) is the line bundle as in (3.22)
constructed using this family of regularizations. By Lemma 3.10, we can assume that this line
bundle admits a trivialization

Pp=(P¢)ten: OB.x,(Xp) — C

so that @, lies in A for every t € B. In particular, this trivialization is 9i;-compatible for every
te N(0B). The above applications of [4, Theorem 2.17] and Lemma 3.10 require shrinking N (0B)
slightly; so N(9B) in the remainder of this proof corresponds to N’(0B) in the statement of the
proposition.

Below we deform ®p to make its restriction to O x,(Xp) compatible with a shrinking of 9, for all
te B. Fix a total order > on subsets I C [N] with |I| >2 so that I > I* whenever I D I*. We will
proceed inductively on the strata Xy« of Xy using the total order >.

Suppose I* C[N] with |[I*|>2, W~ is a neighborhood of

X7 = UXI C Xy
I>1*

in Xy, and (®; )sep is a smooth family of Ry-compatible trivializations of Owm,.x,(Xg)|w> such that
(‘I’?)teN(aB) = (‘I’t\w>)teN(an |®4(z) — @7 ()|, < |®¢(2)|, VoeW”, teB. (3.31)

Let W’ be a neighborhood of X7. C Xj such that W' C W. We apply Lemma 3.11 below with
W=W?= and ®;=®;. There thus exist a neighborhood W= of X« C X, an (we)se B icn)-family
(R )icp of regularizations for X, and a smooth family (®})ep of R;-compatible trivializations of
O, x, (Xp)lwruw,. satisfying the first condition in (3.30) and the two conditions in (3.31) with
&7 replaced by ®Z =&, and W> by WZ=W'UW..

By the downward induction on P*(N) with respect to >, we thus obtain an (wi;)iep,iec[n)-family

(E)Nfit)te p of regularizations for X and a smooth family (E)t)te 5 of Ry-compatible trivializations of
O, x,(Xp) satisfying (3.30) such that

|@(z) — By(2)], < |Pe(x)|, Ya€Xo, teB.
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This implies that

q)t;TE(l—T)q)t—i-Tq)tf OD‘?\‘t,Xa(X@) —>X@XC, TG]L
is a homotopy from @, to ®; through trivializations of Og,. X, (Xp) for every t € B. Thus, the
trivialization &)t lies in the homotopy class h; for every t€ B. O

Lemma 3.10. Let N'(0B) C N(0B) C B be as in Proposition 3.9, X be a CW complex, and
L— BxX be a trivializable complex line bundle. Suppose

o (M)iep is a continuous family of homotopy classes of trivializations of the complex line bundles

Li=Llyxx
o Onap) is a trivialization of Ln@p)xx such that ®nap)lc, lies in hy for every t€ N(OB).
Then there exists a trivialization ®p of L so that ®g|r, lies in by for every t€ B and
PplnaB) = Pnan)N(oB) - (3.32)

Proof. Let ng1 € H'(S';7Z) be a generator. For any topological space Y, denote by [V, S'] the set
of homotopy classes of continuous maps Y — S'. If Y is a CW complex, then the map

v,S' — H\(Y;2), [f:Y—5" — Ffag, (3.33)
is a bijection.
We can assume that X is connected. Let mp: Bx X — B be the projection and
Py L —C

be a trivialization of £. For each ¢t € B, denote by A, the homotopy class of maps f: X — S?
such that the trivialization

VLT )= f(me(0) B (0),
lies in Ay.

Since (ft)iep is a continuous family of homotopy classes, for each to € B there exist a contractible
neighborhood U of tg in B and a continuous function Fy;: U x X — S such that Fy| {tyxx lies
in k} for every t€U. The class

nu = Fimsr € H' (U X;Z)

is then independent of the choice of U. These classes agree on the overlaps and thus determine
an element g € H'(Bx X;7Z). Since the map (3.33) is surjective, there exists a continuous map
F: Bx X — S! such that ng=F*ng. Define

¢p: L — C, Dp(v) = F(me(v))®p(v) .

For each t€ B, the trivialization ®p|,, lies in h;.
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Let Fy(pp)y: N(0B)x X — C* be the continuous function so that

Pnop) (V) = Fyop)(me(v)@ra(v)  YveL|nop)xx - (3.34)

For each t € B, the restrictions of ®y(5p) and P’ to L; are homotopic. Thus, the restriction of
Fyap) to {t} x X with t€ 9B is null-homotopic. This implies that

Fxom)lst lopxx € H(0B;Z)®HY(X;Z) C H' (OBx X Z).

Since the restriction homomorphism H'(B;Z)— H'(0B;Z) is surjective and the map (3.33) is
bijective, there thus exists a continuous map f: B— S such that

FK[(BB)nslexX = (f*nsl ‘8B)®1’ [fOﬂ'B‘BBXX] = [FN(aB)‘BBXX] S [8B><X, Sl]

Since N(9B) is a tubular neighborhood of 9B, the last equality above implies that there exists a
continuous function

FN(@B)(t7‘T)7 lftGN/(aB)7

: (3.35)
Ft), if t¢ N(0B).

G:BxX — St s.t. G(t,m):{

Define
dp: L — C, Pp(v) = G(me(v)Pp.o(v).

By the first case in (3.35) and (3.34), this trivialization of £ satisfies (3.32). Since N(9B) is
a tubular neighborhood of 9B, this implies that the restrictions of ®p and ®y(yp) to L are
homotopic for every t€ N(0B). By the second case in (3.35), the restrictions of @5 and @ to L,
are homotopic for every t € N(0B) as trivializations of £;. Thus, ®p|., lies in A; for every te B. [

Lemma 3.11. Let X, B, and (Wti)iep,ic|n] be as in Proposition 3.9 and N(9B) be a neighborhood
of 0B C B. Suppose

o [*¢P(N) and W,W'C Xy are open subsets such that

|I*|>2, W cW, X;cW VIeP(N), IDI*, (3.36)

o (Ri)iep is an (Wii)ep,ic(n)-family of regularizations for X,

o (®y)iep is a smooth family of trivializations of Ow,.x,(Xp) over Xp which are R¢-compatible for
te N(0B),

o (®})ien is a smooth family of Ri-compatible trivializations of Ow,.x,(Xg)|w such that
(@ehw)enion) = (B ienony  |Bi(@) = @4(2)], < |®4(2)], VW, teB. (3.37)

Then there exist a neighborhood Wi« of X1« C Xp, an (wti)iep,ic|n)-family (E)N‘it)teB of requlariza-

tions for X, and a smooth family (‘f’é)teB of Ry-compatible trivializations of O, x, (Xp) lwrow,.
such that

Cﬁ‘ﬁt)tEB = (mt)tEB’ ((EHWI)tEB = (q)“W/)tGB’ (338)
((I)t‘W/UWI*)teN(BB) - (q%)teN(é)B)’ |®4(z) — P(a)| < |Pe(x)| VoeW'UW -, teB, (3.39)
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Proof. Let (R;)icp be as in (3.21). For each x € Xy and x € W, let

@() :(I)t|0mt;xa(xm)lw: On,.x,(Xp)|lz — C and

(I);(:E) :(I)Homt;xa(x(z))lﬂf: OmﬁXa(X@)LU — C?
respectively.
Choose open subsets W” Cc W"”' C Xy such that
W cw”, wWrcw”, W"cw.
By (3.36) and [4, Lemma 5.8], we can shrink the domains of the maps Wy.r,; so that

\Ilt_;ll*;(B (W/) CNXp

Let p: X1« —[0,1] a smooth function such that

{1 frexpow”
PP =00, ifeg XN

Define

&)t;l* : Omt;Xa (XQ))‘XI* — (C,
CI)t;I* ($) = (I)t;l*’OiRt;Xa(X(Z)”z = p(x)q);(x) + (1—,0(1'))@15(.%') V .’BGX]*, tGB
By (3.43) and (3.42), N
((I)t;f*‘Xz*ﬂW’”)teB - ((I)HXI*“WW)??EB'
By (3.43) and (3.37),

(q>t|X,*)t€N(6B):(%t;l*)teN(aB), |@4(2) — By (z)] < |®y(2)| VzEX)H, teD.

In particular, E)t; 7+(x) is a complex linear isomorphism for all x € X« and t€ B.
Since B is compact, there exists a neighborhood W7. of X+ C X such that

BxWi. C |J{t} xIm (W) -
teB

Since W7 CW" and X;C W’ for all I € P(N) with I 2D I*, we can shrink W/. so that
I

W'NWr. C ¥y peg(Dom(¥y g)|x,unw) YE€EB, XNWp. ¢ W' T€P(N), ID1*.

Let W}. C W/. be the complement of the subspaces X C Xy with I C [N] such that I ¢ I*.

Fix te B and x € W}.. Let I, CI* be the largest subset such that x € Xy . By (3.46),

= Vyrr, (vr1,)
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for a unique vr+,1, € Ni=.1, C NXp+. Since Wj. C Xp, |I;| > 2. Let zg = m+(vr+,1,). By the
maximality of I, the bundle map Ily,.7, is surjective over x for every t € B. Given v € Own,.x,(Xp)|z,
choose

vrsire—1, € Nisipe—r, |, 86 v =1y, (D1, (Vr31,, VI=:17 -1, ) -

Since D Wy, 1«7, is an isomorphism of split vector bundles,
H%t;l* (’l)]*;]w,’l)[*;[*_[w) < Og{t;Xa(X@)‘

zo

is determined by v. Thus, the map
®y(2): Onyixy(Xo)|, — C {®u() }(v) = @pore (Moo (vresr, s V11 1,)), (3.48)

is well-defined. Since zo € X7. and all components of v+, are nonzero, this map is an isomorphism.
Since (I)t|X1** :(I)t;[* |X;*, (3.44) and (345) imply that

(elxg.ow)icp = (ilxgow)icp (elxi)enon = (®tlxi)ienon): (3.49)

With z as above, suppose I, CI’ C I* and x=Wy.p.1, (vp.g,) for some

vrir, €NTi e @ = Yyrsr(vier) € Wie, v € Npop C N X-.

By (3.7) with I =TI* and the injectivity of Wy.r«.p, vy, = DWypep(vr=1,). By (3.48) and the
second statement in (3.19) with I” C I’ C I replaced by I, CI' C T*,
{@4(2) } (Monsr, (OWisrrir, (Vo0 (vrsr,s vrs1e-1,))) = { Pt (@0) } Movir (vres1, v1+310-1,)
= {@:(«") } (U (DVeroir (Vi1 s vivia+-1,))).
Thus,
{ @V (vr.r))} (Monr (DWesrire(vrrs vrir-11))

={ & (nr(vr.r)) } (Morr (vr.rs vr1—1))
vI'cIcI* |I'>2, (vrp,vri-r)€ WF;IINI;I—I'!\I,;I{I/(W;*)

(3.50)

\lewf* )
We conclude that E)t;g satisfies (3.27) over W}. whenever I' CICI*.

By the Ry-compatibility of @, for all t€ N(9B) and the R;-compatibility of @} for all t€ B,

@t(ﬂm;](@\lﬁ*;[(v))) = <I)t<Hm;[*(U)) VUG71';*;[./\/’[*;[*,]‘Dom(\l,“*j), tEN(aB),
@) (Mo, (D17 (v))) = ) (Hggy+(v))  VwETfe Nrosro—1] g 1 teB,

t;I*;I(W)‘XI*mW7

whenever I CT* and |I|>2. Along with (3.48) and (3.49), these two statements imply that

= o /
(q)t“llt;l*;(D(Dom(‘l/t;I*;(Z))‘XI* ﬁW///)ﬂWI** )tEB — ((I)t ‘\I/t;l*;W(Dom(qjt;l*;ﬁ))lxl* ﬁW///)ﬂW;* )tEB’ (351)

((pt |Im(qjt;1*;@)mW;* )tGN(aB) = ((I)t |Im(qlt;1*;@)mW;* )tEN(aB) :
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Combining these identities with the first assumption in (3.47) and with (3.46), we obtain

(&)”W”“Wﬂ)teB = (@HW”WWF*)ter ((I)t|W1**)t€N(BB) = ((I)t|WF*)teN(aB)' (3.52)

By the first identity in (3.52), the isomorphism

~ ~ O (z), if xeW”;
{ @), ifw (3.53)

&l (x): On,.x,(Xp)|le — C, Ol(z) =< ~
{(@): O, (X0) =) teewn

is well-defined for every t€ B. By the second assumption in (3.47), W/UW}. =W"UW].. Let
& Oy (Xo)lwrows, — €, (o) = {@(x(0) }(0) (3.54)

By the first case in (3.53), this trivialization satisfies the second condition in (3.38). By (3.53),
the first assumption in (3.37), and the second identity in (3.52), it also satisfies the first condition
in (3.39).

We next verify that the restriction of (3.54) to W/UW/. is R;-compatible. Suppose

teB, I'CICIN], |I'|>2, ze(WUWpn)NXy,
(1)];]/71)[;]_[/) S W?;I/N];[_p .I'/E\I/t;[;p(v[;]/) € W/UWI/* .

x?

If 2,2’ e W" or z,2’ € W}, then

‘52;2 (Mo, (D¥sr,r (v, vir—r))) = ;132;2 (U1 (v, vrr—r)) (3.55)

by the JR;-compatibility of ®} in the first case and by (3.50) in the second case. If z € W}. and
' €W’ then (3.7) and the first assumption in (3.41) imply that

2’ € WNIm(Wy e9) C Wy pe9(Dom (W, 1) z € Wy g (Dom(Wy. 1) NWr..

‘XI*ﬂW“)’ ‘X;*HW”)

The identity (3.55) in this case follows from (3.51) and the 9R;-compatibility of ®;. If x € W’ and
x’ € W}., then the second assumption in (3.41) implies that 2’ € W”. The identity (3.55) in this
case follows from the JR;-compatibility of @j.

Along with &Dt;2|x}»* = <AI;t;[*|X;*, (3.53) and (3.44) imply that 52;2|X1* = <A15t;1*. By the second
statement in (3.45) and the compactness of B, there thus exists a neighborhood Wi+ of X« C W7.
such that B

’@t;g(x) - 22(:E)‘ < ‘@t;g(m){ VeeWr, teB.

Combining this with the first case in (3.53) and the second assumption in (3.37), we conclude that
the isomorphism @} satisfies the second condition in (3.39). O

Remark 3.12. Let Symp{(X) denote the space of pairs consisting of an element (w;);e(n of
Symp™(X) and a trivialization ® of the associated line bundle Ox,(Xp) in a homotopy class /. By
our proof of Proposition 3.9, the projection

A\u;{h(X) — Symp;{(X), ((wi)iE[N]vma (I)) — ((wi)iE[N}7(I))a

is a weak homotopy equivalence.
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4 Main construction

Let X be an SC symplectic configuration as in (2.7) which satisfies (2.17) and A be a homotopy
class of trivializations of the associated line bundle (2.14). By the B={pt} case of Proposition 3.9,
we can assume that this SC symplectic configuration admits a regularization R as in (3.20) and
an R-compatible trivialization ® of the complex line bundle O, x,(Xp) as in Definition 3.8.

In Section 4.1, we rescale the diffeomorphisms Wy,; to increase their domains so that they contain
balls of size at least 2V in each fiber. In Section 4.2, we patch together open subsets of these domains
to form a smooth manifold Z’ with a smooth map 7¢.: Z’— C. The latter is obtained by scaling
the trivialization ® so that the restriction of m¢ . to the preimage of the ball of radius 1 in C forms
a nearly regular fibration with uniform smooth fiber so that the associated homomorphisms (2.16)
are isomorphisms. In Section 4.3, we construct a closed two-form &é‘g) on Z’ and show that its re-
striction to a neighborhood Z of Xy C Z’ is symplectic and that the associated isomorphisms (2.16)
are orientation-preserving. If X is compact, this implies that there exists a neighborhood A of 0

in C such that Z|7fc_1 (a) is a nearly regular symplectic fibration and its fibers are compact. As the

various pieces of Z’ are patched together only along Xp, the compactness of X suffices for the
first conclusion; we comment in Remark 4.6 on obtaining this conclusion even if Xy is not compact.

The construction in Sections 4.2 and 4.3 works on compact families of the relevant data on
(X1)rep+(ny- By the B =1 case of Proposition 3.9, the deformation equivalence class of the
output of this construction is thus determined by the deformation equivalence class of the original
SC symplectic configuration X and the homotopy class & of trivializations of (2.14).

4.1 Setup and notation

We begin by setting up the relevant notation. We will need several smooth R™-valued functions on
the strata X7 and their open subspaces. These will be denoted by ¢ or C with some decorations,
depending on whether the function should be sufficiently small or sufficiently large. The former
means that it is pointwise smaller than another pre-specified continuous function on the same space
or on a neighborhood of its closure; the meaning of sufficiently large is similar. If Xy is compact,
such functions can be chosen to be constant.

For each I € P*(N), let wr =wj|x, for any i€ I; this symplectic form on X7 is independent of the
choice of i€ 1. For i€ I C[N] with |I|>2, let

p[;i:NXI_iX[ — R (4.1)

be as in (3.20) and
A = Q) g € P(Nx, , Xi—X5;;T"Nx, ,Xr) (4.2)

be the connection 1-form on N7.;_;=Nx,_, X determined by the Hermitian structure (py.;, V([;i)).

We also denote by

PrI:it NX] — R and Qar; € F(NX]—N[;i;T*NX])
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the function and the 1-form obtained by pulling back (4.1) and (4.2) by the projection map
prr_;: NX;— Nx,_,X1. The 1-form prar; is then smooth on N X;. Define

pr: NXr — R, pl(v):max{pm(v): Z'GI},
to be the square norm on N X;. Let

~ ~e * 1 * 1 *
Wi =W, vy, = TIWr + 2 Z d(priari) = mjwr + 9 Z pry.r—id(priar;)
el el
be the closed 2-form on the total space of N' X as in (3.1).
For each I C[N] with |I|>2, the homomorphism

AEJPNXI = ®NX[_¢XI — Om;X@ <X@)|XI = A(té)pNXI X ® OXR;XI (Xz>7
icl il
w—>w®®sl;i(a:) VwEAfCOPNXI re Xy, (4.3)
il

x?

is an isomorphism over X7. Thus, there exists a smooth function Ce.7: X7 —R™ such that

Hp[;i(’l)) :Cq);](ﬂ'[(?)))‘(I)(Hgo;;[(?)))‘2 VUGNX]|XI*, (4.4)

i€l
where Ily.; is the bundle map defined in (3.26); it is surjective over X7.
Given : Xy—R™ and I C[N] with |I| >2, we also denote by & the composition
e NX; -5 X - RT.
Define

NX](5) = {UENX[: pl(v)<5(v)}, N];[/(&) Z./\/‘X[(é)ﬁ/\/'[;]/ vI'clI,
meg: NX; — N X7, meg(v) =e(v)v YveNX;.

For each 1 €1, let
P NXT B2, ) =g =

If €] x, is smooth, set

~ * A~ * 1
wgs) =MW =7 Wr + 9 Z d(ﬂgal;i) . (4.5)
i€l

For I'CIC[N] with |[I|>2 and I’ #0, let
NI/;I/CNI;I’ CNX[, \I’[;]/:NI/J/—)X]/
be as in (3.15). If in addition |[I'| >2, let

@\I/[;]/: W?;[/N];[,p

—>NX[/

NI’;I Im(\I!I;I/)
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be as in (3.17). Since DV, is a product Hermitian isomorphism, (3.27) implies that

Coyr(m1(v)) = Corr (W1, ( HPI i Vu=(v)ier-r €Npp
iel—1

X3 St viA0Viel-T', (4.6)
whenever I’ CI C[N] and |I'| >2.
As shown in the proof of [4, Lemma 5.8], there exists a continuous function : Xy — R™ such that
e|x, is smooth for all i€ [N],
Nri(4Ne2) C Ny, e(Tr,i(v)) = e(v) YveNE;(4Ve?) (4.7)
for all i€ I C[N] with |I|>2, and
Uri (N (47e?) N 01, (Mi(47€%)) = U non (Nnuna(4Ye?)) (4.8)

for all i€ Iy, Io C [N] with |I1],|I2| >2. Furthermore, € can be chosen so that its restriction to X
is smaller than any given continuous function g5: Xy — R™.

For e: Xy—R" as in (4.7) and i€ I C[N] with |I|>2,

D (Nra(dV),00)) — (Xpwi), U5 (0) = Uri (mer(v)), (4.9)

is a symplectomorphism onto a neighborhood of X7 in X;. Since these symplectomorphisms satisfy
the matching condition (3.14) with W¥.; replaced by \Ilgi) , we can define smooth maps

‘IIEE;}/:NI;I’(4N)—>XIH ®#I/CI>

as in (3.15). By (4.6) and the second assumption in (4.7),

Ca1(mr(v)) :C¢;I’(‘I’g'( )€ (‘I’gglf QU I/‘HP (4.10)
ier-r

VUE(Ui)ZE]_I/G./\/'];[/(4NE)|X*, I,CIC[N] s.t. Ui#OViEI—]/, |I,’22.
I

By (4.8),
11 1' (N (™)) 0 ‘I’g (N (47)) = \Ijgl)ulg (N (4Y)) (4.11)
for all I’ C I, Iy C[N] with I’ A0 and |11, |I2]| > 2.

For I' C I with |I'| >2, define

i)\p(]‘f}/ : W;;I/N[;],p ‘NI;I’(4N) — NXI/ by (412)

m(w'?))
Q\Pﬁf} (v vnr—r) =V (mer (v ), vri—r) Y (vrr,vn-r) € W;;I/NI;I—I’}NI'I/(ZLN)-
By the second assumption in (4.7),

EOCD\I/%}, =

TroNe-rly, L any’
i (4.13)

Meyr oDV}, = DY)

N .
7rI;I"/\/I?I*I/|NI;]/(4N)
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Since DWy.; lifts Wy, to a product Hermitian isomorphism with respect to the product Hermi-

tian structures (p[;i,v(l;i))iejl and (p[/;i,V(I/?i))iGI/ , ”DII!(IE}, lifts \Ifgag, to a product Hermitian

isomorphism with respect to these structures. In particular,

DU (NX1(4Y)) = NXp ()] g

By (4.13) and (3.19),

ouf), = D0l 0 D0

\Ilgf}// - \Ilgf;)l,,o@qigf}, (414)

NI;I”(4N) ’

.
TN Wy g a?)

for all I” C I’ C I C [N] with |I'| > 2 in both cases, |I”| > 1 in the first case, and |I”| > 2 in the
second case.

Let C: Xy—R* be a continuous function such that
C(Tr(v)) = C(mri(v)) YveN;(4Ne), ieIC[N], |I|>2. (4.15)

For I C[N] with |I|>2, define

Oeor: NX; — C, e r(v) = C(mr(v))e(mr () 70Ty (v)) ¥V oeNX . (4.16)
By (4.4),
C(W[(U))Qg(v)%m_l) H p[;i(v) = C@;[ (W[(’U)) “1)075;[(1))‘2 YoeNX; X5 (4.17)
el
whenever I C [N] and |I|>2. By (4.15), (4.13), and (3.27),
() _
@6,5;1’09\1’1;1/ = (I)C,E;I ﬁ;;I/NI;I—IllNI;I/(ALN) (418)
for all I'CIC[N] and |I'| >2.
If = {i} with i€ [N], let
@C’E;[:WQZNX]EXZ'XC—)C (4.19)
be the projection to the second component. For I'={i} CIC[N], define
(&) . = %k
CD\I’I;I' : TrI;I’NI;I—I/ ‘N];I/ (4N) :WI;I/NXI_Z-X[‘NI;II(LIN) — NX]I Im(quﬂ) s (420)
DU (vrg)jer—rvra) = (95 (vr3)jer-r), Pecr (vr)jer))-
The restriction of this map to the subspace
{(vrg)jer—rsvr) €mfp NEI-1 N %)y Vg #0 VIET-T'} (4.21)

is a diffeomorphism onto an open subspace of N X =N X;.

For I={i}, let
’D\Ilf} =id: W?;INI;Q){NI;I(ZLN) =NX; — NX;;
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for I C [N] with |I| > 2, this is already the case by (3.17) and the I’ =1 case of (3.6). By

(4.19), and (4.20),

Bp .00V —
Cel’ L — Cef‘ I,/\/” I’lN e

for all I'CIC[N] with I’#0. By (4.14) and (4.18),

ouf), = D0, o 0uf),

W;;I//NI;I—I”|NI;I”(4N)
for all I" CI' CI C[N] with 1" #0.

For e: Xy —R* as in (4.7) and T € P*(N), let

Xp=Xu=X- | \II%;)I (Nrr(27171));
crciny

(e)

(4.18),

(4.22)

(4.23)

(4.24)

see the left diagram in Figure 4. Since ®W; {,; ; is a product Hermitian isomorphism, (4.11) and

the first equality in (4.14) imply that

\pgj);l,(/\/,1;1,(2\11|)|X;1)m\pgjp(NM,(2\12|)|X;2);A@ — oL or I,Cly,

v, (Mo (20 xp ) U (N (@E-1) 20— 150,
whenever I' C I, I, C [N] with I'#0 and ||, |I2| > 2.
Let i€ [N]. By (4.11), the first identity in (4.14), and (4.10), the function

g:xpn U v W) — R

{i}CIC[N]
2(|1]-1)
& (0 () = sz,] v) Voe{U} 1 (X)NN(Y), (i} SIcN],
6[ I

is well-defined and smooth. Thus, there is a smooth function &;: XY — R™ such that

2(11]-1)
SV = Gy eri) Yee Wiy (XN A(2Y), (eI N)

jGI )

y (4.17) and (4.15),

|t (v)* = C(US) (vryg)jer—)) & (U5 (vrg)jer—)) o (v)

VUE((UI;j)jej,i,vj;i)Eﬂ';;l-./\/’[;[ 1|{‘1I(5)} LX), (2V)’ {i} CICIN].

4.2 Construction of fibration

With C as in (4.15), define

_ JH{ureNXilxs: pr(or) <211}, if | 7] > 2;
T U@ N ENK | xo: NE<2C(2)2Ei(2)2), if T={i}.
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/\[ik;i
CO® W e (—\Ilgz)l_l(xzo)
Xik'z
Xijk ’ .
J st X;
Mk;k

Mjk;jk:
Figure 4: The subspaces X, X;;1 C X;, and Xy, C./\fik;i appearing in the smoothing construction

for a triple configuration as in Figure 1; the numbers indicate the value of the square distance along
each axis in N Xjjp.

For ICI' C[N] with I#0, let

Xpp = 2r0Npy, X = ‘l’ﬁ)} (Xpr) € Xp, (4.27)
Zpg ={veZp: pryw)<2viery — | J{vezp: ppyv)<2VI vieT-1},
IcJcr

Zrp =DV (Zp) = (4.28)

ZI’X‘;QX,;I/ :

The first two subspaces above are illustrated in Figure 4. For |I| > 2, the last equality in (4.28)

holds because ”}D\Ilgf,)f is a product Hermitian isomorphism; for |I|=1, it holds by (4.20) and (4.26).
This crucial equality is used in the proof of Hausdorffness in Proposition 4.1 below.

-, La)-

IeP*(N

Define

Zp D Z[/;] S v~ @‘I/(Ii)l(vp) S Z[;]/ C Z VIgI/C [N], I#@ (4.29)

By the first statement in (4.25) and (4.23), ~ is an equivalence relation. The restriction of the
quotient map
¢ ||z —Z (4.30)
1eP*(N)
to each Zj is injective; we thus identify Z; with ¢(Z;) as sets. By Proposition 4.1 below, this
identification respects the smooth structures.

By (4.22) with I and I’ interchanged, the map
mee: 2 — C, mee(qv)) = Peer(v) YV veZ, I€P*(N), (4.31)
is well-defined. It is continuous, since the maps ®¢ ..; are continuous. For each i €[N], the map

q(z,0), ifreX?;

() . _ (4.32)
q(v), if =W (v), v€EXyy, i€ C[N];

Uit Xi — Z/, Lcysgi(:zj) = {
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is well-defined, injective, and continuous. Since tc | x,; = tce;jlx;; for all i,j € [N], we obtain an
injective continuous map
lCe: X@ — Z'. (4.33)

The image of this map is Zy =7, l(()) The substance of the last statement in Proposition 4.1 is
that the fibers Z{ =7, i(/\) are compact if Xy is compact, C is sufficiently large, and || <1.

Proposition 4.1. If ¢|x, and Clx, are smooth for all i € [N], then Z' is a Hausdorff topological
space with a smooth structure so that

(1) the restriction of (4.30) to each Zr is a diffeomorphism onto q(Z2r);
(2) the map (4.81) is smooth on Z' and a submersion outside of ic -(Xp);

(3) the maps (4.32) are smooth embeddings, their images form a transverse collection of closed
submanifolds of Z' of codimension 2, and the associated homomorphisms (2.16) are C-linear
isomorphisms.

If C is sufficiently large (depending on €), every sequence v§k> in Z]ﬂﬂc_;()\) with |A\| <1 and with
(k)

the sequence wr(v; ') converging in X1 has a limit point in Z'.

Proof. For all I CI' C[N] with I#0, the subspace Zp.; CN X is open by definition. Since each

map ZD\I'(?,)I is a diffeomorphism onto an open subspace of N X}, everywhere on its domain if |I|>2
and on the subspace (4.21) with I and I’ interchanged if |[I| =1, the subspace Zr.p CN X7 is also
open. Since the identification maps are diffeomorphisms between open subspaces of manifolds, the
quotient map (4.30) is open. Assuming Z’ is Hausdorff (as shown below), ¢ thus induces a smooth
structure on Z’. Since ®¢..;: Zr — C is a submersion outside of the subspaces Z; NN, 1,17 with
I' C I such that |I’| >2, the map (4.31) is a submersion outside of ¢¢c .(Xp). The maps (4.32) are
smooth embeddings because their restrictions to the preimages of Z; correspond to the inclusions
of the hyperplane subbundles N7,; of N X;. For the same reason, their images form a transverse
collection of submanifolds of Z’ of codimension 2. These submanifolds X; are closed in Z’ because
X; is closed in Xy and ¢ (Xp) :7'('5;(0) is closed in Z’. For each I € P*(N), the homomorphism
Dime . corresponds via the diffeomorphism ¢|z, to the linear map induced by ®¢.;. Since ® is a
C-linear isomorphism, the associated homomorphisms (2.16) with m=m¢ . are also C-isomorphisms.
This establishes (1)-(3).

Let [v], [w] € 2’ be distinct points and I,J C [N] be the maximal subsets so that [v] lies in the
image of some v € Z; under g and [w] lies in the image of some we Z;; I and J are well-defined by
the first statement in (4.25). If I=J, let V, W C Z; be disjoint open subsets around v and w. Since
g is an open map which is injective on Z7, ¢(V'), q¢(W)C Z’ are disjoint open subsets containing [v]
and [w], respectively. If I ¢ J and J ¢ I, then the open neighborhoods ¢(Z),q(Z;) C Z’ of [v]
and [w], respectively, are disjoint by the first statement in (4.25).

Suppose I CJ. Let § >0 be such that
weW= {vJEZJ: pJ;j(UJ)<2|J|_6 VjEJ—I}.
Since v¢ Zr.; (by the maximality assumption on I),

veV=2r- NXIl\I}(JE;)[({UJ;IENJ;I:PJ(UJ;I)§2|JI_5})
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by (4.28) with I’ =J. Since (4.29) is an equivalence relation, ¢(V),q(W) C Z’ are disjoint open
subsets containing [v] and [w], respectively. Thus, Z’ is Hausdorff.

We now verify the last claim. By (4.17), there exists a continuous function Cp ¢ : Xy —> R such that

C(r1(0))* [ pr:(v) < Coe(m1(v))|@e it (@) ¥ v ENXiyo, ICIN, |1]22; (4.34)
i€l

the function Ce . depends on e, but not on C. The inequality (4.34) provides a bound on the
product of the norms pr.;(v) with i € I in terms of [A| =|®¢..;(v)]; this bound becomes stronger
as C increases.

Suppose Ae C*, I € P*(N), and

vgk) = (v&?)ie[ € Z]ﬂ<1>a;[()\) CNX 5 X C X

is a sequence such that 7T](’U§k)> converges to a point 7 € X7. A subsequence of ng) then converges

to some

vy = ('UI;i)iEI S NX[‘ s.t. (I)C,a;](vl) = A, p[;i(’l)[) < 2'” Viel if ’I’ >2.

rr

If 27 € X9 and |I| = {i} for some i € [N], then v; = (z1,\) € 2 if |A\| <1 and 2C%7>1 (i.e. C is

sufficiently large). The sequence v§k) then has a limit point in Z’.

Suppose 7 € X§ and |1|>2. Let JCI be a maximal subset such that py;(vy) <2l for all i€ J. If
J#0, define

Ty = \Ilgi)](('ul;i)ieI—J) e Xj.
If z;= \Ilgf,)J(vI/) for some vy € Ny with J € I' C [N] and pp(vy) < 21171 then T D I’ by the
second statement in (4.25) with (I3, I2, I') replaced by (I,1’,.J). By the first identity in (4.14) and
ZD\I'%}, being a product Hermitian isomorphism,

vp = ’D\I’g/((vl;i)ie[—p, (vri)ier—J), pra(vr) <201 wier —J.

This would contradict maximality of J. Thus, ;€ X9. If J=0), replace it with any single-element
subset of I and define 7 in the same way. As in the first case, z;€ X9. If |J|=1,

:D\Ijgi)](i)[) = (JZ‘J,)\) S ZJ,

as in the previous paragraph. If |J|>2, @‘Ilgez,(vl) lies in Z; as well, since Q\I/(Ia} is a product Her-

mitian isomorphism and pr.;(vr) < 2! for all i € J. Tt follows that D\Ilgs‘)](vgk)) € Z; for all k large
and BD\Ifge()](v 7) is a limit point of this set. Thus, @WPJ(U 1) is a limit point of the sequence ng) in 2.

3

Suppose 7 ¢ X7. Let I’ C [N] be the maximal subset so that I’ DI and z; = \If(ﬁ,)[(vp) for some
vp €Ny with pp(vp) =211'1=1. By (4.24), (4.11), and the first identity in (4.14), I’ is well-defined.
Furthermore,

pr.j(up) > 20 > 2 vier—1. (4.35)
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If W[/(U[/):\I/L(]E,)I,(U]) for some vy €Ny, with I'C JC [N] and ps(vy) <2111 then either

Ty € \I’L(;)I(./\/’J;]@'J'_l)) or ps(vy) = 9lJI-1

The first possibility would contradict to z7 being in the closure of X7; the second possibility would
contradict the maximality of I’. Thus, 7p (vp)€ X7

For all k€ Z™* sufficiently large (so that 771(1)§k)) lies in X7.1), let

vﬁ’f)z(vfff)],v}’f)f, D)= {Q‘I’ 1} ( )GWI'INH I‘N (@21 -

Since F[(ng)) converges to xy, the sequence v}’f)l converges to vp. If [1]>2,
k k ' .
pll;i(vgl)) = pI;i(v§ )) < ol < oll'l Viel;
thus, vyf) has a limit point in Z.. If I={i},

2'” IC(TFI/( (k ))) PrI';i (U§/)) < C(?T /(U / H PI';j Ugl)) < C@s(m(vl, ))‘)\’2
jer
by (4.35) and (4.34). Thus, the sequence U}{c) converges in Zp/, provided
Coc(@)N? < 2T171e(@)? -2 Vazexy.

Therefore, the last claim of the proposition holds if C2>Cg .. O

4.3 Symplectic structure

We next define a closed 2-form J)éa} on Z for each I € P*(N). Let n: R— [0,1] be a smooth

function such that
0, ifr< %;
T’ pr
() {1, ifr > 1.
For i€ I C[N] with |I|>2, let n;; = nopri: NX;—R and

e . 1
&5y = <7r,w1+ 2d<z<1 - Hm)s prior + <Z Hm)e O (r 2d0)>> (4.36)
icl jel—{i} iel jeI—{i} Z
For I={i}, define
~ * 1 * * 1
w((f} = (7r1wl- + §d(52¢c,a;l(r2d9))> . = (Wlwi + 2d(5 5 (T 2d9))> . (4.37)

where 71,131 X; X C— X, C are the two projections and (r,6) are the polar coordinates on C.
Let A, CC denote the disk of radius r centered at the origin.

Lemma 4.2. Ife|x, and C|x, are smooth for all i€ [N| and C is sufficiently large (depending on €),

then
~(e)

We.rle

for all ICI' C[N] with I#0.

gl (ADNZp, {9‘1’1/1} cz‘¢) 1 (4.38)

Ced Al)ﬂZI/;I
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Proof. We show that the claim holds with C? > 2NCq ., with Cs . as in (4.34). This assumption
implies that

3
{iEI:pI;i(v[)SZ} #0  VweZnd® L (A), ICN, [I|>2. (4.39)

In particular, there exists at most one ¢ with a nonzero product in (4.36). By the definition of Zp.p,
prij=>2on Zp. for all jeI'—TI and so

nryls, =1 Viel-l. (4.40)

By (4.39) and (4.40),

ZPI’ o+ Z ( Hm' )Pl’;ial’;i = Z <1 - Hnl’;])/)l’;ia]’;i

i€l — i€l jer—{i} i€l jer'—{i} (4.41)
and D oy =2 [y
i€l jel—{i} i€l jer'—{i}

—1
on (PC,S;I’(Al)ﬂZI';I'

By (4.9) with I replaced by I’ and (4.5),

icl’ -1

* 1
\Ilgf,)l wy = <7T?/;IOJII + id Z€2pl’;ial’;i> . (442)
iel’—1 NI’;I(4N)

Suppose |I|>2. The product Hermitian isomorphism ’D\I/%,)I satisfies

TFIO@\I’( 2 = \If( ) o} T — ]‘

;I I, r-"r;I 71-,1/\/1/1/ IlN/ (4N)'

Along with (4.42), this implies that

* ok * 1

{Q\D(If;)l} TwI = <771'WI/ + §d 25201’;1'05[’;1) : (4.43)
W;/;INI’;I’—IlNI’;I(ZlN)

Combining this with the second assumption in (4.7) with I replaced by I’ and (4.22), we obtain

‘e . 1
{gll'gf;)l} “g} =mpwr o+ 2d< Zg PI'iCI s +Z (1 B Hm’ )8291';i041';i

iel’— el jeI—{i}

+) < Hm/;j)g%ge;p (ﬁd@)).

iel N jel—{i}

(4.44)

By (4.41), the right-hand side of (4.44) equals the right-hand side of (4.36) with I replaced by I’
on (I)g,i;I'(Al)ﬂZI’;I' By (4.20) and (4.42), (4.44) also holds if |I| =1. Thus, (4.38) holds in this
case as well. O

(e)

By Lemma 4.2, the 2-forms wp; induce a closed 2-form E}és) on Z'. It remains to show that

its restrictions to a neighborhood Z of Z} in Z’ and to the fibers Zﬂﬂc_i()\) with A € C* are
nondegenerate. The next lemma, which follows immediately from Corollary A.3 and (4.16), is used
to verify that this is the case in the “middle” region of each domain.
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Lemma 4.3. For each IC[N| with |I|>2, there exist f1 € C®°(X};R") and an R-valued 1-form pup
on X7 such that

* —1\2 * *
‘I’C@ﬂﬂ = (Cem 1) f[Hp[;i, p . d0 = Zal?i +miur on NXp|x: (4.45)
iel el

for all functions €,C: Xy —RY that restrict to smooth functions on Xj.
Proposition 4.4. Let ¢,C: Xy—R™ be as in (4.7) and (4.15). Suppose €|x,,C|x, are smooth for

all i€ [N, € is sufficiently small, and C is sufficiently large (depending on €). Then there exists a

neighborhood Z of Z| in Z' such that the restrictions of &éa) to Z and to Zﬂﬂ'gi()\) with A € C*
are nondegenerate.

Proof. We need to show that every x € X; with I € P*(N) has a neighborhood Z, in Z’ such

that the restrictions of (Z}é‘s) to Z; and to Z,Nm, i()\) with A € C* are nondegenerate. Since X7 is
contained in Zj, it is sufficient to show that for each x € X} there exist a neighborhood U, of

in X9 and r, € R such that the restrictions of (Dg} to Zrly, N®; L, (A,,) and to Zr|y, NP L, (N)
with A€ A, are nondegenerate. Since the 2-form (4.37) and its restriction to a fiber of ®¢.; are
symplectic over X; xC (even if € is not constant), it remains to consider the case |I|>2.

For each i€ with [I|>2, let Ky €O?(TXy) be the curvature form of ar.;. Thus,
~ 1 N
Wr = mjwr + B Z(Pl;iﬂfﬂl;i+pr[;17¢(dpl;i/\al;i))-
i€l

Let J; denote the almost complex structure on the total space of N X; — X induced by an
w-tame almost complex structure J; on X; via the product Hermitian structure (pl;i,V(I ;i))z’e I;
see the paragraph above Lemma A.4. If ¢ as in (4.7) is sufficiently small, then &; tames J; over
NX1(4Ne?). Thus, @}E) tames L;[Em:;fjl over N X7(4V).

Let A€ C* and vy € Z;N®,; L (\). Define

. 3 ‘ 3 ,
[0:{161: p];i(’l}[)gz}, 101:{7,61: Z<p1;i(’l)[)<1}, Ilz{ZEI: p[;i(vj)21}.
If |\|<1 and C2>2NCs ., with Co . as in (4.34), then In#0); see (4.39).

Suppose |Iy| >2. By (4.36), C)éE} at vy is then given by

- 1 ~

wcf} = mjwr + 5 ;d(gm;ial;i) = w&g) .
1

This form tames jg; 7 on T, Zr and thus is nondegenerate on this space. By Corollary A.5, the
restriction of this form to T, ®; . ()) is also nondegenerate if || is sufficiently small (depending
only on 77(vy)).

Suppose |Iy]|=1 and Ip; =0. By (4.36), @éE} at vy is then given by
~ 1
wc‘f} = mjwr + id Z e2priari + 62‘1)2’,5;1 (r*de).
i€ly
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Along with (4.43) with I C I’ replaced by Iy C I, the second assumption in (4.7), (4.22) with I’ = I,
and (4.19), this implies that

S, = (129} (viwn + 5a(Pn30%00)) )

v
This form is nondegenerate, since @\I/%}O is a diffeomorphism on a neighborhood of v; contained
in the set (4.21) with I’ =1I,. By (4.22) with I’ =1Ij, the restriction of this form to T, ;! ;()) is
also nondegenerate.

Suppose Ip={ip} is a single-element set and Iyp; #(). By (4.36), Uu((f} at vy is then given by

- N 1 %
Wg = mrwr + 2d( | 28201;1'0[1;@' + (1 - 'Hnl;i>52pl;ioal;io + ( 'an;i>52(I>C,e;I(r2d9)>‘
i€lg1 Ul ic€lpy i€lp1

Since Q\Ilgou 1o, 18 @ product Hermitian isomorphism, (4.43) with I C [ " replaced by InUIy; C I,
the second assumption in (4.7), and (4.22) with I’=1IyUIp; thus imply that

- . 1
wé ‘ = {Q\I]I Iou101} (WIOUImWIoUIm + 2d< ZP(IELIM;iO‘IOUlm;i

1€lo1

+ (1 - HWIOUIOUZ')pgz)ujm;ioafonm;io + ( HnIOUIm;i) ‘52(1)2',5;10U101 (T2d9)>> :
vr

i€lp1 i€lo1

Since ”D\I/%}OU 1o, 18 a diffeomorphism satisfying (4.22) with I "= 1IyUly1, we can therefore assume
that Il = @

With f; and p; as in Lemma 4.3, let

fer =Cfr,  frio = (1 - Hn[;z’) + fc;z( Hm;z‘pg), fri = feunr Hm;jpgf; Vielo,

1€1p1 1€1o1 j€lp1—1
Bri, = d <fC;IH m;@-pﬁff - Hm;i>, pr = fC;I( Hm;mﬁfﬁ) TIHI -
i€lp1 i€1o1 i€lp1

Fix a Riemannian metric on X;. Via the Hermitian data (pr.;, v ﬂ))ie 1, it lifts to a Riemannian
metric on N’ X;. By the first statement in (4.45) and the definition of Iy;, there exists a smooth
function C;: X7 — R™, dependent only on ¢ and C, such that

1

Cilm o) = N'i =€ ’ 4.46

Cr(mr(vr)) — ‘fIvOIv < Cr(mr(vr)) (4.46)

,0%20(1)]) S CI(’]TI(UI))|)\‘2, ’ p[ 320 ’v[ ‘pf zoaI 'LO‘ < CI (71-[(,01_))|)\|7 (447)

; pl ‘”1’ ‘pgam}”ﬂ B (vr)] \J?I;z‘ (vr)], ‘dfl;i’vp ‘,uf}vp \d/u}v, < Cr(mr(vr)); (4.48)

these bounds apply to any vy € Z; with Ip={ip} and I; =0.
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By (4.45),

( TInre)e2@ecr(2a0) = feur ( TLnrants)) (ofanio) + 3 ol Fri (o ara) + ol fir

i€lp1 i€lp1 i€lpy
Thus, &%) is given b
us, We. 7 at vy 1s given by

~(&

* 1 € 1~ 5
Wc;} =mwr+ 5 Zd(pﬁﬂ?oq;i) + iff;iod(pﬁjoaz;io)

i€lp1
1 g) 7 € s € € rs €
5 (Pl Frad(pfara) + (Fradefd), + ol dfra) Alpfilara)) (4.49)
i€lpl
1 1 - -
+ 551;10/\(ﬂ§f30a1;i0) +5 (dpl) A + ) diir)

The 2-form &(5)

top ON the first line on the right-hand side of (4.49) is the pullback by mc s of the

2-form ) )
Twr + 9 Zd(pf;iaf;i) + iff;ioom;} d(pl;ioal;io)
i€1o1
at me,r(vr). By the Wr-tameness of Jr on N'X;(4") and (4.46), there exists a smooth function
€Ly X1 —R™T, dependent only on € and C, so that this form tames J; on

{’U 6NX](3N62): PI;io (’U) SE[;Z'O (’R’](U))} .

The 2-form G(E)

top then tames Je;; on

Wiy = {v eNX(3Y): pgfgo(v)gsl;io (mr(v))}-

By Corollary A.5, for every z € X} there exist a precompact neighborhood U, and 7, € RT such that
the restriction of @Eg% to Tvéc_i_l()\) is nondegenerate for all v € Wr;o|g—N @Ei,l()\) and A€ A, .
There thus exists 7/, € (0,7,) such that the right-hand side of (4.49) is nondegenerate on T, Z;
and on T,®;! (A for all v € Wil N @E;I(AT;) and A € A, satisfying the bounds in (4.47)
and (4.48). We conclude that &g} v, and the restriction &éa)ﬂv[ to T, @, /() are nondegenerate
if A€ A, L]

Corollary 4.5. Lete,C: X — R be as in (4.7) and (4.15). Suppose ¢|x,,C|x, are smooth for all
1€ [N], e is sufficiently small, and C is sufficiently large (depending on €). Then Lé’e;i@((f) =w; for

all i € [N] and {ic¢i(Xi)}ieny is an SC symplectic divisor in (Z,&ég)) for some neighborhood Z
of 2y in Z'. Furthermore, the associated homomorphisms (2.16) are orientation-preserving iso-
morphisms.

Proof. By the first case in (4.32) and (4.37),

Laa;i&é‘s) ‘Xzo = wi’Xf Vie [N] .
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By the second in (4.32), (4.36), and the vanishing of 17, prior, and ®c .. along Xr.; C N,

* g ~ * 1
{@g}%k#éﬂxmzzéﬂﬁ+2d<§:gmumu»

jel—i

vV {i}CIC[N].

X1

The first claim of the corollary now follows from (4.9).

By Proposition 4.1, {tc¢;i(Xi) }ic|n is a transverse collection of closed submanifolds of Z’ of codi-
mension 2. By Proposition 4.4 and the first claim of the corollary, the intersections of these
submanifolds are symplectic submanifolds of (Z ,@((f)) for some neighborhood Z of Z{ in Z’. The
preimages of these intersections in Z; correspond to the intersections of the hyperplane subbundles
Nr1.i CN X1 on a neighborhood of X§. These hyperplanes are E)és;}-orthogonal; see (5.34). Thus,
the symplectic orientations on neighborhoods of X7 in the corresponding subbundles N7.;y CN X[
are the same as the intersection orientations induced from the hyperplane subbundles Nr,; CN X7.
This establishes the second claim of the corollary and implies the last one, in light of the last claim

of Proposition 4.1(3). O

Remark 4.6. We believe that the dependence of the maximal norm r; for the acceptable values
of A€C on z in the proof of Proposition 4.4 can be dropped by constructing the trivializations
(®4)iep in Proposition 3.9 along with constructing the regularizations (9R¢)iep in the proof of
[4, Theorem 2.17]. This would then lead to a fibration Z with uniform smooth fibers over a
neighborhood A of 0 in C and remove the compactness assumption from the last statement of
Theorem 2.8.

5 The smoothability criterion

We show in Section 5.1 that a nearly regular symplectic fibration (Z,wz,7) as in Definition 2.6
determines a homotopy class of trivializations of the associated complex line bundle Oz(Z)); see
Proposition 5.1. If (£,wz,m) is a one-parameter family of smoothings of an SC symplectic va-
riety (Xg, (wi)icin)) as in Definition 2.5, this line bundle restricts to (2.14) over the singular lo-
cus Xp. Proposition 5.1 then determines a homotopy class of trivializations of (2.14). In particular,
(2.17) is a necessary condition for an SC symplectic variety to be smoothable. By Proposition 5.5
proved in Section 5.2, the homotopy class of trivializations determined by a one-parameter fam-
ily (2 ,(T)éa),wc,g) of smoothings constructed in Section 4 is the homotopy class used to construct
this family.

Proposition 5.1 and its proof readily extend to families of nearly regular symplectic fibrations
parametrized by a manifold B. They endow a natural complex line bundle Op.z(Z) over the total
space of such a family with a canonical homotopy class of trivializations. Proposition 5.5 and its
proof extend directly to compact families of the relevant data on (X)rep+(n). They ensure that
the family of one-parameter families of smoothings then arising from the construction of Section 4
encodes the homotopy class of trivializations used to obtain this family.

5.1 The necessity of (2.17)

If V.C X is a smooth symplectic divisor, the line bundle Ox (V') has a canonical section sy with
zero set V; it is described similarly to (3.24). Thus, any tensor product of such line bundles also
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has a canonical section; its zero set is the union of the associated symplectic divisors.

Proposition 5.1. Let (Z,wz, ) be a nearly reqular symplectic fibration over A as in Definition 2.6
and sy be the canonical section of the complex line bundle

0z(20) = (R0=(X;) — Z.
1E€[N]
Then there exists a trivialization ®z of Oz(2y) such that the smooth maps
Dzosylz_z,,mz—z2,: 2— 2y — C*
are homotopic. Furthermore, any two such trivializations ®z are homotopic.

Lemma 5.2. Let (Z,wz,m) be as in Proposition 5.1 and Zy.9 C Z¢ be the singular locus of Zo. If
2y is connected, there exists a smooth embedding (A,0)— (C,0) such that the linear map

Dr: Nz(20—Zp9) — ToA =2 TyC = C (5.1)
induced by dm is an orientation-preserving trivialization of Nz(Zo—Zp.9).

Proof. Choose a point p € Zy— 2.9 and a smooth embedding (A,0) — (C,0) such that the
isomorphism
Dyr: Nz(20—200)|, — ToA 2 ThC = C

is orientation-preserving. Let ZT,Z~ C Z— Zy5 be the subspaces of points z such that the
isomorphism
D,m: NZ (Zw(x)_ZO;a) ‘w — T7T($)A = Tﬂ(x)(C (52)

is orientation-preserving and orientation-reversing, respectively. By assumption, p€ ZT. Since Z
is connected and Zy.5 consists of codimension 4 submanifolds of Z, the complement Z* of Zy.9 in
the topological component of Z containing Zj is connected as well. Since the disjoint open subsets
Z*t and Z~ cover Z*, Z*C Z7 and thus (5.2) is orientation-preserving for all z € Zy—Zp.5. O

Proof of Proposition 5.1. If s; and s9 are non-vanishing sections of a complex line bundle L
over some space X, we write s; ~ so if 51 and so are homotopic through non-vanishing sections
of L. A trivialization ® of L corresponds to a non-vanishing section of L. The equivalence classes
of non-vanishing sections of L correspond to the homotopy classes of trivializations of L. The first
claim of the proposition is equivalent to the existence of a non-vanishing section s of Oz(Zp) so
that the smooth maps

(Sg/s)lg_go,ﬂ‘g_gO:Z—ZO—>C* (5.3)

are homotopic.

We can assume that 2y is connected. Let (A,0) — (C,0) be an embedding as in Lemma 5.2,
N =Nz(20—20,0), Ni=NzX;,
and U C Z be an open subset such that the inclusions

Z-U-—Z2-Zyp and Z—(ZUU)— Z—2,
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are homotopy equivalences. Denote by WA : A —5 A the canonical identification of a neighbor-
hood A of 0 in ToA=TpC with ACC and by i the standard complex structure on TpA. Since the
restriction of (5.1) to each fiber of AV is orientation-preserving, the complex structure i={Dm}*i is
tamed by wz|a

Let U;: N/ — Z, with i € [N], be regularizations of X; in Z in the sense of Definition 3.1 such that

Im (Wil a7y, ) =0 Vije[N],i#j,
WO‘I’i:\IonDw\N,| : M|, — AcCC VqeX;—U. (5.4)
7219

N Im (]

1x,-0)

We can use these regularizations and the complex structure i to construct the line bundles Oz (X;)
as in (2.8). The canonical regularization WA of 0 in C and the standard complex structure i on ThA
similarly determine a line bundle Oa(0) — A. By (5.4), D7 induces an isomorphism

[a:, c] — [71'(1)), c];

P: 0z(2 [0, (v), v, w] — [7(¥;(v)), Dr(v), Drr(w)];

Nz_y — 70a0)|;_y,

see (2.8) for the notation.

Let so be the canonical section of Oa(0) and s; be the constant section 1 of Oa(0), i.e.
s1(¥a(u)) = [Ya(u),u,1] VueA.

In particular, sg/s1: A—C is the inclusion map. They lift to sections 7*sg and 7*s; of 7*Oa(0)
so that
mso/m*s1=m: Z — C. (5.5)

By (5.4),
splz—u = @ tom*sol 5, (5.6)

Since the inclusion Z—~U — Z — 2.5 is a homotopy equivalence, there exists a non-vanishing
section s’ of Oz(20)|z-z,, such that

slz_u ~ <I>_1o7r*31‘Z_U . (5.7)
By Corollary 5.4(2) below, there exists a non-vanishing section s of Oz(Z2y) so that
8|z 24 ~ s (5.8)
By (5.6), (5.8), (5.7), and (5.5),
(s0/s) ‘Zf(ZOUU) ~ (I’_IOW*SU/‘I)_IOW*Sl’zf(zouU) = W‘Zf(ZOUU) :

Since the inclusion Z—(ZyUU) — Z—Z is a homotopy equivalence, the maps (5.3) are homotopic.
This establishes the first claim of the proposition.

The section sy of Oz(Zy) does not vanish on Z—Zj. If @z and ®’; are trivializations of Oz (Zp)
satisfying the homotopy condition in the proposition, then ®z|z_z, and ®;|z_z, are homotopic
trivializations of Oz (Zy)|z—z,. By Corollary 5.4(1), ®z and ®’; are thus homotopic trivializations
of Oz(2y). O
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It remains to establish the two statements of Corollary 5.4 used above.

Lemma 5.3. Let B be a paracompact topological space and (E, E) — B be a relative bundle pair
with fiber pair (F, F) in the sense of [24, Section 5.7]. If ¢ €Z" and H;(F,F;Z)=0 for all i <c,
then HY(E, E;Z)=0 for all i<c.

Proof. By our assumptions and the Kunneth formula [24, Theorem 5.3.10],
Hi(BxF,BxF;Z)=0 Vi<c.

By Mayer-Vietoris [24, Corollary 5.1.14] and induction, this implies that H;(E, E;Z) =0 for all
i<cif (F, E) — B admits a finite trivializing open cover. Taking the direct limit over compact
subsets of B, we find that H;(E,E;Z) =0 for all i < ¢ for any paracompact space B. The claim
now follows from the Universal Coefficients Theorem [18, Theorem 53.1]. O]

Corollary 5.4. Suppose M is a manifold, w: L— M is a Hermitian line bundle, and M'C M is
the complement of closed submanifolds V1, ---,V,C M of real codimension ¢€Z™* or higher.

(1) If ¢>2, any two trivializations of L over M that restrict to homotopic trivializations of L|yy
are homotopic as trivializations of L over M.

(2) If ¢>3, every smooth trivialization of L|yp is homotopic through trivializations of L|pp to the
restriction of a smooth trivialization of L over M.

Proof. By induction, we can assume that /=1 and V =V} is a closed submanifold of M of codi-
mension ¢. By the Tubular Neighborhood Theorem [2, (12.11)] and excision [24, Corollary 4.6.5],

HY(M,M";7) ~ H(NxV,NxV-V;Z) Vi€cZ.
Since H;(R,R*"1)=0 for i<c,
HY(M,M";7Z) ~ H(NxV,NxV-V;Z) =0 Vi<c—1
by Lemma 5.3. By the cohomology long exact sequence for the pair (M, M’), the sequences
0 — H(M;Z) — H'(M';Z) — 0, i<c¢—2, 0— H Y M;Z) — H Y M';7), (5.9)

where the second arrows are the restriction homomorphisms, are thus exact.

(1) Suppose ¢>2. If ®,®’: L — C are trivializations of L, there exists a smooth map f: M — C*
such that

' (v) = f(m(x))®(v) Vwvel.
If ®|5; and ®'|5; are homotopic, then f|y is homotopic to the constant map. By the injectivity
of (3.33) with Y = M’, f|yr then corresponds to the trivial element of H'(M’;Z). By the H!
case of (5.9), f corresponds to the trivial element of H'(M;Z) and so is homotopic to the identity.
Thus, ® and @ are homotopic as trivializations of L over M.

(2) Suppose ¢ >3 and ® : L|y — C is a trivialization of L|yy. By the H? case of (5.9) and
c1(L)|pr =0, e1(L) =0. Therefore, there exists a trivialization ®': L — C of L over M. Since ®
and |y are trivializations of L over M’ there exists a smooth map f: M’ — C* such that

®'(v) = f(r(v)®(v)  VveL|m. (5.10)
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By the bijectivity of (3.33) and the i=1 case of (5.9), there exists a smooth map ¢g: M — C* such
that g|as is homotopic to f. Define a trivialization of L by

®": L—C, " (v) = g(ﬂ'(v))_qu(v).

By (5.10), ®”|5s is homotopic to ®. O

5.2 Equivalence of input and output trivializations

We now show that the complex line bundle (2.14) and its trivialization ® used in the construction
of Section 4 extend over a neighborhood of Z)=:c .(Xj) in the space Z’ constructed in Section 4.2.
Furthermore, these extensions can be chosen to lie in the homotopy class of trivializations deter-
mined as in Proposition 5.1 by the nearly regular symplectic fibration (Z,&((f), mc) constructed
in Section 4. The proof of Propositions 5.5 below makes use of straightforward, though somewhat
technical, Lemmas 5.6 and 5.7; they are deferred to the end of this section.

Proposition 5.5. Suppose X is as in Theorem 2.8, ® is a trivialization of the complex line bundle
Ox,(Xy) as in the first paragraph of Section 4, € and C are RT -valued functions on Xy satisfying
the conditions of Propositions 4.4, and (Z,E}é‘s)jwc,s) is the corresponding one-parameter family of
smoothings. Then there exists a complex line bundle Oz (Z2y) with the canonical section sy and a

trivialization &)QE such that the associated embedding (4.33) induces an isomorphism

dic e

Xy Ox,(Xg) — 1¢.02(20)|x, (5.11)
of complex line bundles over Xg and

E>c,503@:7rc75: Z —C, $C7godLC7EIX8:C€_1(I>: Ox,(Xy) — C. (5.12)

We continue with the notation and setup of Section 4. For i € [N], let X? C X; be as in (4.24),
Z!C Z' be the image of X; under the map t¢ ., in (4.32), and

=T /\/‘X@X{i}ZNXZ‘EXi xC — XZ'

be the projection to the first coordinate. Denote by py;y.; and aygy,; the pullbacks of the function r?
and the 1-form df, respectively, by the projection N X; — C.

If in addition i€ I C[N], let
X3 = 210N7s € Dom(W)| o C Ny and  Xip = W) (X1,) € X,
be as in (4.27). Denote by
T Ny — Xp o and - prp;: NXp=mp,Nx, X1 — Ny

the projection maps (if /={i}, pry,;=m;). Let ir; be the complex structure on the oriented rank 2
vector bundle N x;_; X1 determined by p}]i- if |[I|>2 and the standard complex structure if |I|=1.

For each i€ [I], we will construct a complex line bundle and a smooth map,

vz NZi — X and VN'Z — 2,
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respectively, so that the latter is a diffeomorphism from a neighborhood N’Z; of X; in N Z; onto
an open neighborhood of Z! in Z’ and restricts to ¢ .; over X;. Under the identification of N Z;
with the vertical tangent subbundle of TN Z;|x,, the homomorphism

00 NZ s Nigpa= e T2 e 1212
= 7 C7E;Z_dLC,€;’L'(TXi) — Wi/ V2 2 =Cesi TZZ{ ) (5.13)
0i(v) = [dnyz, (0 ¥i(v)];
is an isomorphism of rank 2 real vector bundles over X; such that
U, =00 1 N/ =0,(N'Z;) — 2/ (5.14)

is a regularization of Z/ in Z’ in the sense of Definition 3.1. We will show that the complex

structure i; in the fibers of N'Z; is ©F (@ég) | 2;)-compatible and that

10,6 (i (v)) = Wi (dr, wyteei (V) € 25 VoeNi;(26%), 4, €[N], i#). (5.15)

The pairs (¥},1;) and (¥;, ©;i;) determine complex line bundles O%.(Z]) and Oz-(Z!), respec-
tively, over a neighborhood Z* of Z{ in Z’ as in (2.8). The maps (5.13) with ¢ € [N] induce an
isomorphism

N N
0: 0%.(20)=(X) 0% (2]) — 0z-(2)=R) Oz (Z]) (5.16)
=1 =1

of complex line bundles over Z*. By (5.15), the differentials of the maps ¢¢ c.; induce an isomorphism
as in (5.11) with Zy replaced by Zj. We will describe the line bundle O%.(Z;) explicitly over

trivializing open sets and construct a section 86 and a trivialization <I>’C7E of this bundle so that
&)’6780862770,5: zr—=C (5.17)
and sp=0©os) is the canonical section of Oz«(2y). By (5.17), the trivialization
Be.=Pp 007 : 0z:(29) — C (5.18)
satisfies the first equality in (5.12). We conclude by establishing the second equality in (5.12).
For all ie ICI' C[N],
W?/;iNXqu—XF’NI,;i(z;N) = ”;';iNI’;I’—i’Nﬂ;i(w) c 7T?’;I/\/’l”sf—f|/\f,,;,(4N) CNXp

under identifications as in the second equality in (3.13). Thus, the bundle homomorphism in (4.12)
if |I|>2 and in (4.20) if |[I|=1 with I and I’ switched restricts to a bundle homomorphism

o), mh N, X Ny ) — TN Xy (5.19)

Im(wgi)ﬂ

If [I|>2 or I'={i}, (5.19) is an isomorphism of Hermitian line bundles. If I = {i} and |I'|>2,
(5.19) restricts to an isomorphism of rank 2 vector bundles over the subspace (4.21) with I and I’
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interchanged; this subspace contains Xy ;.

For each i€ 1, define

NZ; = < I_lﬂ?;iNX”XI‘X”)/N,

1€IC[N]

50~ DU(0) € TN, X g0 VieIcI'C[N].

*
WI/;iNXﬂfiXII (Xi;ImXi;I’)

-1
\Ijﬁ)z (XN Xy p)

By the first statement in (4.25) and (4.23), ~ is an equivalence relation. By the first statement
n (4.14), the map

vz N2 — Xi= Ui (Xr), (5.20)
1€IC[N]

vz ([v]) = O (b, (v) Ve Nx,_ Xy, . i€IC[N],

is well-defined and determines a smooth rank 2 vector bundle. By Lemma 5.6 below, the complex
structures iy,; with ¢ €/ induce a complex structure i; on the vector bundle (5.20).

For i€ I C[N], define
2 if [I]>2;
5I:XIO—>R+7 (S[(x): ’ o~ 2 1 | |_.,
2C(x)%gi(x)?, if I={i};
N' 21 = {veriNx,_ Xilx,,: pra(v) <dr(mr(v))}-
By (4.29) and Proposition 4.1, the map

\I/;:./\/"ZZ»E( | |V ”>/~Hz’:( |_|ZI>/
1€IC[N] IeP*(N

Ui([v]) = q(v) € ¢(Z13) VveN'Z;, ieIC[N], (5.21)
is well-defined and smooth. By (4.32) and the first statement in (4.14),
Wi([0) = tei (VI3 (DU (0) ¥ veN'Z;

I‘Xl;imXI;]‘7 i,j€ICIN], i#j. (5.22)

For InCcIC [N] with Io#0, let

Zr.g, = {veZr pri(v)<dr(mr(v)) Viely, pri(v)#0Viel—Iy},
77110 0110 Z5) ®771NX1 i

i€lp

If [I|=1, then Iy=1 and 2}.; =Z;. If I;, I CI' C[N] with I;#0, then

*
— 2}, -
10

ZrgN 2y, =0 i g1, DO (2N Z, N 2,) = 260025, N2y, i IHCl.
In the second case, the diffeomorphism

@‘I/(ﬁ’)[ Z[/;]mZ}k/;I(/]mZ}k/;[O — Z];I’OZ;;I(I)QZ;;IO
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lifts to a bundle isomorphism

@\Ilgl) I/ I/ — (9] 1o ZO s.t.

)| |
0) Z]’;Imz}k’;l’ QZ;/; Z;. I’QZI 1 nZy. o

CD‘I’% < ZEI’ ®’U ® ®w;> = < vz i€l ®vz ® z) if

’LEI/ ’LEI’ﬂI() i€lg— ZEI’ﬂI()

), (Wier) = (Wi)ier, mf}’ ((v))ier— I,<w;>ie16mo)=<wi>iefémoefvxf.

The union Z* of the open subsets q(Z7,;,) C 2’ is a neighborhood of Z{) in 2. Define

0z-2) = (L Ou(2) )/~

IoCIC[N]
To£0
’ (e) / /
OI/I/ ZO ‘Z[/IOZI/IIOZ* BUNQ\PI{; ( )GOIIO ZO ‘ZI QZ;I,QZ;I VI07IO CICI

By the first statement in (4.25) and (4.23), ~ above is an equivalence relation. Furthermore,
the map
19 05.(20) — 2%, 75 ([u]) = (7, (w), (5.23)

is well-defined and determines a smooth complex line bundle.
For I € P*(N), let ®¢..r be as in (4.16) and (4.19). Define a smooth map
(I)C o OZ*( ) — C

(T)/C,a-:([(ui>ief7 ® wz]) = ®c i1 ((vi)ier—10, (wi)ier,) Y ((vi)ier ®wz) €05.1,(2y) - (5.24)
i€ly i€lp

By the first statement in (4.25) and (4.22), this map is well-defined. The restriction of <I>’C . to each
fiber of (5.23) is an isomorphism because

vi A0V ((0ier, Qui) €071, (20), i€ I—1I,

i€l

and (4.3) is an isomorphism of complex line bundles over X7 C X7. Define a smooth section
of (5.23) by

sp(a((iier)) = [(v)ier, Qi) € Oy (20) ¥ (vidier € Zgy, ToCICIN], Io#0.  (5.25)

i€lp
By (5.24) and (4.31), the section sj and the trivialization (52’,5 of (5.23) satisfy (5.17).

For ie I C[N], let

é];i: W?;iNXIﬂ'XI —)W[ZNX[ —)TZ[ (5.26)

s, 1, [,

denote the inclusion of 7T}<;Z-N x,;_,; X1 as a subbundle of the restriction of the vertical tangent bun-
dle of the total space of the fibration 7y : N X; — X;. Since the maps (4.12) and (4.20) are
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isomorphisms of split vector bundles,

él;i (Q\I’(ﬁ)] (U)) = d\ygf‘;)

T (771/;1' (v))

OV, (014(v)) (5.27)

V vE W;l;iNXI’—iXII

. !
O (XX, 1) ielCI'C|N].

By the first statement of Lemma 5.7 below, the composition

TZ .
— TZ[ 71‘)(“

. * — )
Ory: 7TI;1'~/\/.X1—1'X1{leZ ’X” TXr.,
; ; )

=Nz, X4 (5.28)

of © 1. with the quotient projection is an isomorphism of vector bundles over Xr.;. By (5.27), the
isomorphisms (5.28) induce an isomorphism

O N2 — Nig o= 02 _
7. 7 — LC,E;Z: dLC’a;[(TXi) 9
0i([v]) = (W) (pr74(v)), dpr, (192 (Or(v)] VveriNy, Xy, . i€ICIN], (5.29)

of rank 2 real vector bundles over X;. By (5.21), this isomorphism is described by the second
line in (5.13) and thus the map ¥; in (5.14) is a regularization of Z/ in Z’. By the statement of

Lemma 5.7 below, the complex structure i; on the fibers of N'Z; is ©F ((I)éa) |\, 27)-compatible.

The complex line bundles Oz« (Z]) over Z* as in (2.8) obtained from the identifications ¥; and the

complex structures O;.i; are given by
Oz+(Z]) = (Y V*mh, 2Nz Zilwy vy U (2* = Z) xC) [~ — 27, (5.30)
‘ o 5.30
\Ili_l*ﬂj\/Z/Z{NZ/ZH‘I’i(/\/{) > (\I/i(v),v,cv) ~ (\I/Z'(U),C) € (Z*—Zl/) x C.

The isomorphisms O; with i € [N] induce an isomorphism © as in (5.16). By (5.25) and (5.29),
sp=Oos), is the canonical section of Oz (Zj). We define a trivialization ®¢ . of Oz« (Z;) by (5.18).

Let i€ [N]. By (4.9) and the last condition in Definition 3.1,

TXj’Xij

[0y U5 (0)] = &(mi(0)v € Nx, Xij = T, VRlENG Xy
By (4.32) and the first statement in (4.14),
e (U5 (DUF). (1) = qv) € 2] ¥ vEN'Zir|y, oy, s BIEICIN], i),

Combining the last two statements with (5.29), we obtain

0;([v]) = e(my (PUF, (W) 4 o ¥ (0 C (@) (v)) € Nz Z] (5.31)

v UGFZZ‘]'NXI—Z'XI‘X];I-HX];]-’ lv]EIC[NL 27&]

Along with (5.14), (5.22), and (4.9), this implies (5.15).
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Let j € [N]—{i} and Z};=ic(Xij). By (5.30) and (5.15),

LE,E()Z* (ZZ/) |X (ll’zjlj*{dﬂ'ij;j(U)L675§j}*Wj\fz/Zz(NZ/Zz(|‘Ifij;j(./\fij;j(2£2)) U (X] _XZ]) X (C) /N
(Tijis(v), v, dicesj(v), edic e (v) ~ (Tijis(v), ).

The line bundle Ox,(X;;) constructed using the identification W;j.;|;

5.5 (2¢2) 18 given by

OXj (XZ]) - (\IIUIJ* :J ]MJ iJ |‘Ilzj 3 (Niji5(2€2)) U (XJ _Xij) XC) /N’
(Pijij (v),v,cv) ~ (Wiji5(v), ).
Thus, the isomorphism

TZl\z  TZ'z
J 1y 1] :NZ/Z,L/

dicej: Nijij =Nx. Xij — =
€37 1757 i< TZZ/J TZZ/|Z’
ij

induces an isomorphism from Ox; (Xjj) to 15 Oz+(2])|x,. If k€[N]—{i}, then

dec eijl x ;0 =dic ekl x 0 0 Ox i (Xign) = Ox, (Xig) | x, = Ox (Xi) | x,. — 10.02+(Z))|x, -

Thus, the differentials of the maps ¢¢ .; induce an isomorphism as in (5.11) with Z replaced by Z;.

Let i, j € [N] be distinct. An element of Ox,(Xp)|, with z € X;; is represented by a tensor product
wi@w;® @) (z, v}, wj,)  with
kel
IZCINT—{i, 5}, v, € Nijihsij (267), 2= Wi (vh), (Vg W) € T1si i Nijesis -
By (4.8) and the first statement in (3.19), such an element can be written as

(x:\Ile( )= \I’gi)j ®wk with
kEI()

Io = {i, j}UI(I) C I, V= (’Ul)le[ EmE;I(Z}k;IO)ﬂN[;Z’j, (U, wk) € ﬂ-;NXIkaIa
wh, = DU ik (Vrer— (i) wr) = DL () 00)ier— iy wi) YEE .

With these identifications, the condition (3.27) becomes

(‘I’I 15 ( ®wk) ® (Tor.1 (i) rer—1o0 (Wh)ken,)) (5.32)
kely
v (v, Qi) € 011, (25) et (235 Wiy i,j€IoCIC[N].

kJEI()
By (5.31), (4.9), and the second condition in (4.7), the isomorphism (5.11) satisfies

el ([2r(0). 0. @] ) = O([e0) . @) (cv) " wi)]) € 02-(2))

kely kel

v (’U, ®wk) € O/I;IO(Z(/))

kely

Wiy i,j€lpCIC[N].

mfﬂ(Z;;IO)
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Along with (5.18), (5.24), and (4.16), this implies that
De . (dbc z—:|XU< (@135 ( ®wk )) 1(0))e(mr () @ (Mo (k) ker—10, (Wi )ker,))
®wk E Uk kel ®’UJ}<; € OI;IO (Z(/))

kely kel

eyt (2,1 Wiy i,j€lyCIC[N].

Combining this with (5.32), we obtain the second equality in (5.12).

It remains to establish the two lemmas used above.

Lemma 5.6. For alli€ I CI' C[N], the bundle homomorphism (5.19) is C-linear with respect to
the complex structures 7y, iy and w7 ir;.

Proof. 1f |I| > 2, then the homomorphism (5.19) is an isomorphism intertwining the Hermitian
structures 77, (pri, i) and wr(pri, arg). I 1= {i}, (5.19) is the identity. If I = {i} and
|I'| > 2, the homomorphism (5.19) is given by
111
DU ((07)jer—irvi) = C(mi((v7)jer))e (mr((v7)jer—i) "™ @ (Toxer (7)) -

€)

Since ® is a C-linear isomorphism and Il is a C-linear homomorphism in the v;-input, Q\Il(,, 718
a C-linear homomorphism in this case as well. O

Lemma 5.7. For all i € I C [N], the homomorphism (5.28) is an isomorphism of vector bun-
dles over Xr,;. Furthermore, the restriction of 7y,ir; to Tr;iNXI—iXﬂXI;i s a @f'i(wg“NZIXI;i)‘
compatible complex structure.

Proof. The first claim follows from the canonical decomposition
T(NX1)|y,, = TN @ nfNx, X1 (5.33)
of vector bundles over N7,;. By (4.36) and (4.37),
~(e) " 1 2
wC;I|T21\XI;i = \Trwr —+ idz (5 pI%jaIU)
jel—{i}

1
+ 2d(<1 - Hm;;) e2prior + < Hm;;) 82‘I>Z,5;1 (7“2019)))

jel—{i} jel—{i}

TZr]x;,

Since pr.; vanishes on Np,; and dpr,; vanishes on T(NX[)|NM, Lemma 4.3 implies that there is a
smooth Rt-valued function fee;r on X7 such that

wg‘;}’TZﬂXI;i - (pr751i (@§£) ’Nl;i)

((1 — Hm,;) (fe,esromy) Hm,;pl,g) d(Pl;iaI;i)>

jel—{i} jel—{i}

(5.34)

TZ1x,,
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if |I|=2. The same conclusion holds if I ={i}.
By (5.34), the image of the inclusion (5.26) is the &é‘?}—orthogonal complement of T'Xr,; in T'Z;|x,,,
Thus,

G)I*;i(wée;}‘/\le)ﬁ;i) = @;,zajéf)[

© i (5.35)
=5 <<1 - HUU) + (fc,e;IOW{)HﬁI;jpj;a F[;id(pj;iafn-)
jel—{i} jel—{i}

under the canonical identification of Nx, , X with the vertical tangent bundle of Ny, . X;— X7
along X7. By Definition 3.2(1) and (3.1), the complex structure ir,; is compatible with

1
Wil o, = 3d0ri0ni) g, (5.36)

under the identification of Nx, . X; with the vertical tangent bundle of TNx, ,X; along X if
|I|>2. If |I| =1, the complex structure is; is also compatible with (5.36). Along with (5.35), this
implies the second claim. O

A Connections in vector bundles

This appendix contains a number of explicit computations involving connections in complex line
bundles. All of these computations are straightforward; we include them for the sake of complete-
ness.

Let m: L— X be a complex line bundle and {;, be the radial vector field on the total space of L, i.e.
(L(v) = (v,v) e L=TL" =kerdr — TL VvelL.

A connection V in L and determines a horizontal tangent subbundle TL"" c TL and a splitting of
the exact sequence

0— 7L — TL 9 m*TX — 0

of vector bundles over L, i.e. a splitting
TL~TL @ TLM ~ n*L @ 7" TX (A1)

such that the second isomorphism above is (id,dn); see [27, Lemma 1.1].

If U C X is an open subset, a non-vanishing section £ €I'(U; L) induces a trivialization L|y~UxC
and

VE = keg (A.2)

for some C-valued 1-form ke € I'(U; T* X ®rC). If ¢ € I'(U; L) is another non-vanishing section,
then ¢ = f¢ for some feC>(U;C*) and

ke = ke + 1S (A.3)
With respect to the trivialization of L|y; determined by &,
Ty L = {(&, —ke(d)v): $€T, X} C T, X®C Y (z,0)€UxC.

o1



This is consistent with (A.3) and shows that the C*-action on L preserves the splitting (A.1).

If h: Y — X is a smooth map, a connection V in L induces a connection V" in the line bundle
h*L—Y. If UC X is an open subset, { is a non-vanishing section of L|y, and k¢ is as in (A.2),
then h*¢=¢oh is a non-vanishing section of h*L over the open subset h~1(U)CY and

V(h*€) = kpe(R*€), where  Kp+¢ = h'ke = kg o dh.

Let £€T(U; L) be as in (A.2). Denote by K the C-valued 1-form on L—X given in the corresponding
trivialization of L by

Kow (&,0) = —i(ke(®)+v7'0) ¥ (&,0) €T (4, (UxXC), (z,0)€UxC". (A.4)

By (A.3), K is well-defined (i.e. independent of the choice of £). It is preserved by the C*-action
and satisfies

d

,C‘TLM'L?X —0, K(¢L) =—i, K(Cwei%’(#o) =K(i¢L(v)) =1 Vvel-X. (A.5)

The choice of the normalization for K is motivated by the last property above and by (A.7) below.

Given a Hermitian metric p on L, let SL C L denote the unit circle bundle. If V is p-compatible,
¢ is a trivialization of L over an open subset U C X, ||=1, and k¢ is as in (A.2), then

Tiew)(SL) = {(&,cv): 2€T, X, c€iR} C T, X®C  V (z,0)eUxS",

Hg(i‘) + Iﬁ{(i‘) =0 VzeTIU. (A.6)
Thus, k¢ take values in iR and the splitting (A.1) restricts to a splitting

T(SL) ~ T(SL)* @ T(SL)™",  where
T(SL) =kerd{m|s,} =TL*" NT(SL),  T(SL)"* =TL"|, .

There is a unique R-valued connection 1-form o on SL such that

d .
ker @ = T(SL)Mr, a(cwe‘ev’€0> =1 VveSL.

By the first and last statements in (A.5), it is given by the restriction of K to the tangent bundle
of SL. Via the retraction v
L°=L-V — SL, v— —,

|v]

the 1-form « extends to a 1-form on L°; we denote the resulting extension by « as well. By (A.5),
a=Rek. (A7)

As in the main part of the paper, we will use the same notation p to denote the square of the norm
function on L and the Hermitian form on L.
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A connection V in a vector bundle 7: L — X determines an extension 2y of a fiberwise 2-form 2
to a 2-form on the total space of L. If €2 is a fiberwise symplectic form on an oriented vector bundle
m: L— X of rank 2 and (p, V) is an Q-compatible Hermitian structure on L, then

{1 Qv Hi) = Q(Cr,i¢0) = p* (e, o) = p(Ce, Co)- (A-8)
Since i¢, Qy vanishes on TL'" and on (z, (A.7), (A.5), and (A.8) give
pa =1,y . (A.9)

Lemma A.1. Suppose m: L— X is a complex line bundle, (p, V) is a Hermitian structure in L,
and « is the connection 1-form on L° determined by (p, V).

(1) If (p', V') is another Hermitian structure in L, there exist f € C°(X;R") and an R-valued
1-form pir on X such that

o= f"p, V' =V - fdf +ipr. (A.10)

(2) If p' and V' are given by (A.10), then (p', V') is a Hermitian structure in L and the connection
1-form on L° determined by (p', V') is given by

o =a+ 71 uR. (A.11)

Proof. Since L is a complex line bundle, the first half of (1) is clear. If V' is another connection

in L, then
V' =V+u

for some C-valued 1-form on X. Along with the compatibility condition on (p,V) and (p’, V'),
this implies the second half of (1) and the first half of (2). If p’ and V' are given by (A.10) and
£e(U; L) is a local section with p(§)=1, then &= f¢ is a local section with p'(¢/)=1 and

ke = (ke— fHdf+ipr) + fHAf = Ketipr .

Along with (A.7) and (A.4), this implies the second half of (2). O
If NeZ* and L; — X is a complex line bundle for each i=1,..., N, define
N N
H@Lz—>®LZ by (’1)1,...,’1)N)—>U1®...®’UN.
i=1 i=1

Lemma A.2. Let N€Z* and X be a manifold. For each ic[N], let (L;, p;, V) be a Hermitian
line bundle over X with induced connection I1-form «; on Lg. Suppose

N

(ﬂ-’ q)) ®(Ll,plv V(Z)) — (XX(C, pcC, V(C)
i=1

18 an isomorphism with the trivial Hermitian line bundle,
T L?XX...X)(L?V — Lf

1s the projection onto the i-th factor, and d=doll. Then,

N
D miey =@ € T(Lixx.. . xx Ly T* (L xx... xx LY)) -
=1
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Proof. For each i € [N], let & € T'(U; L;) be such that |§;| =1. By choosing {x suitably, we can
assume that

@({1@ . ®£N) =1.
This implies that

N

= V(§1®...®§N) = (Zﬁg)&@...@&v,
=1
&)(1’,111,...,2)]\7) =vi...oxn V(x,v1,...,05) € UxCN,

Combining this with (A.7) and (A.4), we find that

N
LI PRI C X TR Imz ke, (& Imz 0;
=1

= Im({d(z,m,...,vw) In (I)} ((E, Viye ooy UN))
= {20}, oy (@01 ON),

as claimed. O

Corollary A.3. Let N, X, (Li,pi,V(i)), and a; be as in Lemma A.2. If

N
®): () Li — X xC (A.12)
=1

is an isomorphism of complez line bundles, there exist f € C*°(X;R") and an R-valued 1-form pir
on X such that

L, pi, V) — (X xC, f2pe, VE+ f 1 f —ipur) (A.13)

®2

z:l

is an isomorphism of Hermitian line bundles. If (A.13) is an isomorphism of Hermitian line
bundles, then

N
W*MiR—I-Zﬂ;‘ai =¢*df e I'(Lxx ... xxLy; T* (LS xx...xx LY)) -
i=1

Proof. The first claim of this corollary follows from Lemma A.1(1). The second claim is obtained
by applying Lemma A.2 with

(Ly,pr, V) replaced by (L, f72p1, V= f71df +ipue)
and then using (A.11); see Lemma A.1. O

With N, X, (L;, pi, V?), a;, and ; as in Lemma A.2, let

N
W!N:@Li—)X.

=1
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A splitting of the exact sequence

0— TN — TN 5 2 TX — 0 (A.14)

over L] X x...xx Ly is obtained by taking

N
TNbor = ﬂ (kermfoy; Nkermydp;) C TN.
=1
By (A.5), (A.4), and (A.6),
Ty NP = {(@, —60) (£)01, ., —RE (d)on): #€T X} C ToX xCN

(A.15)
Y (z,v1,...,0n5) € Ux(CHN

in the trivialization induced by local sections & € I'(U; L;) with |&;|=1. The above splitting thus
extends to a splitting

TN:TNver@TNhor—}N

of (A.14) over the entire total space N; the latter restricts to the canonical splitting over X C N.
Via this splitting, the complex structure i on the fibers of m and an almost complex structure .J
on X induce an almost complex structure J on the total space of N.

Lemma A.4. If N, X, (Li, pi, VD), s, T, and J are as above and ® is as in (A.12), then
there exists a continuous function Ce : X — R with the following property. For every X\ € C*,
ve®Y(N), and VT, D71 (N\), there exists w € TNV such that

Jo+w € T, YN, ] < Co(m(v)) [ AYN]dm, (0)]. (A.16)
Proof. Let ve® Y(\), 0€T,N, and z=m(v). In a trivialization as in (A.15),

(1)

v=(x,v1,...,0N), U= (i’,i}l—/{& (Z)vy,..., 0N — /ﬁgj)(i‘)v]\/)
for some v;, ¥; € C. Furthermore,
B(v) = f(x)o To = (Ji, 61— W 74 o (N), s
= 1...UN, 0= (J&, 101 — kg, (Jx)vi,. .., 0N ey (Jx)vN)
for some feC*°(U;C*) determined by the trivialization. Thus,
|B(v)| = | f()] - |v1]- .- Jon] - (A.17)
If A\eC* and (z,v) € ®1()\), then v;#0 for all i. By symmetry and (A.17), we can assume that
=~ 1/N
1] < |B(v)/ f ()] (A.18)

Define

iy — i Qef@)+idef(J2) al O @70 o
1_1( . > ))) e,

W = (0,1,0,...,0) € TLN.
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By (A.18),  satisfies the second condition in (A.16). If ¥ €T,® (\), then

f(x) im1 Uy
() 7z ; N (@)
-~ dpf(Jid) 11—k (J&)v+u 10; — kg (J&)v;
diz P (Jo+w) = i —
o ®UHE) =) v1 2
Thus, w also satisfies the first condition in (A.16). O

Corollary A.5. Suppose N, X, (Li,pi,v(i)), Q;, T, j, and ® are as in Lemma A.J and @ is a
nondegenerate 2-form on a neighborhood N' of X in N taming J. For every compact subset K
of N', there ewists rx € RT such that the restriction of @ to TU:IS_I()\) 1s nondegenerate for all
veDPLA)NK and AeC* with |\|<rk.

Proof. Given v€T,® (\), let @ €T, be as in Lemma A.5. Thus,
1@ (0, Jo-+1b) =@ (0, J0)| < Ca (e () ) IAYN [dary (8)] 0] < Cp ((w)) i N 62,

Since J tames & over the compact set K, it follows that w(0, J +) is nonzero if rx is sufficiently
small. O

B The smoothability criterion revisited

The smoothability condition (2.17) is equivalent to the condition

N

> ei(Oxe(X)|y, =0 € H? (X5 Z).
i=1

Proposition B.1 below provides a different description of the cohomology classes
PDx:(X;) = c1(Ox¢(Xy)) € H*(X(3Z),  i€[N].

It is more conceptual and less useful, but is more intrinsic. It is also more indicative of being
an obstruction to the existence of the smoothing, since the singular fiber Xy of 7: Z — A is
homologous to a smooth one and the normal bundle to the latter is trivial.

Proposition B.1. Let (Xp, (wi)ic[n)) be as SC symplectic variety as in Definition 2.5.
(1) For each i€ [N] and each connected component X}, of XoNX;, there exists a unique element
PDx<(X},;) € H*(X{; Z) such that
PDxe(Xp,)|, = PDx, (X5,0X;) € H*(X;:Z) ¥V j e [N]-{i}, (B.1)
PDxe (Xp,i)Ixe—x;, =0 € H* (X7~ Xp,;; Z). (B.2)
(2) For each i€ [N],

c1(Oxe(X:)) = > PDxe (X)) € HA(XS;Z),
Xé;i

where the sum is taken over the connected components of XoNX;.
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Proof. For all i, j € [N] distinct, let ¥;;.; and i;;,; be as in (2.10) and (2.11), respectively. Restricting
the construction of (2.13) to each connected component X}, of XpNX;, we obtain a complex line
bundle Ox¢(X},;) over X{ such that
c1 ((9)(1c (Xéﬂ)) ‘Xj =C (OX]- (Xla;iﬂXj)) = PDXj (Xé;iﬂXj) Vjée [N] —{Z}
Thus, the cohomology class
PDx¢(Xp,) = c1(Oxe(Xp,)) € H*(X{Z)

satisfies (B.1). Since the restriction of Oxe(Xp,;) to X¢— X}, is a trivial line bundle, it also
satisfies (B.2). Along with Lemma B.2 below, this completes the proof of the first claim. It is
immediate that

Oxs(Xi) = Q) Oxe (Xp,) — X7,
X/

where the tensor product is taken over the connected components of XgNX;. This implies the
second claim. O

Lemma B.2. Let (Xp, (wi)icv)) be as as Proposition B.1 and i, j € [N] be distinct. If Xp; C XoNX;
s a connected component such that Xé;iﬂXj#@, then the homomorphism

H*(X{Z) — H*(X{~ X} 2) © H* (X3 2), (B.3)
induced by the restriction homomorphisms, is injective.
Proof. The kernel of the first homomorphism in (B.3) is the image of the restriction homomorphism
H?(X{, X{—X};;Z) — H*(X{; 7).

Thus, it is sufficient to show that the composition

H*(X{, X{—Xb,;Z) — H*(X{;Z) — H*(X;;Z) (B.4)
of the two restriction homomorphisms is injective.
With notation as in (2.10), let

DXk (Xé,z) = -/\/’i/k;i

Vke [N]_iv DX;(XEM) = UDXk (Xé,z) :

X(’%ﬂXk
ke[N]—i

We use the maps W;;.. to identify these disk bundles with neighborhoods of X énﬂX . in Xy and of
X}, in X¢. Since these disk bundles are oriented, there is a commutative diagram

~

HO(X(g,z) — H? (DXf (Xé,z)’ DXf (Xé,z) _Xé,z) H? (ch’ XZC_X(%,@)

| i |

HO(X},NX;) —= H?(Dx,(X},), Dx,;(X}h.;)—X},NX;) <=~ H*(X;, X;— X},,NX;)

~
~
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where the vertical arrows are the restriction homomorphisms, the right horizontal arrows are the
excision isomorphisms [24, Corollary 4.6.5], and the left horizontal arrows are the Thom isomor-
phisms [17, Theorem 10.4] for the disk bundle Dx¢(Xp,;) — Xp,; and its restriction to Xp,;NXj.
They send the unit 1 in H°(X},;Z) and H°(X},;NX;;Z) to the Thom class u; for Dxe(X},;) and
its restriction u;| X} NX; respectively. Let

Uil xy, ax, € H? (X5, X~ X5,0 X}, Z)

denote the element corresponding to wu;| X5.NX; under the excision isomorphism. By [17, Exer-
cise 11-C], the restriction of u;|Xé;iij to Xj is PDy;(X},;NX;). Since Xj,;NX; is a symplectic
submanifold of X},

(W' "PDx, (Xh,NX;), X;) = (w1, XpNX;) #0
if 2n=dimg Xj;. Thus, PDx;(X},;NX;)#0 and the composition
H?*(X{, X{—Xp. Z) — H* (X5, X;— X5,N X5 Z) — H*(X;;Z)

of the two restriction homomorphisms is nonzero even after tensoring with Q. Since H(X}, ; Z)=Z,
it follows that this composition is injective. Therefore, the composition (B.4) is also injective, as
needed. O
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