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Abstract

We establish a homology relation for the Deligne-Mumford moduli spaces of real curves which
lifts to a WDVV-type relation for a class of real Gromov-Witten invariants of real symplectic
manifolds; we also obtain a vanishing theorem for these invariants. For many real symplectic
manifolds, these results reduce all genus 0 real invariants with conjugate pairs of constraints to
genus 0 invariants with a single conjugate pair of constraints. In particular, we give a complete
recursion for counts of real rational curves in odd-dimensional projective spaces with conjugate
pairs of constraints and specify all cases when they are nonzero and thus provide non-trivial
lower bounds in high-dimensional real algebraic geometry. We also show that the real invariants
of the three-dimensional projective space with conjugate point constraints are congruent to their
complex analogues modulo 4.
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1 Introduction

The classical problem of enumerating (complex) rational curves in a complex projective space Pn

is solved in [22, 27] using the WDVV relation of Gromov-Witten theory. Over the past decade,
significant progress has been made in real enumerative geometry and real Gromov-Witten theory.
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Invariant signed counts of real rational curves with point constraints in real surfaces and in many
real threefolds are defined in [31] and [32], respectively. An approach to interpreting these counts
in the style of Gromov-Witten theory, i.e. as counts of parametrizations of such curves, is presented
in [4, 28]. Signed counts of real curves with conjugate pairs of arbitrary (not necessarily point)
constraints in arbitrary dimensions are defined in [10] and extended to more general settings in [5].
Two different WDVV-type relations for the real Gromov-Witten invariants of real surfaces as de-
fined in [4, 28], along with the ideas behind them, are stated in [29]; they yield complete recursions
for counts of real rational curves in P2 as defined in [31]. Other recursions for counts of real curves
in some real surfaces have since been established by completely different methods in [18, 2, 19, 20].

In this paper, we establish a homology relation between geometric classes on the Deligne-Mumford
moduli space RM0,3 of real genus 0 curves with 3 conjugate pairs of marked points and use it to
obtain a WDVV-type relation for the real Gromov-Witten invariants of [10, 5]; see Proposition 3.3
and Theorem 2.1. This relation yields a complete recursion for counts of real rational curves with
conjugate pairs of arbitrary constraints in P2n´1; see Theorem 1.2 and Corollary 1.3. It is suffi-
ciently simple to characterize the cases when these invariants are nonzero and thus the existence of
real rational curves passing through specified types of constraints is guaranteed; see Corollary 1.4.
We also show that the real genus 0 Gromov-Witten invariants of P3 with conjugate pairs of point
constraints are congruent to their complex analogues modulo 4, as expected for the real curve
counts of [31, 32], and that this congruence does not persist in higher dimensions or with other
types of constraints; see Corollary 1.5 and the paragraph right after it.

Each odd-dimensional projective space P2n´1 has two standard anti-holomorphic involutions (au-
tomorphisms of order 2):

τ2n : P
2n´1 ÝÑ P2n´1, rz1, . . . , z2ns ÝÑ rz̄2, z̄1, . . . , z̄2n, z̄2n´1s, (1.1)

η2n : P
2n´1 ÝÑ P2n´1, rz1, . . . , z2ns ÝÑ r´z̄2, z̄1, . . . ,´z̄2n, z̄2n´1s. (1.2)

The fixed locus of the first involution is RP2n´1, while the fixed locus of the second involution is
empty. Let

τ“τ2, η“η2 : P
1 ÝÑ P1 .

For φ “ τ2n, η2n and c “ τ, η, a map u : P1 ÝÑ P2n´1 is pφ, cq-real if u˝c “ φ˝u. For k P Zě0, a
k-marked pφ, cq-real map is a tuple

`
u, pz`

1 , z
´
1 q, . . . , pz`

k , z
´
k q

˘
,

where z`
1 , z

´
1 , . . . , z

`
k , z

´
k PP1 are distinct points with z`

i “cpz´
i q and u is a pφ, cq-real map. Such a

tuple is c-equivalent to another k-marked pφ, cq-real map
`
u1, pz1`

1 , z
1´
1 q, . . . , pz1`

k , z
1´
k q

˘

if there exists a biholomorphic map h : P1 ÝÑP1 such that

h˝c “ c˝h, u1 “u˝h, and z˘
i “hpz1˘

i q @ i“1, . . . , k.

If in addition dPZ`, denote by

M0,kpP2n´1, dqφ,c Ă M0,kpP2n´1, dqφ,c
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the moduli space of c-equivalence classes of k-marked degree d holomorphic pφ, cq-real maps and its
natural compactification consisting of stable real maps from nodal domains. As in [5, Section 3],
let

M0,kpP2n´1, dqφ ” M0,kpP2n´1, dqφ,τ Y M0,kpP2n´1, dqφ,η (1.3)

be the space obtained by identifying the two moduli spaces on the right-hand side along their
common boundary. The glued space has no codimension 1 boundary.

By [5, Lemma 1.9] and its proof,

M0,kpP2n´1, dqτ2n,η “ H @ dR2Z ,

M0,kpP2n´1, dqη2n,η “ H @ dP2Z , M0,kpP2n´1, dqη2n,τ “ H @ d P Z .

By [10, Theorem 6.5], M0,kpP2n´1, dqτ2n,τ is orientable for every dPZ. By [5, Section 5.2], the spaces

M0,kpP2n´1, dqτ2n,η with dP2Z and M0,kpP2n´1, dqη2n,η with dR2Z

are orientable as well. If φ “ τ2n and d P 2Z, the orientations on the two moduli spaces on the
right-hand side of (1.3) can be chosen so that they extend across the common boundary; see [5,
Proposition 5.5]. In the remaining three cases, at most one of the spaces on the right-hand side
of (1.3) is not empty. Thus, the glued moduli space (1.3) is orientable and carries a fundamental
class.

The glued compactified moduli spaces come with natural evaluation maps

evi : M0,kpP2n´1, dqφ ÝÑ P2n´1,
“
u, pz`

1 , z
´
1 q, . . . , pz`

k , z
´
k q

‰
ÝÑ upz`

i q.

For c1, . . . , ck PZ`, we define

xc1, . . . , ckyφd “

ż

M0,kpP2n´1,dqφ
ev˚

1H
c1 . . . ev˚

kH
ck P Z , (1.4)

where H PH2pP2n´1q is the hyperplane class. For dimensional reasons,

xc1, . . . , ckyφd ‰ 0 ùñ c1 ` . . .` ck “ npd`1q ´ 2 ` k . (1.5)

Similarly to [27, Lemma 10.1], the numbers (1.4) are enumerative counts of real curves in P2n´1,
i.e. of curves preserved by φ, but now with some sign. They are invariant under the permutations
of the insertions and satisfy the usual divisor relation,

xc1, . . . , ck, 1yφd “ d xc1, . . . , ckyφd . (1.6)

The latter holds because the fiber of the forgetful morphism

M0,k`1pP2n´1, dqφ ÝÑ M0,kpP2n´1, dqφ

is oriented by z`
k`1 and every degree d curve in P2n´1 meets a generic hyperplane in d points.
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By [5, Theorem 1.10] and [5, Remark 1.11], the numbers (1.4) with φ“ τ2n, η2n vanish if either d
or any ci is even; see also Corollary 2.6(1). By [5, Remark 1.11] and Corollary 2.6(2),

xc1, . . . , ckyτ2nd “ ˘xc1, . . . , ckyη2nd ; (1.7)

the sign depends on the orientations of M0,kpP2n´1, dqτ2n and M0,kpP2n´1, dqη2n . Systems of such
orientations, compatible with the recursion of Theorem 1.2 for P2n´1 and the WDVV-type relation
of Theorem 2.1 for more general real symplectic manifolds, are described in Section 2. They ensure
a fixed sign in (1.7) and can be specified by choosing the sign of the d“1 numbers in (1.4).

Remark 1.1. The orientations for the τ4n and η4n moduli spaces are determined by a spin structure
on RP4n´1 and a real square root of the canonical line bundle KP4n´1 of P4n´1, respectively. On the
other hand, RP4n`1 does not admit a spin structure, while KP4n`1 does not admit a real square root.
A relatively spin structure on RP4n`1 does not provide a system of orientations compatible with
the recursion of Theorem 1.2, because such a system is not compatible with smoothing a conjugate
pair of nodes, as needed for the statement of Lemma 5.2; see Remark 2.7 for more details.

For any d, c1, . . . , ck PZ`, let

@
c1, . . . , ck

DP2n´1

d
“

ż

M0,kpP2n´1,dq
ev˚

1H
c1 . . . ev˚

kH
ck P Zě0 ,

where M0,kpP2n´1, dq is the usual moduli space of stable (complex) k-marked genus 0 degree d
holomorphic maps to P2n´1, denote the (complex) genus 0 Gromov-Witten invariants of P2n´1;
they are computed in [27, Theorem 10.4]. Finally, if c1, . . . , ck PZ and IĂt1, . . . , ku, let cI denote
a tuple with the entries ci with iPI, in some order.

Theorem 1.2. Let φ“τ2n, η2n and d, k, n, c, c1, . . . , ck PZ`. If kě2 and c1, . . . , ck R2Z,

@
c1, c2`2c, c3, . . . , ck

Dφ
d

´
@
c1`2c, c2, c3, . . . , ck

Dφ
d

“
ÿ

2d1`d2“d
d1,d2ě1

ÿ

I\J“t3,...,ku

ÿ

2i`j“2n´1
i,jě1

2|I|

˜

@
2c, c1, cI , 2i

DP2n´1

d1

@
c2, cJ , j

Dφ
d2

´
@
2c, c2, cI , 2i

DP2n´1

d1

@
c1, cJ , j

Dφ
d2

¸
.

Corollary 1.3. Let φ“τ2n, η2n and d, k, n, c1, . . . , ck PZ`. If dP2Z or ci P2Z for some i,

@
c1, c2, . . . , ck

Dφ
d

“ 0.

If kě2 and c1, . . . , ck R2Z,

@
c1, c2, c3, . . . , ck

Dφ
d

“ d
@
c1`c2´1, c3, . . . , ck

Dφ
d

`
ÿ

2d1`d2“d
d1,d2ě1

ÿ

I\J“t3,...,ku

ÿ

2i`j“2n´1
i,jě1

2|I|

˜

d2
@
c1´1, c2, cI , 2i

DP2n´1

d1

@
cJ , j

Dφ
d2

´ d1
@
c1´1, cI , 2i

DP2n´1

d1

@
c2, cJ , j

Dφ
d2

¸
.

Corollary 1.4. Let φ“τ2n, η2n and d, k, n, c1, . . . , ck PZ` with

c1`. . .`ck “ npd`1q ´ 2 ` k and c1, . . . , ck ď 2n´1.
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(1) If d, c1, . . . , ck are odd, then so is xc1, c2, . . . , ckyφd .

(2) The signed number xc1, c2, . . . , ckyφd of degree d real curves in P2n´1 passing through general
complex linear subspaces of codimensions c1, . . . , ck is zero if and only if either dP2Z or ci P2Z
for some i.

The formula of Theorem 1.2, which is a special case of Theorem 2.1, can be seen as a real version
of [23, Theorem 1]. Along with (1.6), it immediately implies the recursion of Corollary 1.3. The
vanishing statement in this corrollary is the ℓ“ 0 case of Corollary 2.6(1). Corollary 1.3 reduces

all numbers xc1, c2, . . . , ckyφd , with φ“ τ2n, η2n, to the single number
@
2n´1

Dφ
1
, i.e. the number of

φ-real lines through a non-real point in P2n´1. The absolute value of this number is of course 1,

and we can choose a system of orientations so that
@
2n´1

Dφ
1

“ 1. Taking d“ 1 in Corollary 1.3,
we obtain @

c1, . . . , ck
Dφ
1

“
@
2n´1

Dφ
1

“ 1

whenever c1, . . . , ck P Z` are odd and c1` . . .`ck “ 2n´2`k; this conclusion agrees with [5, Ex-
ample 6.3]. Some other numbers obtained from Corollary 1.3 are shown in Tables 1 and 2; the
degree 3 and 5 numbers in the former agree with [5].

Corollary 1.4 is deduced from Corollary 1.3 in Section 7. It can be equivalently viewed as a
statement about the parity of the usual counts of genus 0 curves in P2n´1 with certain types of
constraints (they must come in pairs of the same codimension). The standard WDVV recursion
for counts of complex curves is not closed under the relevant restriction on the constraints. We do
not see how to recover Corollary 1.4 directly from it.

In the case P2n´1 “ P3, the only interesting non-real constraints for the real genus 0 counts are
points. Let

NR
d “ p´1q

d´1
2

@
3, . . . , 3loomoon

d

Dτ2n
d

“ p´1q
d´1
2

@
3, . . . , 3loomoon

d

Dη2n
d

(1.8)

be the number of degree d real rational curves through d non-real points in P3 counted with sign;
by Corollary 1.4(2), NR

d is well-defined even if dP2Z. Denote by

NC
d “

@
3, . . . , 3loomoon

2d

DP2n´1

d
and rNC

d “
@
2, 2, 3, . . . , 3loomoon

2d´1

DP2n´1

d

the number of degree d (complex) rational curves through 2d points in P3 and the number of
degree d rational curves through 2 lines and 2d´1 points in P3, respectively. The next corollary is
also obtained in Section 7.

Corollary 1.5. If dPZ` and dě2, then

NR
d “

ÿ

2d1`d2“d
d1,d2ě1

p´4qd1´1d2

ˆ
d´2

d2´1

˙
rNC
d1
NR

d2
, NR

d –4 N
C
d –4

#
1, if dPZ`´2Z;

0, if dP2Z`;

where –4 denotes the congruence modulo 4.
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The procedures of [32], [4, 28], and [10, 5] for determining the sign of each real curve passing
through a specified real collection of constraints in P3 are very different and depend on some global
choices. The latter affect the signs of all curves of a fixed degree in the same way, and so the real
counts in each degree are determined up to an overall sign by all three procedures. In the case of
conjugate pairs of point constraints and odd-degree curves (the intersection of the three settings),
the three procedures yield the same count, up to a sign in each degree.

The second statement of Corollary 1.5 establishes a special case of Mikhalkin’s congruence, a con-
jectural relation between real and complex counts of rational curves. Its analogues for counts of real
rational curves with real point constraints in real del Pezzo surfaces as defined in [31] are proved
in [19, 20]. By [3, Proposition 3] and [3, Theorem 2], the analogue of this statement for real point
constraints in P3 holds with the sign modification in (1.8). This suggests that it would be natural
to modify the signs of [32] as in (1.8). By [3, Theorem 2], such a modification would also ensure
the positivity of counts of rational curves with real point constraints (but not with conjugate pairs
of point constraints, as Table 1 shows). On the other hand, the second statement of Corollary 1.5
does not extend to more general constraints in P3 (it fails for d“1 with two conjugate pairs of line
constraints) or to P2n´1 with ně3 (according to Table 2).

The numbers (1.4) count real curves passing through specified constraints with signs and thus pro-
vide lower bounds for the actual numbers of such curves. There are indications that these bounds
are often sharp. For example, for d,mPZ` with d odd and m“1 if dě5, there are configurations
of d´m conjugate pairs of points and 2m conjugate pairs of lines in P3 so that there are no real
degree d curves passing through them; see [21, Examples 12,17,18]. In light of the recursion of
Corollary 1.5 and (7.1), [21, Proposition 3], which relates the numbers NR

d to counts of real curves
in P1ˆP1, may be opening a way for a combinatorial proof that the numbers NR

d provide sharp
lower bounds for dR2Z (if this is indeed the case).

The basic case (smallest k) of the analogue of Theorem 1.2 in complex Gromov-Witten theory is
equivalent to the associativity of the quantum product on the cohomology of the manifold; see [27,
Theorem 8.1]. The basic case of Theorem 2.1 is similarly equivalent to a property of the quantum
product of a real symplectic manifold; see Section 7.

Theorem 1.2 is a special case of Theorem 2.1, which provides a WDVV-type relation for real
Gromov-Witten invariants of real symplectic manifolds. In the next two paragraphs, we outline
the two proofs of Theorem 2.1 appearing in this paper. While the first approach requires some
preparation, it is more natural from the point of view of real Gromov-Witten theory. In [14], we
describe a third proof of Theorem 1.2, which can be extended to some other cases of Theorem 2.1.

The WDVV relation for complex Gromov-Witten theory obtained in [22, 27] is a fairly direct con-
sequence of a C-codimension 1 relation on the Deligne-Mumford moduli space M0,4 of complex
genus 0 curves with 4 marked points. According to this relation, the homology classes represented
by two different nodal curves, e.g. r1, 0s and r1, 1s in Figure 1, are the same. Thus, topologically
defined counts of morphisms from these two types of domains into an almost Kahler manifold are
the same. As this relation simply states that two points in M0,4 represent the same homology
class, it is an immediate consequence of the connectedness of M0,4. The WDVV-type relation of
Theorem 2.1 is a fairly direct consequence of an R-codimension 2 relation on the three-dimensional
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M0,4 «P1

U

π

r0, 1s r1, 0s r1, 1s

z0

z1 z3
z2 z0

z1 z3

z2 z0

z1 z3

z2

Figure 1: The universal curve U ÝÑM0,4.

Deligne-Mumford moduli space RM0,3 of real genus 0 curves with 3 conjugate pairs of marked
points which we establish in Section 3 through a detailed topological description of RM0,3; see
Proposition 3.3 and its proof. According to this relation, the (relative) homology classes repre-
sented by two different, two-nodal degenerations of real curves are the same. Thus, topologically
defined counts of morphisms from these two types of domains into a real almost Kahler manifold
are the same; see Corollary 4.1. This relation, for both curves and maps, is illustrated in Figure 2,
where the vertical line represents the irreducible component of the curve preserved by the invo-
lution and the two horizontal lines represent the components interchanged by the involution. In
a sense, the situation with our recursion is analogous to the situation with the C-codimension 2
recursion of [16, Lemma 1.1] on M1,4, which had to be discovered and established before it could
be applied to complex genus 1 Gromov-Witten invariants.

In Section 6, we give an alternative proof of Theorem 2.1, which bypasses Proposition 3.3. We pull
back the usual relation on M0,4 by the forgetful morphism f0120̄ which keeps the marked points
z`
0 , z

`
1 , z

`
2 , z

´
0 ; see (6.1) and (6.2). In the proof of [27, Theorem 10.4], a nodal element of M0,4 is

a regular value of a similar map and all of its preimages are of the same type and contribute `1
each to the relevant count; the situation with the proof of Corollary 4.1 from Proposition 3.3 is
analogous. In contrast, a nodal element of M0,4 is not a regular value of f0120̄ and its preimages
can be of four types, as indicated in Figures 6 and 7; they are morphisms from either a three-
component domain or from a two-component domain. The contribution of each three-component
morphism to the relevant count (6.2) is no longer necessarily `1; see Lemma 6.1. The stratum of
two-component morphisms is not even 0-dimensional, but we show through a topological analysis
that it does not contribute to the count; see Lemma 6.2.

1 0

2

2̄

1̄ 0̄

1̄ 0

2

2̄

1 0̄

` “

2 0

1

1̄

2̄ 0̄

2̄ 0

1

1̄

2 0̄

`

Figure 2: A relation in H1pRM0,3q; the dots labeled i and ī indicate the marked points z`
i and

z´
i , respectively.
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In real Gromov-Witten theory, signs of various contributions are generally a delicate issue. It shows
up explicitly in the above description of the second approach, but is hidden in the first approach.
The analysis of signs for both approaches is carried out in Section 5, where different orientations
of moduli spaces of constrained real morphisms are compared. This allows us to establish Propo-
sitions 4.2 and 4.3, which are used in the proofs of Theorem 2.1 in Sections 4 and 6, as well as
Theorem 2.2, which provides vanishing results for real Gromov-Witten invariants of real symplectic
manifolds, including in positive genera.

We would like to thank J. Morgan for his help in precisely identifying M
R

0,3 in Remark 3.5 and
E. Ionel, J. Kollár, M. Liu, N. Sheridan, J. Solomon, M. Tehrani, and G. Tian for related discussions.
We are also grateful to the referees for comments on previous versions of this paper which led to
significant improvements in the exposition.

2 Main theorems and corollaries

The formula of Theorem 1.2 is fundamentally a relation between real genus 0 GW-invariants; it is
a special case of the relation of Theorem 2.1 for real symplectic manifolds. The latter implies that
the real invariants of at least some real symplectic manifolds are essentially independent of the
involution φ; see Corollary 2.5. Likewise, the vanishing of the numbers xc1, . . . , ckyφd with ci P 2Z
for some i, established in [5, Section A.5] using the Equivariant Localization Theorem [1, (3.8)], is
a special case of the general vanishing phenomenon for φ-invariant insertions established in Theo-
rem 2.2 below.

A real symplectic manifold is a triple pX,ω, φq consisting of a symplectic manifold pX,ωq and an
involution φ : X ÝÑX such that φ˚ω “ ´ω. Examples include P2n´1 with the standard Fubini-
Study symplectic form ω2n and the involutions (1.1) and (1.2), as well as pP2n, ω2n`1q with the
involution

τ2n`1 : P
2n ÝÑ P2n , rX1, . . . , X2n, X2n`1s ÝÑ rX̄2, X̄1, . . . , X̄2n, X̄2n´1, X̄2n`1s,

which extends (1.1) to the even-dimensional projective spaces. If

ℓě0, a ” pa1, . . . , aℓq P pZ`qℓ , (2.1)

and Xn;a ĂPn´1 is a complete intersection of multi-degree a preserved by τn, τn;a ” τn|Xn;a
is an

anti-symplectic involution on Xn;a with respect to the symplectic form ωn;a “ωn|Xn;a
. Similarly, if

X2n;a ĂP2n´1 is preserved by η2n, η2n;a ” η2n|X2n;a
is an anti-symplectic involution on X2n;a with

respect to the symplectic form ω2n;a “ω2n|X2n;a
.

Let pX,ω, φq be a real symplectic manifold. The fixed locus Xφ of φ is a Lagrangian submanifold,
which may be empty. Let

H2pXqφ “
 
β PH2pX;Zq : φ˚β “ ´β

(
, H˚pXqφ˘ ”

 
µPH˚pXq : φ˚µ“˘µ

(
.

Similarly to [10, Section 1], we define

d : H2pXq ÝÑ H2pXqφ by dpβq “ β ´ φ˚β . (2.2)
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A real bundle pair pV, φ̃qÝÑpX,φq consists of a complex vector bundle V ÝÑX and a conjugation φ̃
on V lifting φ, i.e. an involution restricting to an anti-complex linear homomorphism on each fiber.
The fixed locus V φ̃ ÝÑXφ is then a maximal totally real subbundle of V |Xφ , i.e.

V |Xφ “ V φ̃ ‘ iV φ̃ ,

where i is the complex structure on V . Let

w
φ̃
2 pV q P H2

φpX;Z2q ” H2
Z2

pX;Z2q

denote the equivariant second Stiefel-Whitney class of pV, φ̃q; see [11, Section 2].

Let J φ
ω be the space of ω-compatible almost complex structures J on X such that φ˚J“´J . For

J PJ φ
ω , c“τ, η, and β PH2pXqφ, denote by

M0,kpX, βqφ,c Ă M0,kpX, βqφ,c (2.3)

the moduli space of c-equivalence classes of k-marked J-holomorphic pφ, cq-real maps in the homol-
ogy class β and its natural compactification consisting of stable real maps from nodal domains.

By [10, Theorem 6.5], both spaces in (2.3) with c “ τ are orientable in the sense of Kuranishi
structures (or for a generic J if pX,ωq is strongly semi-positive) if

(Oτ ) X
φ is orientable and there exists a real bundle pair pE, φ̃qÝÑpX,φq such that

w2pTXφq “ w1pEφ̃q2 and
1

2
xc1pXq, β1y ` xc1pEq, β1y P 2Z @ β1 PH2pXqφ .

The first requirement on pE, φ̃q above implies that TXφ‘2Eφ̃ admits a spin structure. By [11,
Theorem 1.1], both spaces in (2.3) with c“η are orientable if

(Oη) w
Λ
top

C
dφ

2 pΛtop
C TXq “ κ2 for some κPH1

φpXq.

This condition implies that pTX, dφq admits a spin sub-structure, as defined above [12, Corol-
lary 5.10]. By [11, Corollary 2.4], pOηq holds if either Λtop

C pTX, dφq admits a real square root,
i.e. there is an isomorphism

Λtop
C pTX, dφq « pL, φ̃qb2 (2.4)

for a real line bundle pair pL, φ̃q ÝÑ pX,φq, or π1pXq “0 and w2pXq “0. A fixed real square root
determines a spin sub-structure on pTX, dφq.

The moduli space M0,kpX, βqφ,c with c“τ, η has no boundary in the sense of Kuranishi structures if

β R Impdq or Xφ “ H. (2.5)

Thus, it carries a virtual fundamental class if pOcq, with c as above, and (2.5) hold. Under the
above assumptions, we define

@
µ1, . . . , µk

Dφ,c
β

“

ż

rM0,kpX,βqφ,csvir
ev˚

1µ1 . . . ev
˚
kµk P Q (2.6)
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for any µ1, . . . , µk PH˚pXq. This number depends on the chosen orientation of the moduli space.
If c“τ , we orient the moduli space as in the proofs of [9, Corollary 1.8] and [10, Theorem 6.5] from

any spin structure on TXφ‘2Eφ̃. If c“η, we orient the moduli space via the pinching construction
of [5, Lemma 2.5] from any spin sub-structure on pTX, dφq; see [12, Corollary 5.10]. In either case,
we use the same spin structure or sub-structure for all β.

If pOτ q and pOηq are satisfied, but not necessarily (2.5), the glued moduli space

M0,kpX, βqφ ” M0,kpX, βqφ,τ Y M0,kpX, βqφ,η (2.7)

is orientable and has no boundary; see [5, Theorem 1.7]. We then define

@
µ1, . . . , µk

Dφ
β

“

ż

rM0,kpX,βqφsvir
ev˚

1µ1 . . . ev
˚
kµk P Q (2.8)

for any µ1, . . . , µk PH˚pXq. The orientations on M0,kpX, βqφ,τ and M0,kpX, βqφ,η constructed as
in the previous paragraph induce an orientation on M0,kpX, βqφ after reversing the orientation on

M0,kpX, βqφ,η if the chosen spin structure on TXφ‘2Eφ̃ and spin sub-structure on pTX, dφq induce
the same orientation on Xφ; see [5, Proposition 3.3].

Choose bases tγiuiďℓ and tγiuiďℓ for H
˚pXq so that

γi P H˚pXqφ` YH˚pXqφ´ and PDX2p∆Xq “
ℓÿ

i“1

γi ˆ γi P H˚pX2q,

where ∆X ĂX2 is the diagonal. If µ1, . . . , µk PH˚pXq and IĂt1, . . . , ku, let µI denote a tuple with
the entries µi with iPI, in some order. Let

@
µ1, . . . , µk

DX
β

“

ż

rM0,kpX,βqsvir
ev˚

1µ1 . . . ev
˚
kµk P Q , (2.9)

denote the (complex) genus 0 GW-invariants of X.

Theorem 2.1. Let pX,ω, φq be a compact real symplectic manifold, kPZ with kě2,

β P H2pXqφ´t0u, µPH2˚pXqφ`, and µ1, . . . , µk PH2˚pXqφ´.

(1) If c“τ, η and pOcq and (2.5) are satisfied, then

@
µ1, µµ2, µ3, . . . , µk

Dφ,c
β

´
@
µµ1, µ2, µ3, . . . , µk

Dφ,c
β

“
ÿ

dpβ1q`β2“β
β1,β2PH2pXq´t0u

ÿ

I\J“t3,...,ku

ÿ

1ďiďℓ

γiPH2˚pXqφ
´

2|I|

˜

@
µ, µ1, µI , γi

DX
β1

@
µ2, µJ , γ

i
Dφ,c
β2

´
@
µ, µ2, µI , γi

DX
β1

@
µ1, µJ , γ

i
Dφ,c
β2

¸
.

(2) If pOτ q and pOηq are satisfied, then the above identity holds for the x. . .yφ invariants.
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This theorem, established in Section 4, concerns real genus 0 GW-invariants (2.6) and (2.8) with all

insertions µi coming from H2˚pXqφ´. By the first part of Theorem 2.2 below, the invariants (2.6)

and (2.8) with any insertion µi coming fromH2˚pXqφ` vanish. The proof of Theorem 2.2 in Section 5
extends the vanishing statement of [5, Theorem 1.10] for real genus 0 invariants with even-degree
insertions to all settings when the real GW-invariants are defined and the unmarked real moduli
space is orientable. By [13, Theorem 1.3], this is the case in any genus under the assumptions
in (2) of Theorem 2.2.

Theorem 2.2. Let pX,ω, φq be a compact real symplectic 2n-manifold, β P H2pXqφ ´ t0u, and

µ1, . . . , µk PH˚pXq with µi PH˚pXqφ` for some i.

(1) Suppose c “ τ, η, pOτ q holds if c “ τ , and pOηq holds if c “ η. If (2.5) is satisfied, then

xµ1, . . . , µkyφ,cβ “0. If pOτ q and pOηq are satisfied, but not necessarily (2.5), xµ1, . . . , µkyφβ “0.

(2) If c is an orientation-reversing involution on a compact orientable genus g surface Σg, n is
odd, Λtop

C pTX, dφq admits a real square root, and Xφ “ H, then real genus g GW-invariants

xµ1, . . . , µkyφ,cβ of pX,ω, φq vanish.

Remark 2.3. Let cg be an orientation-reversing involution on Σg so that Σ
cg
g “ H. By [26, Corol-

lary 1.1], cg is unique up to conjugation by diffeomorphisms of Σg. Similarly to (2.7), the moduli
spaces Mg,kpX, βqφ,c of real J-holomorphic maps corresponding to different topological types of
involutions c on Σg can be glued together into a moduli space Mg,kpX, βqφ without boundary. If
Xφ “H, then

Mg,kpX, βqφ “ Mg,kpX, βqφ,cg (2.10)

and the GW-invariants x. . .y
φ,cg
β are the same as the combined real GW-invariants x. . .yφg,β expected

to arise from the left-hand side of (2.10). Since the present paper was first completed, such
invariants have been defined with the condition Xφ “ H weakened to the existence of the square
root as in (2.4) such that w2pTXφq“w1pLφ̃q2; see [15, Theorems 1.3,1.4]. The proof of Theorem 2.2
applies verbatim to the real genus g GW-invariants of [15, Theorems 1.4,1.5].

For a strongly semi-positive real symplectic manifold pX,ω, φq, the real genus 0 GW-invariant
through constraints µ1, . . . , µk is of the same parity as the complex GW-invariant of the same
degree through the constraints µ1, φ

˚µ1, . . . , µk, φ
˚µk. Thus, Theorem 2.2 implies that certain

complex genus 0 GW-invariants are even. For example, the GW-invariants of P2n´1 with even
numbers of insertions of each codimension that include insertions of even codimensions are even.
This is not the case for even-dimensional projective spaces (for which the degree 4d`1 unmarked
real moduli spaces are not orientable; see [28, Proposition 5.1]). For example, the number of lines
through two points in Pn is 1 (these constraints are of even codimension if n is even).

For a real symplectic manifold pX,ω, φq, let HeffpXqφ ĂH2pXqφ denote the subset of nonzero classes
that can be represented by a J-holomorphic map from a disjoint union of copies of P1 for every
J PJ φ

ω .

Corollary 2.4. Let pX,ω, φq be a compact real symplectic manifold such that every positive-degree

element of H2˚pXqφ´ is divisible by an element of H2pXqφ´ in H2˚pXq and β PHeffpXqφ. Then there
exist linear maps

Pβ1;β :
8à

k“1

H2˚pXqbk ÝÑ H2˚pXqφ´, β1 PHeffpXqφ, β´β1 P
`
HeffpXqφYt0u

˘
XImpdq,
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determined by the GW-invariants of pX,ωq and φ˚ : H˚pXqÝÑH˚pXq with the following properties.

(1) If c“τ, η, pOcq is satisfied, and either β R Impdq or Xφ “H, then

@
µ1, . . . , µk

Dφ,c
β

“
ÿ

β1PHeffpXqφ
β´β1PpHeffpXqφYt0uqXImpdq

@
Pβ1;βpµ1, . . . , µkq

Dφ,c
β1 @

kâ
i“1

µi P H2˚pXqbk, k PZ`. (2.11)

(2) If pOτ q and pOηq are satisfied, then (2.11) holds with x¨yφ,c replaced by x¨yφ.

Corollary 2.4 is deduced from Theorems 2.1 and 2.2 in Section 7. It provides the strongest results
for real Fano symplectic manifolds, i.e. real symplectic manifolds pX,ω, φq such that xc1pXq, βyą0
for all β PHeffpXqφ. For a real Fano symplectic manifold pX,ω, φq and β PHeffpXqφ, let

c
φ
minpβq, cφ`pβq P Z`

denote the smallest and the second smallest values of the function

 
β1 PHeffpXqφ, β´β1 P Impdq

(
ÝÑ Z`, β1 ÝÑ xc1pXq, β1y;

if the smallest value is achieved by two different classes β1, then cφminpβq”c
φ
`pβq. Let βφ‚ PHeffpXqφ

be such that @
c1pXq, βφ‚

D
“ c

φ
minpβq.

Corollary 2.5. Let pX,ω, φq and β be as in Corollary 2.4. If X is Fano and cφ`pβqąpdimXq{2`1,
then there exists a linear map

Pβ :
8à

k“1

H2˚pXqbk ÝÑ Hn´1`cminpφqpXqφ´

determined by the GW-invariants of pX,ωq and φ˚ : H˚pXqÝÑH˚pXq with the following properties.

(1) If c“τ, η, pOcq is satisfied, and either β R Impdq or Xφ “H, then

@
µ1, . . . , µk

Dφ,c
β

“
@
Pβpµ1, . . . , µkq

Dφ,c
β
φ
‚

@µ1, . . . , µk P H2˚pXqbk, k PZ`. (2.12)

(2) If pOτ q and pOηq are satisfied, then (2.12) holds with x¨yφ,c replaced by x¨yφ.

If X is Fano and cφminpβq ą pdimXq{2`1, then the invariants x¨yφ,cβ and x¨yφβ with insertions from

H2˚pXq vanish under the assumptions in (1) and (2), respectively.

The virtual dimensions of the moduli spaces in (2.7) are

dimvir
M0,kpX, βqφ “ dimvir

M0,kpX, βqφ,c “
@
c1pXq, β

D
`pn´3q ` 2k , (2.13)

where n“ pdimXq{2. In particular, the real genus 0 one-insertion GW-invariants xµyφ,cβ and xµyφβ
(whenever they are defined) vanish if xc1pXq, βy ą n`1. Thus, Corollary 2.5 is an immediate
consequence of Corollary 2.4.
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For nPZ and ℓ,a as in (2.1), let

|a| “ a1`. . .`aℓ, xayn “ 2n´2´|a|´ℓ.

If Xn;a ĂPn´1 is a complete intersection as before, then

Λtop
C TXn;a « OPn´1

`
n´|a|

˘ˇ̌
Xn;a

.

By the Lefschetz Theorem on Hyperplane Sections [17, p156], π1pXn;aq“0 if the complex dimension
of Xn;a is at least 2. If n P 2Z and Xn;a ĂPn´1 is ηn-invariant, then w2pXn;aq “ 0 and X

ηn;a
n;a “ H.

By [11, Corollary 2.4], an ηn-invariant complete intersection Xn;a ĂPn´1 thus satisfies pOηq if its
complex dimension is at least 2 or Xn;a «P1. If the complex dimension of Xn;a is 1 and Xn;a ffP1,
then the moduli spaces in (2.7) with X “ Xn;a are empty. A τn-invariant complete intersection
Xn;a ĂPn´1 satisfies pOτ q if

n´ |a| P 2Z and a21 ` . . .` a2ℓ ´ |a| P 4Z ; (2.14)

see the proof of [10, Corollary 6.8]. If the first condition in (2.14) is satisfied, then pXn;a, τn;aq
satisfies pOηq.

For d P Z, let xdyĂH2pXn;aq denote the subset of classes β whose image in Pn´1 is d times the
homology class of a line P1 ĂPn´1. If in addition φ is an involution on Xn;a, let

xdyφ “ xdy XH2

`
Xn;a

˘
φ
.

If the complex dimension of Xn;a is at least 3, xdy consists of a single element. In all cases, β Pxdyφ
satisfies the first condition in (2.5) if d R 2Z. We denote by H P H2pXn;aq the restriction of the
hyperplane class.

Suppose X “Xn;a ĂPn´1 is a complete intersection of multi-degree a invariant under φPn´1 ” ηn
or φPn´1 ”τn, φ“φPn´1 |X , c“η, τ , and dPZ. We denote by

‚ x. . .yφd the sum of the numbers (2.8) over β Pxdyφ if φPn´1 “ηn or (2.14) is satisfied;

‚ x. . .yφ,cd the sum of the numbers (2.6) over β Pxdyφ if φPn´1 “ηn, or

(τnη) dR2Z , c“η, and the first condition in (2.14) is satisfied, or

(τnτ) dR2Z , c“τ , and both conditions in (2.14) are satisfied.

The next corollary is also proved in Section 7.

Corollary 2.6. Suppose nPZ`, ℓPZě0, aP pZ`qℓ, X “Xn;a ĂPn´1 is a complete intersection of
multi-degree a invariant under φPn´1 ”ηn or φPn´1 ”τn, and φ“φPn´1 |X .

(1) Let c“ η, τ and µ1, . . . , µk PH2˚pXq. If φPn´1 “ ηn and c“ τ , then xµ1, . . . , µkyφ,cd “ 0. The
same conclusion holds if either (τnη) holds or

‚ φPn´1 “ηn or (τnτ) is satisfied and

‚ ai P2Z for some i, or µj PH4˚pXq for some j, or dP2Z.
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If the last bullet condition holds and either φPn´1 “ηn or (2.14) is satisfied, then xµ1, . . . , µkyφd “0.

(2) Suppose 3|a|´ℓă2n and dPZ. Then there exists a linear map

Cd :
8à

k“1

H2˚pXqbk ÝÑ Z

determined by the GW-invariants of pX,ωn|Xq and φ˚ : H˚pXq ÝÑ H˚pXq such that for all
µ1, . . . , µk PH2˚pXq

(2a) xµ1, . . . , µkyφd “ Cdpµ1, . . . , µkqxHxaynyφ1 if φPn´1 “ηn or (2.14) is satisfied;

(2b) xµ1, . . . , µkyφ,cd “ Cdpµ1, . . . , µkqxHxaynyφ,c1 if c“ η, τ and either (τnη) or the first bullet
condition in (1) holds.

For example, the genus 0 real GW-invariants (1.4) of pP2n´1, φq with φ“η2n, τ2n satisfy

xc1, . . . , ckyφd “ Cdpc1, . . . , ckqx2n´1yφ1

for some Cdpc1, . . . , ckqPZ independent of the choice of φ. This implies (1.7). Corollary 2.6(2) ex-
tends (1.7) to Fano complete intersections Xn;a ĂP2n´1 with nP2Z` that are preserved by both τn
and ηn. The approach to (1.7) in [5] extends to Xn;a Ă Pn´1 without a restriction on a, but is
generally limited to complete intersections in real symplectic manifolds with large torus actions and
insertions coming from the ambient manifolds. Corollary 2.6(1) extends the vanishing statement
of [5, Theorem 1.10] to complete intersection using completely different reasoning. More generally,
physical considerations in [30] suggest that the real genus 0 GW-invariants vanish whenever (2.5)
does not hold, but pOτ q and pOηq are satisfied, i.e. when the gluing of the two parts of the moduli
space as in (2.7) is necessary and possible.

If Xφ is orientable or M0,kpX, βqφ,η ‰H, then xc1pXq, βyP2Z and

dimvir
M0,kpX, βqφ “ dimvir

M0,kpX, βqφ,c – n´3 mod 2; (2.15)

see (2.13). Thus, the real genus 0 GW-invariants (2.6) and (2.8) with all insertions µi PH2˚pXq
vanish if n P 2Z. In this case, Theorem 2.1 and Corollary 2.4 are inutile. Theorem 2.1 can be
extended to odd-degree cohomology insertions at the cost of adding signs for each summand de-
pending on the permutation of the odd-degree insertions. In particular, the formula of Theorem 2.1
is valid without any changes if there is only one odd-degree insertion, µ or µi. Corollary 2.4 extends
to odd-degree insertions as a reduction to invariants with at most one even-degree insertion which
does not increase the number of odd insertions.

Theorem 2.1 can be extended to the real GW-invariants with real marked points defined in [10].
These invariants are defined by intersecting with the pull-back of a homology class Γ from the
corresponding Deligne-Mumford space of real curves by the forgetful map; see [10, Section 1].
Since the proof of Theorem 2.1 is essentially intersection theory, it readily fits with the definition
of the invariants in [10]. The analogue of the right-hand side of the formula in Theorem 2.1 would
then involve Kunneth-style splitting of Γ between the real and complex GW-invariants represented
by the diagrams in Figures 2, 6, and 7 and all splittings of t3, . . . , ku into three subsets I`, I´, J .
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It would no longer be possible to merge I` and I´ into a single subset, as done in the proof
of Theorem 2.1. For a related reason, Theorem 2.2 does not extend to GW-invariants with real
marked points.

Remark 2.7. The homomorphism (2.2) factors through a similar doubling homomorphism

d : H2pX,Xφ;Zq ÝÑ H2pXqφ;

see [10, Section 1]. Let
B : H2pX,Xφ;Zq ÝÑ H1pXφ;Zq

denote the boundary homomorphism. By the proof of [10, Theorem 6.5] and [12, Corollary 5.9],
M0,kpX, βqφ,τ is orientable if

(O1
τ ) X

φ is orientable and there exist ̟PH2pX;Z2q and κPH1pXφ;Z2q such that

w2pTXφq “ κ2 `̟|Xφ and

1

2
xc1pXq, dpβ1qy ` x̟, dpβ1qy ` xκ, Bβ1y P 2Z @ β1 PH2pX,Xφ;Zq . (2.16)

The two requirements on p̟,κq imply that pX,Xφq admits a relatively spin sub-structure in the
sense of [12, Definition 5.5] and that it can be chosen so that the pφ, τq-moduli space is orientable,
respectively. The relatively spin condition of [7, Theorem 8.1.1] is the κ “ 0 case of the first
requirement; pOτ q is effectively the κ “ 0, ̟ “ w2pEq case of pO1

τ q. Theorems 2.1 and 2.2 and
Corollaries 2.4 and 2.5 can be extended with the assumption pOτ q relaxed to pO1

τ q. The key differ-
ence is that this would introduce the sign p´1qx̟,β1y over Nβ1,β2

as happens in [14]. This sign can
be absorbed into the numbers (2.9) whenever (2.5) is satisfied, but this would result in a different
dependence on the complex GW-invariants for the τ - and η-invariants. It can be absorbed into
the numbers (2.6) with c“ τ , similarly to (1.4), if φ˚̟“̟; this is the case for τ -relatively spin
structures in the sense of [8, Definition 3.11]. We avoid such a sign modification in (2.6) by treating
pP2n´1, τ2nq as a special case of pOτ q.

Throughout this section and Sections 4-6, the moduli spaces M0,kpX, βqφ,c and their glued, con-
strained, and complex versions refer to regularizations of these spaces. If pX,ω, φq is semi-positive

in the sense of [33, Definition 1.2], e.g. P2n´1, the latter are obtained by choosing a generic J PJ φ
ω

and the invariants are defined through pairing with the pseudocycles determined by the moduli
spaces. Both proofs of Theorem 2.1, outlined at the end of Section 1, are completely geometric
in this case and have no relation to virtual fundamental class (VFC) constructions. The situation
with the first proof in the general case is analogous to that with the WDVV and Getzler’s relations
in complex GW-theory: as the relation of Proposition 3.3 is universal (induced from the moduli
of domains), its validity is independent of the choice of VFC construction and depends only on
properties of GW-invariants any such construction must yield to be relevant. The relevant prop-
erties are the g “ 0 case of Kontsevich-Manin’s axioms 2.2.0 (Effectivity), 2.2.1 (Sn-invariance),
2.2.2 (Grading), 2.2.4 (Divisor), and 2.2.6 (Splitting) in [22] and their real analogues (Splitting at
interior nodes only). Suitable adaptations to the real case of the usual VFC constructions of [24, 6]
are carried out in [28, Section 7], [8, Section 7], and [5, Section 2.3]. The invariants arising from
these adaptations satisfy the real analogues of the first three axioms above for trivial reasons. The
proofs of the last two axioms in the complex case readily extend to the real case.

15



3 A homology relation for RM0,3

In this section, we formulate and prove a codimension 2 relation on the Deligne-Mumford moduli
space RM0,3 of real genus 0 curves with 3 pairs of marked points; see Proposition 3.3. Its proof
involves a detailed topological description of RM0,3.

For c “ τ, η and k P Z`, denote by M
c

0,k`1 the moduli space of c-real rational curves with k`1
conjugate pairs of marked points. As it is convenient to designate one of the pairs as principal, we
index the pairs by the set t0, 1, . . . , ku and view 0 as the principal index. Thus, the main stratum
of M

c

0,k`1 is the quotient of
 `

pz`
0 , z

´
0 q, pz`

1 , z
´
1 q, . . . , pz`

k , z
´
k q

˘
: z˘

i PP1, z` “cpz´
i q, z`

i ‰z`
j , z

´
j @ i‰j, z`

i ‰z´
i

(

by the natural action of the subgroup PSLc
2CĂPSL2C of automorphisms of P1 commuting with c.

Many notions concerning M
c

0,k`1 are defined below with respect to the index 0, which in these
cases is implicitly understood.

The moduli spaces M
η

0,k`1 and M
τ

0,k`1 are p2k´1q-dimensional manifolds with the same boundary,

BM
τ

0,k`1 “ BM
η

0,k`1 .

The latter consists of the curves with no irreducible component fixed by the involution; the strata
of M

τ

0,k`1 with two invariant bubbles attached at a real node are of codimension 1, but not a
boundary for this space. Gluing along the common boundary, we obtain the moduli space

M
R

0,k`1 ” M
τ

0,k`1 Y M
η

0,k`1 ;

it is a p2k´1q-dimensional manifold without boundary. We will use RM0,k`1 to refer to any one
of these three moduli spaces and pz`

i , z
´
i q to denote the i-th conjugate pair of marked points.

If c“τ, η, M
c

0,2 is a compact connected one-dimensional manifold with boundary and is therefore
an interval. It has a canonical orientation induced by requiring the boundary point corresponding
to the two-component curve with the marked points z`

0 and z´
1 on the same component to be

the initial point of the interval. An explicit orientation-preserving isomorphism is given by the
cross-ratio

M
c

0,2 ÝÑ I”r0,8s,
“
pz`

0 , z
´
0 q, pz`

1 , z
´
1 q

‰
ÝÑ p´1qc

z`
1 ´z`

0

z´
1 ´z`

0

:
z`
1 ´z´

0

z´
1 ´z´

0

, (3.1)

where p´1qc “

#
1, if c“τ ;

´1, if c“η;

with z`
0 “ 0, the above element of M

c

0,2 is sent to |z`
1 |2. For kě 2, M

c

0,k`1 is oriented using the

first element in each conjugate pair pz`
i , z

´
i q with iě 2 to orient the general fiber of the forgetful

morphism M
c

0,k`1 ÝÑM
c

0,2. Since the boundaries of M
η

0,k`1 and M
τ

0,k`1 are oriented in the same

way, we obtain an orientation on M
R

0,k`1 by reversing the orientation on M
η

0,k`1. An explicit

orientation-preserving isomorphism of M
R

0,2 with S1 ”R\t8u is given by the map in (3.1) with

p´1qc dropped. The general fibers of the forgetful morphism M
R

0,k`1 ÝÑM
R

0,2 are again oriented

using the first element in each conjugate pair pz`
i , z

´
i q with iě2.
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Lemma 3.1. Let kPZ` and let RM0,k`1 denote M
τ

0,k`1, M
η

0,k`1, or M
R

0,k`1.

(1) For every i“0, 1, . . . , k, the automorphism of RM0,k`1 interchanging the marked points in the
i-th conjugate pair is orientation-reversing.

(2) For all i, j“0, 1, . . . , k, the automorphism of RM0,k`1 interchanging the i-th and j-th conjugate
pairs of marked points is orientation-preserving.

Proof. (1) For i “ 0, 1, this automorphism interchanges the two boundary points of M
c

0,2 with
c“τ, η. Thus, it is orientation-reversing on the base of the forgetful morphism

RM0,k`1 ÝÑ RM0,2 (3.2)

for every k ě 1. Since this automorphism takes a general fiber of (3.2) to another general fiber
in an orientation-preserving way, it is orientation-reversing on RM0,k`1. For iě 2, the automor-
phism of RM0,k`1 interchanging the marked points in the i-th conjugate pair takes a general fiber
of (3.2) to itself in an orientation-reversing way. Thus, it is again orientation-reversing on RM0,k`1.

(2) If i, jď1 or i, jě2, the automorphism of RM0,k`1 interchanging i-th and j-th conjugate pairs
of marked points takes a general fiber of (3.2) to itself in an orientation-preserving way and so is
orientation-preserving on RM0,k`1. Thus, it remains to consider the case i“ 1 and j “ 2. Since
the corresponding automorphism of RM0,k`1, with k ě 2, takes a general fiber of the forgetful
morphism RM0,k`1 ÝÑ RM0,3 to itself in an orientation-preserving way, it is sufficient to check
that it is orientation-preserving for k“2. The latter is the case if and only if the forgetful morphisms

f1, f2 : RM0,3 ÝÑ RM0,2 ,
f1
`
rpz`

0 , z
´
0 q, pz`

1 , z
´
1 q, pz`

2 , z
´
2 qs

˘
“

“
pz`

0 , z
´
0 q, pz`

1 , z
´
1 q

‰
,

f2
`
rpz`

0 , z
´
0 q, pz`

1 , z
´
1 q, pz`

2 , z
´
2 qs

˘
“

“
pz`

0 , z
´
0 q, pz`

2 , z
´
2 q

‰
,

(3.3)

induce the same orientation on RM0,3.

It is enough to check that f1 and f2 induce the same orientation on the tangent space at a three-
component curve C with z`

1 and z`
2 on the same bubble component CC, i.e. as in the first diagram

in Figure 2, but with the label 0 interchanged with 2 and the label 0̄ interchanged with 2̄. The
restrictions of f1 and f2 to the space Γ of such curves are the same and take Γ isomorphically
onto RM0,2; thus, f1 and f2 induce the same orientations on TCΓ. The vertical tangent bundles
of f1 and f2 along C are canonically isomorphic to the normal bundle of Γ in RM0,3. The orientation
of the fiber of the vertical tangent bundle of f1 at C given by varying z`

2 is the complex orientation
of the tangent node of the real component CR of C at the node separating CR from CC. The same
is the case for the orientation of the vertical tangent bundle of f2 at C given by varying z`

1 . Thus,
the orientations of the normal bundle of Γ in RM0,3 with respect to the orientations induced by f1
and f2 are the same. This implies that the orientations induced by f1 and f2 on RM0,3 are the
same as well.

For i“1, 2, let Γi ĂRM0,3 denote the closure of the subset Γ̊i consisting of the three-component real
curves pC, cq such that the marked point z`

i lies on the same component as the marked point z`
0 . Let

Γī ĂRM0,3 denote the closure of the subset Γ̊ī consisting of the three-component real curves pC, cq
such that the marked point z´

i lies on the same component as the marked point z`
0 . The stability

condition implies that such a three-component curve has
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(R) a component CR preserved by c and containing the conjugate pair pz`
3´i, z

´
3´iq of marked points

and a conjugate pair pz`
‚ , z

´
‚ q of nodes, and

(C) a pair of conjugate components, with the component CC containing the marked point z`
0 also

carrying the marked point z`
i in the case of Γi and z

´
i in the case of Γī;

see Figures 3-5. We will take z`
‚ P CR to be the node identified with a point zC P CC. Thus, there

are canonical isomorphisms

Γi « RM0,2 ˆ M0,3 and Γī « RM0,2 ˆ M
´
0,3 , (3.4)

where the superscript ´ indicates that one of the marked points (the one corresponding to z´
i ) is

decorated with the minus sign. Following the principle introduced in [10], we define the canon-

ical orientation of M
´
0,3 to be the opposite of the canonical (complex) orientation of M0,3 and

then use (3.4) to orient Γi and Γī. Thus, the orientation on Γi is the same as the one induced
by the natural isomorphism Γi « RM0,2, while the orientation on Γī is the opposite of the one
induced by the natural isomorphism Γī « RM0,2. The canonical orientation of RM0,2 is defined
above, but this choice of the orientation does not affect the validity of Lemma 3.2 or Proposition 3.3.
Whenever RM0,3 “M

c

0,3 for a specific c“τ, η,R, we will write Γc
˚, where ˚“ i, ī with i“1, 2, for Γ˚.

With Γ“Γi,Γī, i“1, 2, as in (3.4), let

LR
Γ ÝÑ RM0,2 and LC

Γ ÝÑ M0,3,M
´
0,3

be the universal tangent line bundles at the marked points z`
‚ and zC, respectively, and

LΓ “ π˚
1L

R
Γ bC π

˚
2L

C
Γ ÝÑ Γ ,

where π1, π2 are the component projection maps.

Lemma 3.2. Let RM0,3 denote M
τ

0,3, M
η

0,3, or M
R

0,3.

(1) For i“1, 2, the automorphism of RM0,3 interchanging the marked points in the i-th conjugate
pair restricts to an orientation-reversing isomorphism from Γi to Γī and canonically lifts to a
C-linear isomorphism from LΓi

to LΓī
.

(2) The automorphism of RM0,3 interchanging the 1st and 2nd conjugate pairs of marked points
restricts to an orientation-preserving isomorphism from Γ1 to Γ2 and canonically lifts to a
C-linear isomorphism from LΓ1

to LΓ2
.

(3) For i“ 1, 2, the oriented normal bundle of Γ̊ “ Γ̊i, Γ̊ī in RM0,3 is isomorphic to LΓ with its
canonical complex orientation.

Proof. (1,2) It is immediate that the automorphism in (1) interchanges Γi and Γī and the auto-
morphism in (2) interchanges Γ1 and Γ2. These restrictions respect the component moduli spaces
in (3.4) and induce the identity on the first component (the second component is a point). Given
our choice of orientations, the domain and target orientations of the automorphism in (1) are op-
posite, while the domain and target orientations of the automorphism in (2) are the same. This
implies the first parts of the first two statements in the lemma. Since these automorphisms respect
the component moduli spaces in (3.4), they canonically lift to all universal tangent line bundles for
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these moduli spaces and thus to LΓi
. They act by the identity on the tangent spaces at z`

‚ and zC

and thus C-linearly on LΓ.

(3) The restriction of the forgetful morphism f1 in (3.3) to Γ2 is an orientation-preserving isomor-
phism. By the definition of the orientation on RM0,3, the vertical tangent bundle along Γ̊2 is thus
oriented by the complex orientation of LC

Γ2
«LΓ2

. Since the vertical tangent bundle of f1 along Γ̊2

is canonically isomorphic to the normal bundle of Γ2 in RM0,3, this implies the last statement
of the lemma in the Γ̊ “ Γ̊2 case. The remaining three cases follow from this case, the first two
statements of the lemma, and the k“2 case of Lemma 3.1.

Proposition 3.3. Let RM0,3 denote M
τ

0,3, M
η

0,3, or M
R

0,3. The submanifolds Γ1,Γ1̄,Γ2,Γ2̄ of

RM0,3 determine relative cycles in pRM0,3, BRM0,3q and

rΓ1s ` rΓ1̄s “ rΓ2s ` rΓ2̄s P H1

`
RM0,3, BRM0,3;Q

˘
. (3.5)

Since BΓi and BΓī are contained in BRM0,3, only the second statement of this proposition remains
to be established. The relation (3.5) in fact holds over Z; though we do not need this stronger
statement, we give two separate reasons for it in Remarks 3.4 and 3.5.

Proof for M
η

0,3. The boundary of M
η

0,3 has four components, which we denote by S12, S12̄, S1̄2,

and S1̄2̄, which contain the two-component curves with the points tz`
1 , z

`
2 u, tz`

1 , z
´
2 u, tz´

1 , z
`
2 u, and

tz´
1 , z

´
2 u, respectively, on the same component as the base point z`

0 ; each of them is isomorphic
to S2. The forgetful morphism

M
η

0,3 ÝÑ M
η

0,2 « I ” r0,8s (3.6)

is a singular fibration; see Figure 3. The fiber over every interior point is a sphere with four special
points corresponding to the strata where z`

2 collides with z`
0 , z

´
0 , z

`
1 , or z

´
1 . The fiber over the

boundary point 0PI consists of the spheres S12 and S12̄ joined together by the interval Γη
1 defined

above. The fiber over the boundary point 8PI consists of the spheres S1̄2 and S1̄2̄ joined together
by the interval Γη

1̄
. The lines Γη

2 and Γη

2̄
connect the boundary spheres in the two fibers: S12 with

S1̄2 and S12̄ with S1̄2̄, respectively.

Let
H1pM

η

0,3q
j˚

ÝÑ H1pM
η

0,3, BM
η

0,3q
B

ÝÑ H0pBM
η

0,3q

denote the homomorphisms in the homology long exact sequence for the pair pM
η

0,3, BM
η

0,3q. With
the canonical orientations on Γη

i and Γη

ī
described above

B
“
Γη
1 ´ Γη

2̄
` Γη

1̄
´ Γη

2

‰
“ 0;

see Figure 3. Thus, rΓη
1 ´Γη

2̄
`Γη

1̄
´Γη

2s is the image of an element of H1pM
η

0,3q under j˚. A
representative Γη for this class is obtained by connecting the end points of the line segments
inside each boundary sphere. This loop can be homotoped away from the fibers over 0,8 P I by
smoothing out the nodes. The resulting loop in S2ˆR` is therefore contractible and hence is trivial
in H1pM

η

0,3q. This implies (3.5) in the η case.
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Figure 3: The moduli space M
η

0,3 as a fibration over M
η

0,2; the labels i and ī indicate the marked

points z`
i and z´

i , respectively.

Proof for M
τ

0,3. In comparison with (3.6), the forgetful morphism

M
τ

0,3 ÝÑ M
τ

0,2 « I ” r0,8s

has an additional singular value: the point 1PI corresponding to the two-component curve with z`
0

and z`
1 on separate invariant bubbles; see Figure 4. The fiber F1 over this point consists of two

copies of RP2 joined along a non-contractible circle in each copy or equivalently the quotient of S2

by the action of the antipodal map on the equator only. The complement of the common circle
in one copy of RP2 consists of the two-component curves, with each component fixed by the invo-
lution, with z`

2 on the same component as z`
0 ; the complement in the other copy consists of the

two-component curves, with each component fixed by the involution, with z`
2 on the same compo-

nent as z`
1 . The circle corresponds to the three-component curves with each component fixed by

the involution and z`
2 on the middle component; see Figure 4.

By the same reasoning as in the η case, the class rΓτ
1´Γτ

2̄
`Γτ

1̄
´Γτ

2s is in the image of an element

in H1pM
τ

0,3q which can be represented by a loop in M
τ

0,3 away from the fibers over 0,8 P I. This
loop can be homotoped to a loop in the special fiber F1. Since π1pF1q «Z2, it still represents the
zero class in H1pM

τ

0,3q with Q-coefficients.

Proof for M
R

0,3. The fibers of the forgetful morphism

M
R

0,3 ÝÑ M
R

0,2 « S1 (3.7)

away from the identification points of M
η

0,2 and M
τ

0,2 are as described in the η, τ cases; see Figure 5.
A fiber over either of the two identification points, 0,8PI, consists of two spheres joined by a circle.

The submanifolds ΓR
˚ with ˚“1, 1̄, 2, 2̄ form 4 loops in M

R

0,3:

ΓR
1 “ Γτ

1 ´ Γη
1 , ΓR

1̄ “ Γτ
1̄ ´ Γη

1̄
, ΓR

2 “ Γτ
2 ´ Γη

2 , ΓR
2̄ “ Γτ

2̄ ´ Γη

2̄
.
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Figure 4: The moduli space M
τ

0,3 as a fibration over M
τ

0,2; the labels i and ī indicate the marked

points z`
i and z´

i , respectively.

Connecting the points of these loops on each of the four spheres by paths as before, we obtain the
loops Γη ĂM

η

0,3 and Γτ ĂM
τ

0,3 as in the η, τ cases above so that

“
ΓR
1 ´ ΓR

2̄ ` ΓR
1̄ ´ ΓR

2

‰
“ rΓτ s ´ rΓηs.

By the η, τ cases above, rΓηs and rΓτ s are zero in H1pM
η

0,3q and H1pM
τ

0,3q, respectively.

Remark 3.4. The same argument can be used to obtain 3-term relations in H1pRM0,3, BRM0,3q by
going diagonally in Figures 3-5. While these relations are nominally stronger than (3.5), we do not
see any applications for them at this point and they have a less appealing appearance than (3.5).
On the other hand, they can be used to conclude that (3.5) holds over Z as follows. Let α denote
a nontrivial loop in the fiber F1 in the proof of the τ case of Proposition 3.3. The loops formed by
the upper left and lower right triangles equal to εlα and εrα in homology, for some εl, εr P t0, 1u.
Pulling back the loops to M

τ

0,3pP2, 1q by (4.1), evaluating on 3 conjugate pairs of lines over Z2, and
using Proposition 4.2, we find that each of the three segments in each of the triangles contributes
1PZ2 (the number of real lines through a non-real point) to the total count for the triangle. Thus,
εl, εr “1 (the preimage of the loop α in fact corresponds to the number of real lines through 2 real
points in P2). This implies that the loop Γτ

1´Γτ
2̄

`Γτ
1̄

´Γτ
2 , which is the sum of the two triangular

loops, is contractible. Thus, (3.5) holds over Z.

Remark 3.5. A local model for (3.7) near the intersection point of an S2 and S1 in the same fiber
is given by

RˆC ÝÑ R, pt, zq ÝÑ t|z|2 . (3.8)

Local models for (3.7) around S2 ”C\t8u and S1 ”R\t8u are given by

S2ˆR ÝÑ R, pz, tq ÝÑ
2t

1`|z|2
, S1ˆC ÝÑ R, pt, zq ÝÑ

2|z|2

t` t´1
. (3.9)

The remaining singular fiber of (3.7) is obtained by blowing up a point of another compact orientable

3-manifold |MR
0,3. The latter is isomorphic to the orientable “double connect-sum” of two copies of
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Figure 5: The moduli space RM0,3 as a fibration over RM0,2; the labels i and ī indicate the
marked points z`

i and z´
i , respectively.

S1ˆS2, i.e. the manifold obtained by removing two disjoint three-balls from each copy of S1ˆS2

and gluing the two copies together along the common boundary so that the glued manifold is
orientable. The manifold |MR

0,3 can be obtained by contracting the second copy of RP2 described in
the proof of the τ case of Proposition 3.3; the loop Γτ

1´Γτ
2̄
`Γτ

1̄
´Γτ

2 then arises from a contractible

loop in the complement of the blowup point in |MR
0,3 and thus is contractible in M

τ

0,3. This implies
that (3.5) holds over Z.

4 Proof of Theorem 2.1

The relation on RM0,3 of Proposition 3.3 induces relations between counts of real maps from
nodal domains into a real symplectic manifold pX,ω, φq; see Corollary 4.1. Proposition 4.2, which
is proved in Section 5, expresses these counts in terms of real GW-invariants and a decorated
version of complex GW-invariants via the Kunneth splitting of the diagonal ∆X in X2. Proposi-
tion 4.3, which is also proved in Section 5, relates the decorated invariants to the usual complex
GW-invariants. We conclude this section by deducing Theorem 2.1 from Corollary 4.1 and Propo-
sitions 4.2 and 4.3.

Let pX,ω, φq be a compact real symplectic 2n-manifold, β PH2pXqφ, and kPZ with kě2. Let

f c012 : M0,k`1pX, βqφ,c ÝÑ M
c

0,3, c “ τ, η, fR012 : M0,k`1pX, βqφ ÝÑ M
R

0,3, (4.1)

be the forgetful morphisms keeping the first three conjugate pairs of marked points only (i.e. those
indexed by 0,1,2). If c“τ, η and pOcq and (2.5) in Section 2 are satisfied, we set

Rf012 “ f c012, RMk`1pβq “ M0,k`1pX, βqφ,c, RM0,3 “ M
c

0,3 .
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If pOτ q and pOηq are satisfied, but not (2.5), we set

Rf012 “ fR012, RMk`1pβq “ M0,k`1pX, βqφ, RM0,3 “ M
R

0,3 .

In all cases, we index the conjugate pairs of marked points of elements of RMk`1pβq by the set
t0, 1, . . . , ku. For any relative cycle Γ in pRM0,3, BRM0,3q and µ0, . . . , µk PH˚pXq, we define

xµ0, . . . , µkyΓβ “

ż

rRMk`1pβqsvir
Rf˚

012PDprΓsq ev˚
0µ0 . . . ev

˚
kµk. (4.2)

This number counts degree β real morphisms into pX,φq from domains that stabilize to elements
of Γ after dropping the conjugate pairs labeled by the set t3, . . . , ku. From Proposition 3.3, we
immediately obtain the following corollary.

Corollary 4.1 (of Proposition 3.3). Let pX,ω, φq be a compact real symplectic manifold, β PH2pXqφ,
and µ0, . . . , µk PH˚pXq for some kě 2. If c“ τ, η and the conditions pOcq and (2.5) in Section 2
are satisfied, then

xµ0, . . . , µky
Γc
1

β ` xµ0, . . . , µky
Γc
1̄

β “ xµ0, . . . , µky
Γc
2

β ` xµ0, . . . , µky
Γc
2̄

β , (4.3)

where Γc
1,Γ

c
1̄
,Γc

2,Γ
c
2̄
are the relative cycles in pRM

c

0,3, BRM
c

0,3q defined in Section 3 and repre-
sented by the diagrams in Figures 3 and 4. If the conditions pOτ q and pOηq are satisfied, but not
necessarily (2.5), then (4.3) holds with c“R.

We next express the numbers appearing in Corollary 4.1 in terms of complex and real GW-
invariants. Let pX,ω, φq be a compact real symplectic 2n-manifold, β P H2pXqφ, and k P Zě0.
We denote by

Mk`1pβq “ M0,k`1pX, βq

the moduli space of stable genus 0 degree β maps with marked points indexed by the set t0, 1, . . . , ku.

For any IĂt1, . . . , ku, let M
I

k`1pβq be the space Mk`1pβq with the reverse orientation if |I| is odd
and let

evI : M
I

k`1pβq ÝÑ Xk`1

be the modification of the total evaluation map

ev ” ev0ˆev1ˆ. . .ˆevk : Mk`1pβq ÝÑ Xk`1 (4.4)

obtained by replacing evi with φ˝evi whenever iPI. For any µ0, . . . , µk PH˚pXq, define

xµ0, . . . , µkyIβ “

ż

rM
I

k`1pβqsvir
evI˚pµ0ˆ. . .ˆµkq.

This setup is motivated by the introduction of sign decorations for disk maps in [10]. The next
two propositions are established in Section 5. As before, if µ1, . . . , µk PH˚pXq and I Ă t1, . . . , ku,
let µI denote a tuple with the entries µi with iPI, in some order.

Proposition 4.2. Let pX,ω, φq be a compact real symplectic manifold, β PH2pXqφ, Γ
c
1,Γ

c
1̄
,Γc

2,Γ
c
2̄

be the relative cycles in pRM0,3, BRM0,3q defined in Section 3 and represented by the diagrams in
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Figure 2, and tγiuiďℓ and tγiuiďℓ be dual bases for H˚pXq. If c “ τ, η and the conditions pOcq
and (2.5) in Section 2 are satisfied, then

xµ0, . . . , µky
Γc
j

β “xµ0µj , µ3´j , µ3, . . . , µkyφ,cβ

`
ÿ

dpβ1q`β2“β
β1,β2PH2pXq´t0u

ÿ

I`\J\I´“t1,...,ku
jPI`, 3´jPJ

ÿ

1ďiďℓ

γiPH2˚pXqφ
´

@
µ0, µI`\I´ , γi

DI´

β1

@
µJ , γ

i
Dφ,c
β2

(4.5)

for all j“1, 2, kě2, and µ0, . . . , µk PH2˚pXq. The same identity also holds with pΓj , µ0µj , j PI`q
replaced by pΓj̄ ,´µ0φ

˚µj , j P I´q. If the conditions pOτ q and pOηq are satisfied, but not necessar-

ily (2.5), then the four identities hold with Γc
˚ “ΓR

˚ and x. . .yφ,c “x. . .yφ.

Proposition 4.3. Let pX,ω, φq be a compact real symplectic 2n-manifold, β PH2pXqφ, k P Zě0,

and IĂt0, 1, . . . , ku. For all µ0, . . . , µk PH˚pXqφ´YH˚pXqφ`,

xµ0, . . . , µkyIβ “ p´1qεIpµqxµ0, . . . , µkyXβ ,

where εIpµq“|tiPI : µi PH˚pXqφ`u|.

Proof of Theorem 2.1. We apply Corollary 4.1 with µ0 ” µ, µ1, . . . , µk as in the statement of
Theorem 2.1. Since µi PH˚pXqφ´ for all i“1, . . . , k,

@
µ0, µI`\I´ , γi

DI´

β1
“
@
µ0, µI`\I´ , γi

DX
β1

for all decompositions I`\J\I´ “ t1, . . . , ku and for all four terms in (4.3); see Proposition 4.3. If
c“ τ, η and the conditions pOcq and (2.5) are satisfied, Proposition 4.2 thus reduces the left-hand
side of (4.3) to

2

˜
xµ0µ1, µ2, µ3, . . . , µkyφ,cβ `

ÿ

dpβ1q`β2“β
β1,β2PH2pXq´t0u

ÿ

I\J“t3,...,ku

ÿ

1ďiďℓ

γiPH2˚pXqφ
´

2|I|
@
µ0, µ1, µI , γi

DX
β1

@
µ2, µJ , γ

i
Dφ,c
β2

¸

and the right-hand side of (4.3) to

2

˜
xµ1, µ0µ2, µ3, . . . , µkyφ,cβ `

ÿ

dpβ1q`β2“β
β1,β2PH2pXq´t0u

ÿ

I\J“t3,...,ku

ÿ

1ďiďℓ

γiPH2˚pXqφ
´

2|I|
@
µ0, µ2, µI , γi

DX
β1

@
µ1, µJ , γ

i
Dφ,c
β2

¸
.

Setting the two expressions equal, we obtain the formula in Theorem 2.1. If the conditions pOτ q
and pOηq are satisfied, but not necessarily (2.5), the same argument applies with x. . .yφ,c replaced
by x. . .yφ.

5 Orientations and signs

In this section, we analyze and compare orientations of various moduli spaces of complex and real
maps. We use these comparisons to establish Proposition 4.3, Theorem 2.2, and Proposition 4.2.
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Proof of Proposition 4.3. For each cycle h : Y ÝÑ X representing the Poincare dual of an
element of H˚pXqφ˘, let εphq“˘1, respectively. Define an involution ΘI : Xk`1 ÝÑXk`1 by

ΘI
`
x0, . . . , xk

˘
ÝÑ

`
ΘI

0px0q, . . . ,ΘI
kpxkq

˘
, where ΘI

i pxq “

#
x, if iRI;

φpxq, if iPI.

We can assume that the cohomology degrees of µ0, µ1, . . . , µk satisfy

deg µ0 ` . . .` deg µk “ dimvir
Mk`1pβq “ 2

`@
c1pXq, β

D
` n´2 ` k

˘
,

where 2n “ dimX. Choose a generic collection of representatives hi : Yi ÝÑX for the Poincare
duals of µ0, . . . , µk, respectively. The Poincare dual of φ˚µi is then represented by the cycle

hi ” φ˝hi : Ȳi ” p´1qnYi ÝÑ X, (5.1)

with ´Yi denoting Yi with the opposite orientation. Let

xhy “ h0ˆ. . .ˆhk : Y ” Y0ˆ. . .ˆYk ÝÑ Xk`1.

We denote by YI the modification of Y with the i-th factor replaced by εphiqȲi and by

xhyI : YI ÝÑ Xk`1

the modification of xhy with the i-th factor map replaced by hi whenever iPI. Thus, xhyI “ΘI x̋hy.

We set

M
I

hpβq “
 

pu,yqPM
I

k`1pβqˆYI : evIpuq“xhyIpyq
(
, Mhpβq ” M

H
h pβq .

As sets, these two objects are the same. For a generic tuple h, the restriction of the total evaluation
map (4.4) to every stratum of Mk`1pβq is transverse to xhy in Xk`1 and thus Mhpβq is a finite
collection of signed weighted points contained in the main stratum of the moduli space. Since h

and hI represent the Poincare duals of µ0ˆ. . .ˆµk, the signed weighted cardinalities of Mhpβq and

M
I

hpβq are the numbers xµ0, . . . , µkyXβ and xµ0, . . . , µkyIβ , respectively.

The sign of each element pu,yq of M
I

hpβq is determined by the orientations of M
I

k`1pβq, YI ,
and Xk`1 via the maps evI and xhyI . It is the sign of the isomorphism

d
 
evI ˆxhyI

(
: T pM

I

k`1pβqˆYIq|pu,yq ÝÑ
T pXk`1ˆXk`1q|∆

Xk`1

T p∆Xk`1q

ˇ̌
ˇ̌
pevIpuq,xhyIpyqq

, (5.2)

where ∆Xk`1 ĂXk`1ˆXk`1 is the diagonal. By the chain rule,

d
 
evI ˆxhyI

(
“ d

 
ΘI ˆΘI

(
˝ d

 
evˆxhy

(
.

The sign of the isomorphism

d
 
ΘI ˆΘI

(
:
T pXk`1ˆXk`1q|∆

Xk`1

T p∆Xk`1q

ˇ̌
ˇ̌
pevpuq,xhypyqq

ÝÑ
T pXk`1ˆXk`1q|∆

Xk`1

T p∆Xk`1q

ˇ̌
ˇ̌
pevIpuq,xhyIpyqq

is p´1qn|I|. The orientations of M
I

k`1pβq and Mk`1pβq differ by p´1q|I|, while the orientations
of YI and Y differ by

p´1qn|I|`|tiPI:µiPH˚pXqφ
´

u| .

Thus, the signed weighted cardinalities of M
I

hpβq and Mhpβq differ by the sign p´1qεIpµq.
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We next recall how the main stratum M
φ,c
k`1pβq of the moduli space Mk`1pX, βqφ,c with c“ τ, η

is oriented if the condition pOcq in Section 2 is satisfied. We begin with the case k “ ´1. By
definition,

M
φ,c
0 pβq “ P

φ,c
0 pβq{Gc , g ¨ u “ u ˝ g,

where P
φ,c
0 pβq is the space of parametrized pφ, cq-real degree β J-holomorphic maps P1 ÝÑX and

Gc ĂPSL2C is the subgroup of automorphisms of P1 commuting with c. The latter is oriented by
the short exact sequence

0 ÝÑ TidS
1 ÝÑ TidGc ÝÑ C ÝÑ 0,

where C“T0C corresponds to shifting the origin and S1 ĂGc is the subgroup of standard rotations
of C, which we identify with S1 ĂC˚. The (virtual) tangent space of Pφ,c

0 pβq at a point uPPφ,c
0 pβq

is the index of the linearization Dc
u of the B̄-operator at u. If c“ τ , we orient this index as in the

proofs of [9, Corollary 1.8] and [10, Lemma 7.3] from a fixed spin structure on TXφ‘2Eφ̃, with
E as in pOτ q. If c“η, we orient the index via the pinching construction of [5, Lemma 2.5] from a

fixed spin sub-structure on pTX, dφq; see [12, Corollary 5.10]. The orientation of Mφ,c
0 pβq at rus is

then specified by
indDc

u « TrusM
φ,c
0 pβq ‘ TidGc .

The order of the factors on the right-hand side above is motivated by the choice of the orientation
on M

c

0,2 in Section 3. For kě0, Mk`1pX, βqφ,c is oriented using the first element in each conjugate
pair pzi, zīq to orient the general fibers of the forgetful morphism

Mk`1pX, βqφ,c ÝÑ M0pX, βqφ,c (5.3)

obtained by forgetting the k pairs of conjugate marked points.

In this paper, we use a different natural construction of orientation on Mk`1pX, βqφ,c in the stable
range, i.e. kě 1; in Lemma 5.1, we show that the two orientations coincide. It is obtained using
the forgetful morphism

f : Mk`1pX, βqφ,c ÝÑ M
c

0,k`1

and the orientation on M
c

0,k`1 defined in Section 3. For a general rus P Mk`1pX, βqφ,c in this
case, the domain Σu of u with its marked points is stable and thus C “ rΣus is the image of rus
inM

c

0,k`1. The (virtual) vertical tangent bundle of f at such rus is the index ofDc
u. The orientation

of Mk`1pX, βqφ,c is then specified by

TrusMk`1pX, βqφ,c « indDc
u ‘ TrΣusM

c

0,k`1 , (5.4)

with indDc
u oriented as in the previous paragraph.

Lemma 5.1. Let c “ τ, η, pX,ω, φq be a compact real symplectic manifold satisfying the condi-
tion pOcq in Section 2, kPZě0, and β PH2pXqφ.

(1) For every i“0, 1, . . . , k, the automorphism of M0,k`1pβqφ,c interchanging the marked points in
the i-th conjugate pair is orientation-reversing.

(2) For all i, j “ 0, 1, . . . , k, the automorphism of M0,k`1pβqφ,c interchanging the i-th and j-th
conjugate pairs of marked points is orientation-preserving.
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(3) If kě1, the two orientations on M0,k`1pβqφ,c described above are the same.

If the conditions pOτ q and pOηq are satisfied, the three statements also apply with M0,k`1pβqφ,c

replaced by M0,k`1pβqφ.

Proof. (1,2) Both automorphisms take a fiber of (5.3) to the same fiber. The restriction of the
automorphism in (1) to a fiber of (5.3) is orientation-reversing, while the restriction of the auto-
morphism in (2) to a fiber of (5.3) is orientation-preserving. This implies the first two statements
of the lemma.

(3) Let u be an element of M0,k`1pβqφ,c at a point u with smooth domain Σu and u0 be its image
of rus under (5.3). The first orientation of M0,k`1pβqφ,c described above satisfies

TrusM0,k`1pβqφ,c ‘ TidGc « Tru0sM0,k`1pβqφ,c ‘
kà

i“0

Tz`

i
Σu ‘ TidGc

« Tru0sM0,k`1pβqφ,c ‘ TidGc ‘
kà

i“0

Tz`

i
Σu « indDc

u0
‘

kà
i“0

Tz`

i
Σu .

The orientation of M
c

0,k`1 chosen in Section 3 at a smooth curve C “ rpz`
0 , z

´
0 q, . . . , pz`

k , z
´
k qs is

described by
Tz`

0
C ‘ . . .‘ Tz`

k
C « TCM

c

0,k`1 ‘ TidGc .

Thus, the second orientation of M0,k`1pβqφ,c described above satisfies

TrusM0,k`1pβqφ,c ‘ TidGc « indDc
u0

‘ TrΣ0sM
c

0,k`1 ‘ TidGc « indDc
u0

‘
kà

i“0

Tz`

i
Σu .

Thus, the two orientations of TrusM0,k`1pβqφ,c are the same.

If c is an orientation-reversing involution on a compact orientable surface Σ of genus g and pX,ω, φq
is a compact real symplectic 2n-manifold such that n is odd, Xφ “ H, and Λtop

C pTX, dφq admits
a real square root, then the moduli spaces Mg,k`1pX, βqφ,c are oriented via the analogue of the
morphism (5.3). Thus, the first two statements of Lemma 5.1 also hold if M0,k`1pX, βqφ,c is
replaced by Mg,k`1pX, βqφ,c.

Proof of Theorem 2.2. We denote by RMg,kpβq the appropriate moduli space of real morphisms,
as determined by the case of Theorem 2.2 under consideration. We can assume that the cohomology
degrees of µ1, . . . , µk satisfy

deg µ1 ` . . .` deg µk “ dimvirRMg,kpβq “
@
c1pXq, β

D
` pn´3qp1´gq ` 2k .

Choose hi : Yi ÝÑX as in the proof of Proposition 4.3 and define xhy, xhyI , RMhpβq, and RM
I

hpβq,
for any subset I Ă t1, . . . , ku, as before, but starting with the moduli space RMg,kpβq in the last
two cases. By exactly the same argument as in the proof of Proposition 4.3, the signed weighted

cardinalities of RM
I

hpβq and RMhpβq differ by the sign p´1qεIpµq.

If µi˚ PH˚pXqφ`, we apply the above conclusion with I “ ti˚u. The signed weighted cardinalities

of RM
I

hpβq and RMhpβq are then opposite. Interchanging the points in the i˚-th conjugate pair
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induces an orientation-preserving isomorphism from RM
I

hpβq to RMh1pβq, where h1 is the tuple
obtained by replacing hi˚ with

hi˚ “φ˝hi˚ : p´1qnYi˚ ÝÑ X ;

this cycle represents the Poincare dual of φ˚µi˚ “µi˚ . Thus, the signed weighted cardinalities of
RMhpβq and RMh1pβq are opposite. Since both of them are equal to the real invariant xµ1, . . . , µkyφβ
in question, the latter vanishes.

In the remainder of this section, we establish Proposition 4.2. The key point in its proof is that
all orientations are chosen compatibly; in particular, the oriented normal bundle of Γ˚ in RM0,3

and the oriented normal bundle of its preimage in RMk`1pβq are given by the complex line bun-
dle of smoothings of the node on the bubble containing z0. We proceed with the notation and
assumptions as in the statement of Proposition 4.2. We will also use the same notation for the
uncompactified moduli spaces (maps only from smooth domains) as we have introduced for the
compactified moduli spaces.

For β PH2pXqφ, denote by Nβ Ă RMk`1pβq the sub-orbifold of maps from domains consisting of
precisely three components with one invariant bubble and two conjugate bubbles with the marked
point z`

0 on one of the conjugate bubbles. For u P Nβ, denote by uC the restriction of u to the
component containing z`

0 and by zC the marked point corresponding to the node on this component;
denote by uR the restriction of u to the invariant component and by z`

‚ the marked point on this
component corresponding to the same node as zC. If β“dpβ1q`β2 and t1, . . . , ku“I`\J\I´, let

Nβ1,β2;I`,J,I´ Ă Nβ

be the subspace of the maps u so that the degrees of uC and uR are β1 and β2, respectively, and
the rest of the marked points carried by the component containing z`

0 are the first elements in the
pairs of conjugate points indexed by I` and the second elements in the pairs indexed by I´. If

pβ1, I
`, I´q“p0,H,Hq or pβ2, Jq“p0,Hq, (5.5)

Nβ1,β2;I`,J,I´ “H for stability reasons.

The restrictions uC and uR determine an isomorphism

Nβ1,β2;I`,J,I´ «
 

puC, uRq P M
I´

|I`|`|I´|`2pβ1qˆRM|J |`1pβ2q : uCpzCq“uRpz`
‚ q

(
, (5.6)

with the marked points of the elements of MI´

|I`|`|I´|`2
pβ1q indexed by 0, the elements of I`\I´,

and the superscript C; under either of the conditions (5.5), one of the moduli spaces on the right-
hand side of (5.6) is empty for stability reasons. The inverse map is obtained by identifying the
marked point zC of the domain of uC with the marked point z`

‚ of the domain of uR and the marked
point cpzCq of the map φ˝uC˝c with z´

‚ “ cpz`
‚ q; the marked points of uC indexed by I` become

the first points in the corresponding pair of the nodal map, while those indexed by I´ become the
second. As in Section 4, MI´

|I`|`|I´|`2
pβ1q is oriented by twisting the canonical complex orientation

of M|I`|`|I´|`2pβ1q by p´1q|I´|. The canonical orientation of X and the chosen orientations of

M
I´

|I`|`|I´|`2
pβ1q and RM|J |`1pβ2q induce an orientation on each component of Nβ via the isomor-

phism (5.5).
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Let LC ÝÑMI´

|I`|`|I´|`2
pβ1q and LR ÝÑRM|J |`1pβ2q be the universal tangent line bundles at the

marked points zC and z`
‚ , respectively, and

L “ π˚
1L

C bC π
˚
2L

R ÝÑ Nβ ,

where π1, π2 are the component projection maps. The line bundle LÝÑNβ is the normal bundle
of Nβ in RMk`1pβq. There is a gluing map

Φ: U ÝÑ RMk`1pβq, (5.7)

where U ĂL is a neighborhood of the zero set in L; it is obtained via a pφ, cq-equivariant version
of a standard gluing construction, such as in [24, Section 3].

If kě2 and |JXt1, 2u|“1, Nβ1,β2;I`,J,I´ is a topological component of the pre-image of Γ̊ under the
forgetful morphism Rf012 in (4.1) for some Γ“Γi,Γī, with i“1, 2. In this case, the restriction of L
to Nβ1,β2;I`,J,I´ equals Rf˚

012LΓ, where LΓ ÝÑΓ is the complex line bundle defined in Section 3.
The gluing map Φ in (5.7) can be chosen so that its restriction to each such componentNβ1,β2;I`,J,I´

lifts any pre-specified gluing map on LΓ;h over Rf012.

Lemma 5.2. If kě2 and |JXt1, 2u|“1, the restriction of the gluing map (5.7) to a neighborhood
of Nβ1,β2;I`,J,I´ in L is orientation-preserving with respect to the complex orientation on L and the
orientation on the base described above.

Proof. This follows readily from the definitions of the three orientations above; we follow the second
construction, which is described just before Lemma 5.1. Let Γ be as in the preceding paragraph.
If k“2, Φ can be chosen so that there is a commutative diagram

U
Φ

//

f012

��

RM3pβq

f012
��

UΓ
ΦΓ

// RM0,3

with the bottom arrow being some gluing map on a neighborhood of Γ̊ in LΓ. By Lemma 3.2, ΦΓ is
orientation-preserving. Since all domains are stable in this case, the vertical tangent spaces of the
vertical arrows in the diagram are oriented by orienting the indices of the linearized B̄-operators;
see [11, Section 6].

The index for the complex moduli space has a canonical orientation; see [25, p51]. The indices for

the two real moduli spaces are oriented from either the same trivialization of TXφ‘2Eφ̃ over a
loop in Xφ or from the same trivialization of pTX, dφq over a Z2-invariant loop in X by pinching
off the relevant vector bundle onto a conjugate pair of sphere bubbles, as in the proofs of [10,
Lemma 7.3] and in [11, Theorem 1.1]; the index over the first of these bubbles, B, has a canonical
complex orientation. Thus, the index of an element of Nβ1,β2;I`,J,I´ is oriented by introducing
an extra pinching in B as compared to what is used to orient nearby real maps from P1. This
pinching, which is given by the inverse of Φ, induces the same canonical orientation over B. Thus,
the orientation of the index for a map from P1 is equivalent to the orientation obtained from the
orientation of an element of Nβ by smoothing the node.
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If kě3, Φ can be chosen so that there is a commutative diagram

U
Φ

//

��

RMk`1pβq

��

U 1 Φ1

// RM3pβq

(5.8)

with the vertical arrows being forgetful maps again. Since the fibers of the right arrow are oriented
by the first points in each conjugate pair and the orientation of the fibers of the left arrow is based
on the number of conjugate pairs with the second point carried by uC, Lemma 3.1 implies that
Φ is again orientation-preserving between the fibers and thus between the spaces on the first line
of (5.8).

Remark 5.3. The assumption that kě 2 and |JXt1, 2u| “ 1 in Lemma 5.2 is not necessary, but it
simplifies the argument. The general case is not needed for our purposes.

Proof of Proposition 4.2. We can assume that the cohomology degrees of µ0, . . . , µk satisfy

deg µ0 ` . . .` deg µk “ dimvirRMk`1pβq ´ 2 “
@
c1pXq, β

D
` n´3 ` 2k , (5.9)

where 2n “ dimX. Choose a generic collection of representatives hi : Yi ÝÑX for the Poincare
duals of µ0, . . . , µk, respectively, and define

RMhpβq “
 

pu,yqPRMk`1pβqˆY0ˆ. . .ˆYk : evipuq“hipyiq @ i“0, . . . , k
(
.

If β“dpβ1q`β2 and t1, . . . , ku“I`\J\I´, let

Nβ1,β2;I`,J,I´phq “ Nβ1,β2;I`,J,I´ X RMhpβq. (5.10)

If the representatives hi for µi are generic, each set Nβ1,β2;I`,J,I´phq is a compact zero-dimensional
suborbifold of the oriented orbifold Nβ1,β2;I`,J,I´ and thus has a well-defined signed weighted car-
dinality. The latter is computed by the usual Kunneth decomposition, with respect to the specified
orientations of MI´

|I`|`|I´|`2
pβ1q and RM|J |`1pβ2q; this gives the last sum in (4.5) if β1, β2 ‰ H,

but without the restriction γi PH2˚pXqφ´. Since µi PH2˚pXq for all i, the complex GW-invariant
in (4.5) with γi PH2˚´1pXq vanishes for dimensional reasons; the real GW-invariant in (4.5) with

γi P H˚pXqφ` vanishes by Theorem 2.2. If β1 “ 0 and |I` \ I´| ě 2 or β2 “ 0 and |J | ě 1,
Nβ1,β2;I`,J,I´phq “ H; otherwise, the marked points on uC (in the first case) or on uR (in the sec-
ond case) could vary while staying inside of the zero-dimensional Nβ1,β2;I`,J,I´phq. The case β1 “0
and |I`\I´|“1 reduces as usual to an invariant like the first term on the right-hand side of (4.5);
as described below, there is only one decomposition t1, . . . , ku “ I` \J\I´ with |I` \I´| “ 1
relevant to each of the four cases of Proposition 4.2.

For any ΓĂRM0,3, define

ZΓ “
 `
u, y0, . . . , ykqPRf´1

012pΓqˆY0ˆ. . .ˆYk : evipuq“hipyiq @ i“0, . . . , k
(

“
`
Rf´1

012pΓqˆY0ˆ. . .ˆYk
˘

X RMhpβq .
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For j“1, 2 and generically chosen constraints hi,

ZΓj
“

ğ

dpβ1q`β2“β
β1,β2PH2pXq, β2‰0

ğ

I`\J\I´“t1,...,ku
jPI`, 3´jPJ

Nβ1,β2;I`,J,I´phq; (5.11)

this decomposition corresponds to the first two sums in (4.5) and the first term on the right-hand
side of (4.5). It also holds with pΓj , j PI`q replaced by pΓj̄ , j PI´q.

Let LΓ;h ÝÑZΓ denote the restriction of

π˚
1L “ LˆY0ˆ. . .ˆYk ÝÑ NβˆY0ˆ. . .ˆYk . (5.12)

As in complex GW-theory, a small modification of the gluing map (5.7) gives rise to a gluing map

ΦΓ;h : UΓ;h ÝÑ RMhpβq,

where UΓ;h ĂLΓ;h is a neighborhood of the zero section in LΓ;h (a finite collection of disks in this
case). Such a modification can be chosen to be of the form

ΦΓ;hpu, υq “ Φ
`
ψpu, υq, υ

˘
@ pu, υq P UΓ;h,

for some smooth function ψ on UΓ;h sending pu, 0q to u. Thus, the induced map

dpRf012˝ΦΓ;hq : π˚
1 Rf

˚
012LΓ ÝÑ LΓ

between the normal bundle of ZΓ in RMhpβq and of Γ in RM0,3 is the identity. Since ΦΓ;h is
orientation-preserving by Lemma 5.2, it follows that every signed weighted element of ZΓ con-
tributes `1 to the number (4.2). By the last two paragraphs, the signed weighted cardinality of ZΓ

is given by the right-hand side of (4.5).

6 Alternative proof of Theorem 2.1

In this section, we give a proof of Theorem 2.1 (in effect of a combination of Corollary 4.1 and
Proposition 4.2) which bypasses the real Deligne-Mumford moduli space RM0,3 of Section 3. We
instead pull back the standard relation on M0,4 by the forgetful morphism

f0120̄ : RMk`1pβq ÝÑ M0,4 ,“
u, pz`

0 , z
´
0 q, . . . , pz`

k , z
´
k q

‰
ÝÑ rz`

0 , z
`
1 , z

`
2 , z

´
0 s,

(6.1)

preserving the marked points z`
0 , z

`
1 , z

`
2 , z

´
0 only (and stabilizing the domain if necessary).

As in Section 4, we either fix c“ τ, η and assume that the conditions pOcq and (2.5) in Section 2
are satisfied or assume that the conditions pOτ q and pOηq, but not necessarily (2.5), are satisfied.
In both cases, we continue with the abbreviations for moduli spaces of maps introduced in Section 4
(before Corollary 4.1 for the R-spaces and before Proposition 4.2 for the C-spaces). We can again
assume that (5.9) holds and choose generic representative hi : Yi ÝÑX for the Poincare duals of
µ0 ”µ, µ1, . . . , µk.
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Let Ω0,4 PH2pM0,4q be the Poincare dual of the point class and

rNR
β pµ0, . . . , µkq “

ż

rRMk`1pβqsvir
f˚
0120̄Ω0,4 ev

˚
0µ0 . . . ev

˚
kµk . (6.2)

For any λPM0,4, define

Zλ “
 `
u, y0, . . . , ykqPf´1

0120̄
pλqˆY0ˆ. . .ˆYk : evipuq“hipyiq @ i“0, . . . , k

(

Ă RMk`1pβq ˆ Y0ˆ. . .ˆYk .

This subset is a compact oriented 0-dimensional suborbifold, i.e. a finite set of weighted points, if
λ is generic. The number (6.2) is the signed weighted cardinality |Zλ|˘ of this set.

We prove Theorem 2.1 by explicitly describing the elements of Zr1,1s and Zr1,0s, with notation
as in Figure 1, and determining their contribution to the number (6.2). The domain Σu of each
element rus of Zr1,1s and Zr1,0s consists of at least two irreducible components. If (2.5) holds, Σu

has an odd number of irreducible components; the involution cu associated with u restricts to c on
one of the components and interchanges the others in pairs. For dimensional reasons, the number
of irreducible components of Σu cannot be greater than 3 and thus must be either 2 or 3. Each
map u with its marked points is completely determined by its restriction uR to the component ΣR

u

of Σu preserved by cu (if the number of irreducible components is odd) and its restriction uC to
either of the other components.

We depict all possibilities for the elements of Zr1,1s and Zr1,0s in Figures 6 and 7, respectively. In
each of the first three diagrams in these figures, the vertical line represents the irreducible com-
ponent ΣR

u of Σu preserved by cu, while the two horizontal lines represent the components of Σu

interchanged by cu; in the last diagram in each figure, the two lines represent the components
of Σu interchanged by cu. The homology classes next to the lines specify the degrees of u on the
corresponding components. The larger dots on the three lines indicate the locations of the marked
points z`

0 , z
`
1 , z

`
2 ; we label them by the constraints they map to, i.e. µ, µ1, µ2, in order to make

the connection with the expression in Theorem 2.1 more apparent. If a marked point z`
i lies on

the bottom component, its conjugate lies on the top component. In such a case, we indicate the
conjugate point by a small dot on the upper component and label it with µ̄i; the restriction of u to
the upper component maps this point to the image of φ˝hi. By the definition of Zr1,1s, each dia-

gram in Figure 6 contains a node separating the marked points z`
0 , z

`
1 (i.e. the larger dots labeled

by µ, µ1) from the marked points z`
2 , z

´
0 (i.e. dots labeled by µ2, µ̄). Similarly, each diagram in

Figure 7 contains a node separating the marked points z`
0 , z

`
2 from the marked points z`

1 , z
´
0 . We

arrange the diagrams in both cases so that the pair of marked points containing z`
0 lies above the

other pair. The remaining marked points, z˘
3 , . . . , z

˘
k , are distributed between the components in

some way. In the case of the first three diagrams in each figure, such a distribution is described by
a partition of t1, . . . , ku into subsets I`, J, I´ of plus-decorated marked points on the top, middle,
and bottom components, respectively.

Each element u of Zr1,1s and Zr1,0s described by the first three diagrams in Figures 6 and 7,
respectively, is an element of the subspace

Nβ1,β2;I`,J,I´phq Ă Nβ1,β2;I`,J,I´ ˆ Y0ˆ. . .ˆYk Ă RMk`1pβq ˆ Y0ˆ. . .ˆYk (6.3)
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Figure 6: Domains of elements of Zr1,1s

defined in (5.10) for some β1, β2 and I`, J, I´ with β“dpβ1q`β2 and t1, . . . , ku“I`\J\I´. An
element u of the first space in (6.3) has a well-defined nonzero weight wpuq with respect to the
orientation of Nβ1,β2;I`,J,I´ described below (5.6). The sum of these weights over all elements u
represented by a fixed diagram with fixed pβ1, β2q and pI`, J, I´q is the signed weighted cardinality
of Nβ1,β2;I`,J,I´phq computed via the usual Kunneth decomposition; see the first paragraph in the
proof of Proposition 4.2. As an isolated element of Zr1,1s or Zr1,0s, u has a well-defined contribu-
tion εpuqwpuq to the number (6.2), i.e. the signed number of nearby elements of Zλ, with λPM0,4

close to r1, 1s or r1, 0s. By Lemma 6.1 below, εpuq “ 1 for all elements u represented by the first
diagrams in Figures 6 and 7, εpuq “ ´1 for the second diagrams in these figures, and εpuq“0 for the
third diagrams. Even if the contributions from the third diagrams were nonzero, they would have
been the same for Zr1,1s and Zr1,0s by symmetry and so would have had no effect on the recursion
of Theorem 2.1. The reason behind Lemma 6.1 is that the oriented normal bundle of Nβ1,β2;I`,J,I´

inside RMk`1pβq is given by the complex line bundle of smoothings of the top node in the first
three diagrams, which is conjugate to the complex line bundle of smoothings of the bottom node,
while the complex tangent bundle of r1, 1s or r1, 0s in M0,4 corresponds to the smoothings of the
node separating tz`

0 , z
`
1 u from tz`

2 , z
´
0 u in the case of r1, 1s and tz`

0 , z
`
2 u from tz`

1 , z
´
0 u in the case

of r1, 0s.

The remaining elements of Zr1,1s and Zr1,0s, i.e. those described by the last diagrams in Figures 6
and 7, respectively, form one-dimensional subspaces Z 1

r1,1s ĂZr1,1s and Z
1
r1,0s ĂZr1,0s; these diagrams

appear only if (2.5) is not satisfied. By Lemma 6.2 below, no topological component of Z 1
r1,1s or

Z 1
r1,0s contributes to the number (6.2).

Lemma 6.1. Suppose u PZr1,1s and the domain of u contains an irreducible component ΣR
u fixed

by the involution cu.

(1) If ΣR
u contains the marked point z`

2 , εpuq“1.
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Figure 7: Domains of elements of Zr1,0s
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(2) If ΣR
u contains the marked point z`

1 , εpuq“´1.

(3) If ΣR
u contains neither of the marked points z`

1 , z
`
2 , εpuq“0.

The same statements with 1 and 2 interchanged hold for uPZr1,0s.

Proof. Let Lh ÝÑ Zr1,1s ´Z 1
r1,1s, Zr1,0s ´Z 1

r1,0s be the restriction of the line bundle π˚
1L defined

in (5.12). As in complex GW-theory, a small modification of the gluing map (5.7) gives rise to a
gluing map

Φh : Uh ÝÑ RMhpβq,

where Uh Ă Lh is a neighborhood of the zero section in Lh, which lifts any pre-specified family
of smoothings of the domain. Over the subsets Nβ1,β2;I`,J,I´phq corresponding to the first two
diagrams in Figures 6 and 7, Φh is orientation-preserving by Lemma 5.2. The differential

d
 
f0120̄˝Φh

(
: L ÝÑ

 
f0120̄˝Φh

(˚
TM0,4 (6.4)

is the composition of the differential for smoothing the nodes in Mk`2pβq,

dpf0120̄˝ΦCq : L‘L1 ÝÑ
 
f0120̄˝ΦC

(˚
TM0,4 ,

where L1 is the analogue of L for the second node, with the embedding

L ÝÑ L‘ L1, υ ÝÑ
`
υ, dcpυq

˘
.

The restriction of the latter differential to the component, L or L1, corresponding to the node
separating off two of the marked points tz`

0 , z
`
1 , z

`
2 , z

´
0 u is a C-linear isomorphism, while the re-

striction to the other component is trivial. Over the subsets Nβ1,β2;I`,J,I´phq corresponding to the
first diagrams in Figures 6 and 7, the former component is L and (6.4) is an orientation-preserving
map. Over the subsets Nβ1,β2;I`,J,I´phq corresponding to the second diagrams in Figures 6 and 7,
the former component is L1 and (6.4) is an orientation-reversing map. This establishes the first
two statements of Lemma 6.1.

Near the spaces Nβ1,β2;I`,J,I´ corresponding to the second-to-last diagrams in Figures 6 and 7, the
morphism

f0120̄ : Mk`2pβq ÝÑ M0,4

is locally of the form
L‘ L1 ÝÑ M0,4, pυ, υ1q ÝÑ aυυ1,

for some a dependent only on Nβ1,β2;I`,J,I´ . Thus, the restriction of f0120̄ to RMhpβq is locally of
the form

L ÝÑ M0,4, υ ÝÑ aυῡ .

The image of this maps is one-dimensional, which implies the third claim of Lemma 6.1.

Lemma 6.2. The contribution of every topological component of Z 1
r1,1s and Z 1

r1,0s to the num-

ber (6.2) is 0.
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Proof. If pX,ωq is strongly semi-positive, each topological component C of Z 1
r1,1s and Z

1
r1,0s is a cir-

cle. In general, C is obtained by gluing several circles along some intervals as specified by branching
of the multi-section s used to regularize the moduli space. Along C, s can be represented by several
single-valued sections obtained by gluing together local representatives as in [6, Section 3]. Each
such section determines disjoint circles in Z 1

r1,1s or Z
1
r1,0s. For the purposes of studying the nearby

elements of Zλ that lie in the zero set of each of these sections, it is sufficient to assume that each
topological component C of Z 1

r1,1s and Z
1
r1,0s is the circle S1.

There is a gluing map
Φ: Cˆp´δ, δq ÝÑ

ď

λPM0,4

Zλ (6.5)

for δ P R` sufficiently small, which restricts to the identity along Cˆ t0u; it is obtained via a
pφ, cq-equivariant version of a standard gluing construction, such as in [24, Section 3], with c“τ, η.
In particular, we can normalize the elements of C by setting the marked point z`

0 “0 and the node
to 8 on one of the components of the domain and setting z`

2 “ 1, z´
0 “ 8, and the node to 0 on

the other component. For each t P R˚ sufficiently small, we can define a marked pregluing map
ut : P

1 ÝÑX with the same values at the marked points as u and with the cross-ratio f0120̄ given by

λ “ f0120̄putq “ t z`
1 puq P C˚ Ă M0,4

in some chart on M0,4. This map can then be deformed to an element ũt of Zλ, with the same
λ PM0,4. Since C consists of two-bubble maps (no additional bubbling), the gluing construction
can be carried out on the entire space C in this case.

Let R̄` “Rě0 and R̄´ “Rď0. The restriction of f0120̄˝Φ to Cˆpp´δ, δqXR̄˘q is the composition of
the maps

Cˆpp´δ, δqXR̄˘q ÝÑ
 
zPC : |z|ăδ

(
, peiθ, tq ÝÑ |t|eiθ ,

 
zPC : |z|ăδ

(
ÝÑ C, reiθ ÝÑ ˘rz`

1

`
eiθ

˘
.

The two maps, for R̄` and R̄´, described by the first line above have opposite local degrees, while
the two maps described by the second map have the same local degrees. Thus, the local degree of
the map

f0120̄˝Φ : Cˆp´δ, δq ÝÑ C, pu, tq ÝÑ f0120̄
`
Φpu, tq

˘
“ t z`

1 puq,

is zero. This implies the claim.

Proof of Theorem 2.1. We compute the number (6.2) by adding up the contributions from the
elements represented by the diagrams in Figure 6. We then compute it from the diagrams in Fig-
ure 7 and compare the two expressions for the number (6.2).

By Lemmas 6.1 and 6.2, only the first two diagrams in Figure 6 and 7 contribute. By the Kunneth
decomposition, as in the first part of the proof of Proposition 4.2, and by Proposition 4.3, the
signed cardinality of Nβ1,β2;I`,J,I´phq is given by

ˇ̌
Nβ1,β2;I`,J,I´phq

ˇ̌˘
“

ÿ

1ďiďℓ

γiPH2˚pXqφ
´

@
µ0, µI`\I´ , γi

DX
β1

@
µJ , γ

i
DR
β2
, (6.6)
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where x. . .yR denotes x. . .yφ,c if (2.5) holds and x. . .yφ otherwise. If β1 “0 and the complex invariant
in (6.6) is nonzero, then |I` \ I´|“1 for dimensional reasons.

By Lemma 6.1(1), the contribution to the number (6.2) from the first diagram in Figure 6 equals
the sum of (6.6) over all admissible pβ1, β2q and pI, Jq with 1 P I and 2 P J and all partitions of
I´t1u into two subsets I` and I´. By Lemma 6.1(2), the contribution to the number (6.2) from
the second diagram in Figure 6 equals the negative of the sum of (6.6) over all admissible pβ1, β2q
and pI, Jq with 2P I and 1PJ and all partitions of I´t2u into two subsets I` and I´. Thus, the
number (6.2) equals

@
µµ1, µ2, µ3, . . . , µk

DR
β

´
@
µ1, µµ2, µ3, . . . , µk

DR
β

`
ÿ

dpβ1q`β2“β
β1,β2PH2pXq´t0u

ÿ

I\J“t3,...,ku

ÿ

1ďiďℓ

γiPH2˚pXqφ
´

2|I|

˜

@
µ, µ1, µI , γi

DX
β1

@
µ2, µJ , γ

i
DR
β2

´
@
µ, µ2, µI , γi

DX
β1

@
µ1, µJ , γ

i
DR
β2

¸
.

Considering the first two diagrams in Figure 7, we similarly find that the number (6.2) equals

@
µ1, µµ2, µ3, . . . , µk

DR
β

´
@
µµ1, µ2, µ3, . . . , µk

DR
β

`
ÿ

dpβ1q`β2“β
β1,β2PH2pXq´t0u

ÿ

I\J“t3,...,ku

ÿ

1ďiďℓ

γiPH2˚pXqφ
´

2|I|

˜

@
µ, µ2, µI , γi

DX
β1

@
µ1, µJ , γ

i
DR
β2

´
@
µ, µ1, µI , γ

i
DX
β1

@
µ2, µJ , γ

i
DR
β2

¸
.

Setting the two expressions equal, we obtain the formula in Theorem 2.1.

7 Miscellaneous odds and ends

We begin this section by deducing Corollaries 1.4 and 1.5 from Corollary 1.3. We then deduce
Corollaries 2.4 and 2.6 from Theorems 2.1 and 2.2 and relate the formula of Theorem 2.1 to the
quantum product on the cohomology of the symplectic manifold pX,ωq. We conclude with tables
of counts of real curves in P3, P5, and P7 and a discussion of their compatibility.

Proof of Corollary 1.4. (1) The claim holds for d, k “ 1, since there is a unique φ-real line
through any point in P2n´1. Modulo 2, the recursion of Corollary 1.3 becomes

@
c1, c2, c3, . . . , ck

Dφ
d

–
@
c1`c2´1, c3, . . . , ck

Dφ
d

`
ÿ

2d1`d2“d
d1,d2ě1

ÿ

2i`j“2n´1
i,jě1

˜

@
c1´1, c2, 2i

DP2n´1

d1

@
c3, . . . , ck, j

Dφ
d2

` d1
@
c1´1, 2i

DP2n´1

d1

@
c2, . . . , ck, j

Dφ
d2

¸
.

For dimensional reasons,

@
c1´1, c2, 2i

DP2n´1

d1
“ 0 @ d1 ě2,

@
c1´1, 2i

DP2n´1

d1
“ 0 @ d1 ě1.
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Thus, the mod 2 recursion reduces to

@
c1, c2, c3, . . . , ck

Dφ
d

–
@
c1`c2´1, c3, . . . , ck

Dφ
d

`
ÿ

2i`j“2n´1
i,jě1

@
c1´1, c2, 2i

DP2n´1

1

@
c3, . . . , ck, j

Dφ
d´2

.

If c1`c2´1 ď 2n´1, xc1`c2´1, c3, . . . , ckyφd is odd by induction on k for a fixed dě 1 odd and

xc1´1, c2, 2iy
P2n´1

1 “0 for dimensional reasons. It follows that

@
c1, c2, c3, . . . , ck

Dφ
d

– 1 mod 2

in this case. If c1`c2´1ą2n´1, then

d ě 3, xc1`c2´1, c3, . . . , ckyφd “ 0,

and xc1´1, c2, 2iy
P2n´1

1 “ 0 if c1`c2`2i ‰ 4n. Since the linear span of general P2n´1´pc1´1q and
P2n´1´c2 , with

1 ď c1, c2 ď 2n´1 and c1`c2 ą 2n,

in P2n´1 is a P4n´c1´c2 , it intersects a general P2n´1´p4n´c1´c2q in a single point. This point lies
on the unique line passing through linear subspaces of P2n´1 of codimensions c1, c2, 2i whenever
c1`c2`2i“4n. Thus,

@
c1, c2, c3, . . . , ck

Dφ
d

–
@
c3, . . . , ck, 2n´1 ´ p4n´c1´c2q

Dφ
d´2

mod 2

in this case; the last number is odd by the induction on d.

(2) The second claim of Corollary 1.4 follows from the first and [5, Theorem 1.8]; the latter is
contained in Corollary 2.6 and Theorem 2.2.

Proof of Corollary 1.5. The first statement follows immediately from Corollary 1.3 and im-
plies that

NR
d –4

#
1, if d P Z`´2Z;

0, if d P 2Z` .

We use simultaneous induction on the degree d to show that

NC
d –4

#
1, if d P Z`´2Z;

0, if d P 2Z` ;
and rNC

d –4

$
’&
’%

1, if d P Z`´2Z or d“2;

2, if d“4;

0, if d P 2Z`´t2, 4u ;

from the base case NC
1 “1 (the number of lines through 2 points in P3). By [27, Theorem 10.4],

NC
d “

ÿ

d1`d2“d
d1,d2ě1

˜
d22

ˆ
2d´3

2d1´2

˙
´ d1d2

ˆ
2d´3

2d1´1

˙̧
rNC
d1
NC

d2
,

rNC
d “ dNC

d `
ÿ

d1`d2“d
d1,d2ě1

˜
d1d

2
2

ˆ
2d´2

2d1´1

˙
´ d32

ˆ
2d´2

2d1´2

˙̧
rNC
d1
NC

d2
.

(7.1)
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By (7.1), ÑC
1 , N

C
3 “ 1 and rNC

3 “ 5. Modulo 4, the summands in (7.1) with d2 even vanish (by
Corollary 1.4, NC

d2
P 2Z if d2 P 2Z). Thus, by the inductive assumption only the summands with

d1 “ 2, 4 may be nonzero in either sum in (7.1) with dě 5 odd. These two summands contribute
d 2́ and d 3́, respectively, i.e. 1 together, to the first sum. They contribute d 1́ and 0, respectively,
i.e. again 1 together with the term dNC

d , to the second sum.

For dP2Z`, (7.1) and the inductive assumptions give

NC
d –4

ÿ

d1`d2“d
d1,d2ě1 odd

˜̂
2d´3

2d1´2

˙
´ pd´1q

ˆ
2d´3

2d1´1

˙̧
“ p2´dq

ÿ

d1`d2“d
d1,d2ě1 odd

ˆ
2d´3

2d1´1

˙
,

rNC
d –4

ÿ

d1`d2“d
d1,d2ě1 odd

˜
d1

ˆ
2d´2

2d1´1

˙
´ d2

ˆ
2d´2

2d1´2

˙̧
“

1

2

ÿ

d1`d2“d
d1,d2ě1 odd

ˆ
2d´2

2d1´1

˙
.

(7.2)

By symmetry, the last expression on the first line above equals

2´d

2

ÿ

d1`d2“d
d1,d2ě1 odd

˜̂
2d´3

2d1´1

˙
`

ˆ
2d´3

2d2´1

˙̧
“

2´d

2

ÿ

d1`d2“d
d1,d2ě1 odd

ˆ
2d´2

2d1´1

˙
.

Each of the last binomial coefficients is even. If in addition dP4Z, these coefficients come in pairs:
the one for d1 and d´d1 are the same. This shows that NC

d P4Z if dP2Z.

By (7.2), rNC
2 –4 1 and rNC

4 –4 2. Suppose d“ 2pd1 `1q with d1 ě 2, d1 “ 2d1
1`1, and d2 “ 2d1

2`1
(so that d1

1 `d1
2 “ d1). By Kummer’s Theorem, the highest power of 2 that divides half of the

last binomial coefficient in (7.2) is the number c2pd1
1, d

1
2q of carries in the addition of d1

1 and d1
2

modulo 2. The pairs pd1
1, d

1
2q for which c2pd1

1, d
1
2q “ 0 are obtained from d1 by distributing the 1’s

in the binary representation of d1 between d1
1 and d1

2. Thus, the number of such pairs pd1
1, d

1
2q is

2#, where # is the number of 1’s in the binary representation of d1. Since d1
1 ‰ d1

2 for such pairs,
the contribution from pd1

1, d
1
2q and pd1

2, d
1
1q to the last expression in (7.2), including the half factor,

is 2 modulo 4. Thus, the contribution from all such pairs to the last expression in (7.2) is 2#.
The contribution from any other pair pd1

1, d
1
2q is divisible by 2, since c2pd1

1, d
1
2q ě1, and such pairs

come in pairs giving the same contribution to (7.2), unless d1
1 “ d1

2. If d1
1 “ d1

2 and thus d1 P 2Z`,
c2pd1

1, d
1
2q “1 if and only if #“1. Thus, if d1 P2Z`, the total contribution to (7.2) from the terms

with c2pd1
1, d

1
2q “0 and the term with d1

1 “d1
2 is 0 modulo 4. If d1 R2Z`, #ě2, since d1 ě2, and so

this contribution is still 0 modulo 4. This shows that rNC
d P4Z if dP2Z and dě6.

Proof of Corollary 2.4. We can assume that X is connected and thus H0pXqφ´ “ t0u. By
Gromov’s compactness theorem, we can rescale ω so that

inf
 
ωpβq : β PHeffpXqφ

(
“ 1.

We prove the claim by induction on the number

xβyk ” ωpβq`k P p1,8q @ kPZ`, β PHeffpXqφ .
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Let tγiuiďℓ and tγiuiďℓ be as in Theorem 2.1. By the divisor relation,

@
µ1, . . . , µk

Dφ,c
β

“ xµ2, βy
@
µ1, µ3, . . . , µk

Dφ,c
β
,

@
µ1, . . . , µk

Dφ
β

“ xµ2, βy
@
µ1, µ3, . . . , µk

Dφ
β

@µ2 PH2pXq, (7.3)

whenever these invariants are defined, β‰0, and kě2.

By the linearity of real genus 0 GW-invariants and Theorem 2.2(1), it is sufficient to construct

the maps Pβ;β1 on the direct sum of pH2˚pXqφ´qbk so that these maps satisfy (2.11) with H2˚pXq

replaced by H2˚pXqφ´. For β, β
1 PHeffpXqφ, define

Pβ1;β : H
2˚pXqφ´ ÝÑ H2˚pXqφ´, Pβ1;βpµq “

#
µ, if β1 “β;

0, ifβ1 ‰β;

Pβ1;β “0:
8à

k“1

`
H2˚pXqφ´

˘bk
ÝÑ H2˚pXqφ´ if β´β1 R HeffpXqφYt0u .

These linear maps satisfy the k“1 case of (2.11) under the assumptions in (1) and of (2.11) with
x¨yφ,c replaced by x¨yφ under the assumptions in (2).

Suppose M PZ` and for every pair pk, βq in Z`ˆHeffpXqφ with xβyk ăM there exist linear maps

Pβ1;β :
`
H2˚pXqφ´

˘bk
ÝÑ H2˚pXqφ´ with β1 PHeffpXqφ (7.4)

that satisfy (2.11) under the assumptions in (1) and (2.11) with x¨yφ,c replaced by x¨yφ under the
assumptions in (2). Let pk, βq be a pair in Z`ˆHeffpXqφ such that

ką1 and M ď xβyk ă M`1.

Choose a basis Bk for pH2˚pXqφ´qbk consisting of products of homogeneous elements (each factor µi

lies in HcpXqφ´ for some cP2Z`).

Let µ1b . . .bµk P Bk. By the divisibility assumption, there exist µ PH2˚pXqφ` and µ1
2 PH2pXqφ´

such that µ2 “µµ1
2. For each β

1 PHeffpXqφ such that β´β1 PHeffpXqφYt0u, define

Pβ1;βpµ1, . . . , µkq “ xµ1
2, βyPβ1;β

`
µµ1, µ3, . . . , µk

˘
`

ÿ

dpβ1q`β2“β
dpβ1q,β2PHeffpXqφ

ÿ

I\J“t3,...,ku

ÿ

1ďiďℓ

γiPH2˚pXqφ
´

2|I|

˜

@
µ, µ1, µI , γi

DX
β1
Pβ1;β2

`
µ1
2, µJ , γ

i
˘

´
@
µ, µ1

2, µI , γi
DX
β1
Pβ1;β2

`
µ1, µJ , γ

i
˘
¸
.

The values of Pβ1;β and Pβ1;β2
above are well-defined because

xβyk´1 “ xβyk´1 ă M, xβ2y|J |`2 “ xβyk ´ ω
`
dpβ1q

˘
´ |I| ď xβyk´1 ă M .
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By (7.3), the equation in Theorem 2.1 with µ2 replaced by µ1
2 is equivalent to

@
µ1, µ2, µ3, . . . , µk

Dφ,c
β

“ xµ1
2, βy

@
µµ1, µ3, . . . , µk

Dφ,c
β

`
ÿ

dpβ1q`β2“β
dpβ1q,β2PHeffpXqφ

ÿ

I\J“t3,...,ku

ÿ

1ďiďℓ

γiPH2˚pXqφ
´

2|I|

˜

@
µ, µ1, µI , γi

DX
β1

@
µ1
2, µJ , γ

i
Dφ,c
β2

´
@
µ, µ1

2, µI , γi
DX
β1

@
µ1, µJ , γ

i
Dφ,c
β2

¸

under the assumptions in (1) and with x¨yφ,c replaced by x¨yφ under the assumptions in (2). Along

with the assumption on (7.4), this implies that the elements Pβ1;βpµ1, . . . , µkq of H2˚pXqφ´ sat-
isfy (2.11) under the assumptions in (1) and (2.11) with x¨yφ,c replaced by x¨yφ under the assump-
tions in (2). This completes the inductive step of the proof.

Proof of Corollary 2.6. By the discussion above the statement of this corollary and immedi-
ately after pOτ q and pOηq in Section 2, the real genus 0 GW-invariants x. . .yφd and x. . .yφ,cd of pX,φq
are defined in all cases considered in the statement of Corollary 2.6. By the sentence below (2.15),
we can assume that the complex dimension of X is odd. By the Lefschetz Theorem on Hyper-
plane Sections [17, p156] and Poincare Duality, H2˚pXq is then generated by H2 over Q and

H4˚pXq “ H4˚pXqφ`. In light of Theorem 2.2, this implies that the real genus 0 degree d GW-
invariants of pX,ωn|X , φq with any insertion µj PH4˚pXq vanish.

If φPn´1 “ηn and c“τ , the moduli spaces in (2.3) are empty for any J PJ φ
ω because Xφ “H. The

same is the case if (τnη) holds because the involution τn lifts to an involution rτn on the line bundle
OPn´1p1q, a real degree d map from pP1, ηq to pPn´1, τnq pulls back pOPn´1p1q, rτnq to a degree d
line bundle over P1 with an involution lifting η, and only even-degree line bundles over P1 admit
such lifts. This establishes the vanishing claim if either φPn´1 “ ηn and c“ τ or (τnη) holds. The
assumption that the degrees of µj are even is not necessary in these cases.

By the real version of Quantum Lefschetz Hyperplane Theorem (as in [10, Proposition 7.7]), the
real genus 0 degree d GW-invariants of pX,ωn|X , φq with insertions µj “ Hcj for some cj P Zě0

are equal to the real genus 0 GW-invariants of pPn´1, φPn´1q twisted by the Euler class of a vector
bundle. If either ai P2Z for some i or dP2Z and ℓPZ`, then this bundle contains a subbundle of
odd rank and the invariants of pX,ωn|X , φq vanish.

Suppose dP2Z and ℓ“0, i.e. Xn;a “Pn´1. If rP1s is the generator of H2pPn´1q, then

c
φ
min

`
drP1s

˘
“ 2n ą pdimRXq{2 ` 1 “ n.

Thus, the real genus 0 degree d GW-invariants of pPn´1, ωn, φPn´1q with dP2Z vanish by the last
statement of Corollary 2.5. This concludes the proof of Corollary 2.6(1).

It remains to establish Corollary 2.6(2). We assume that

dimCX “ n´1´ℓ ě 0.

Along with the assumption on |a|, this implies that ną|a|. By Corollary 2.6(1) and the reasoning
above, we can also assume that ai R 2Z for every i, d R 2Z, and X is odd-dimensional. The last
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assumption implies that H2˚pXq is generated by H2pXqφ´ as an algebra over Q, H2pXq“H2pXqφ
is one-dimensional, and pX,ωn|X , φq is a real Fano symplectic manifold. Along with the middle
assumption, it implies that

c
φ
min

`
drP1s

˘
“ n´|a| “ xayn ´

`
pdimRXq{2´1

˘
,

c
φ
`

`
drP1s

˘
“ 3

`
n´|a|

˘
ą n´ℓ “ pdimRXq{2 ` 1.

Corollary 2.6(2) thus follows from the first statement of Corollary 2.5 and the linearity of real
genus 0 GW-invariants.

Analogously to the situation in complex GW-theory, Theorem 2.1 is related to the quantum coho-
mology of pX,ωq. Let pX,ω, φq be a real symplectic manifold. Suppose that either

(C1) the conditions pOτ q and pOηq in Section 2 hold or

(C2) cPtτ, ηu is fixed and pOcq holds.

In the first case, let
H2pXq‹

φ “ H2pXqφ´t0u .

In the second case, let H2pXq‹
φ be as above if Xφ “ H and H2pXqφ´Impdq if Xφ ‰ H. For each

β PH2pXq‹
φ, denote by x. . .yφβ the real invariant (2.8) in the case (C1) and the real invariant (2.6)

in the case (C2).

Choose bases tγiuiďℓ and tγiuiďℓ for H
˚pXq so that

PDX2p∆Xq “
ℓÿ

i“1

γiˆγ
i P H˚pX2q,

as before. Let q denote the formal variable in the Novikov ring Λ on H2pX;Zq and set

rΛ “ Λrq1{2s, rQH˚pXq “ H˚pXq b rΛ, rQH˚pXqφ˘ “ H˚pXqφ˘ b rΛ “ QHpXqφ˘rq1{2s ;

see [25, Section 11.1]. We define a homomorphism of modules over Λ̃ by

Rφ : rQH˚pXq ÝÑ rQH˚pXqφ
p´1qn`1 , Rφµ “

ÿ

βPH2pXq‹

φ

ℓÿ

i“1

@
µ, γi

Dφ
β
γiqβ{2 @ µPH˚pXq ,

where 2n“dimX. By Theorems 2.2 and 2.1,

Rφµ “ 0 @ µ P rQH˚pXqφ` and Rφµ1 ˚ µ2 “ µ1 ˚ Rφµ2 @ µ1, µ2 P rQH˚pXqφ´ ,

respectively, where ˚ is the quantum product. If in addition xc1pXq, βyP2Z for all β PH2pXq that

can be represented by J-holomorphic spheres for a generic J PJ φ
ω , then

Rφµ´ ˚ µ` “ Rφ

`
µ´ ˚ µ`

˘
@ µ´ P rQH˚pXqφ´ , µ` P rQH˚pXqφ` ;

this can be seen by an argument similar to the proof of Proposition 4.3.

We conclude with some counts of real curves in P3, P5, and P7; see Tables 1 and 2. These numbers
are consistent with basic algebro-geometric considerations [17, p177].
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d NR
d

1 1

3 1

5 5

7 85

9 1993

11 136457

13 3991693

15 1580831965

17 -129358296175

19 106335656443537

21 -39705915765949931

23 27364388694945255653

25 -19263282511829476981415

27 17458116427845844069499545

29 -18101279473337469331178336611

31 22138019795038729862257691515501

Table 1: The number NR
d of degree d real rational curves through d non-real points in P3.

(1) Every degree 1 curve lies in a P1, every non-real point p in P2n´1 determines a real P1 ĂP2n´1,
and a real line passing through p lies in this P1. Thus, NR

1 , x5130yτ51 , and x715030yτ71 should
equal 1, at least in the absolute value.

(2) Every degree 3 curve lies in a P3, every two general non-real points p1 and p2 in P2n´1 determine
a real P3 ĂP2n´1, for ně2, and a real degree 3 curve passing through p1 and p2 lies in this P3.
Thus, a real degree 3 curve in P5 passing through two general points p1 and p2 and a general
plane π lies in the real P3 determined by these two points and passes through the point πXP3;
so the number x5231yτ53 should equal NR

3 , at least in the absolute value. By the same reasoning,
the number x725031yτ73 should also equal NR

3 .

(3) Every degree 5 curve lies in a P5, every three non-real points p1, p2, and p3 in P7 determine
a real P5, and a real degree 5 curve passing through p1, p2, and p3 lies in this P5. Thus, the
numbers x735130yτ75 and x735032yτ75 should equal x5430yτ55 and x5332yτ55 , respectively.
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d cond x5a3byτ5d
1 5130 1

1 5032 1

3 5231 -1

3 5133 -3

3 5035 -5

5 5430 1

5 5332 1

5 5234 -7

5 5136 93

5 5038 12417

7 5531 -23

7 5433 -213

7 5335 -2679

7 5237 -23001

7 5139 874089

7 50311 90271011

9 5730 21

9 5632 -503

9 5534 -16399

9 5436 -394863

9 5338 -6924579

9 52310 69060873

9 51312 19824606009

9 50314 1811570349393

d cond x7a5b3cyτ7d
1 715030 1

1 705131 1

1 705033 1

3 725031 -1

3 715230 -1

3 715132 -3

3 715034 -5

3 705331 -3

3 705233 -1

3 705135 89

3 705037 1155

5 735130 1

5 735032 1

5 725231 -3

5 725133 -27

5 725035 -175

5 715430 -11

5 715332 -71

5 715234 -239

5 715136 2181

5 715038 75405

5 705531 -55

5 705433 349

5 705335 20589

5 705237 438481

5 705139 7937169

5 7050311 139758309

Table 2: The numbers x5a3byτ5d and x7a5b3cyτ7d of degree d real rational curves through a non-real
points and b non-real planes in P5 and through a non-real points, b non-real planes, and c non-real
linear P4’s in P7, respectively.
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[3] E. Brugallé and G. Mikhalkin, Enumeration of curves via floor diagrams, C. R. Math.
Acad. Sci. Paris 345 (2007), no. 6, 329–334

[4] C.-H. Cho, Counting real J-holomorphic discs and spheres in dimension four and six, J. Korean
Math. Soc. 45 (2008), no. 5, 1427–1442

[5] M. Farajzadeh Tehrani, Counting genus zero real curves in symplectic manifolds, Geom.
Topol. 20 (2016), no. 2, 629-695

[6] K. Fukaya and K. Ono, Arnold Conjecture and Gromov-Witten Invariant, Topology 38 (1999),
no. 5, 933–1048

[7] K. Fukaya, Y.-G. Oh, H. Ohta, and K. Ono, Lagrangian Intersection Theory: Anomaly and
Obstruction, AMS Studies in Advanced Mathematics 46, 2009

[8] K. Fukaya, Y.-G. Oh, H. Ohta, and K. Ono, Anti-symplectic involution and Floer cohomology,
Geom. Topol. 21 (2017), no. 1, 1–106

[9] P. Georgieva, The orientability problem in open Gromov-Witten theory, Geom. Top. 17 (2013),
no. 4, 2485–2512

[10] P. Georgieva, Open Gromov-Witten invariants in the presence of an anti-symplectic involution,
Adv. Math. 301 (2016), 116-160

[11] P. Georgieva and A. Zinger, The moduli space of maps with crosscaps: Fredholm theory and
orientability, Comm. Anal. Geom. 23 (2015), no. 3, 81–140

[12] P. Georgieva and A. Zinger, The moduli space of maps with crosscaps: the relative signs of the
natural automorphisms, J. Symplectic Geom. 14 (2016), no. 2, 359-430

[13] P. Georgieva and A. Zinger, Orientability in real Gromov-Witten theory, math/1308.1347

[14] P. Georgieva and A. Zinger, A recursion for counts of real curves in CP2n´1: another proof,
math/1401.1750

44



[15] P. Georgieva and A. Zinger, Real Gromov-Witten theory in all genera and real enumerative
geometry: construction math/1504.06617

[16] E. Getzler, Intersection theory on M1,4 and elliptic Gromov-Witten invariants, J. AMS
10 (1997), no. 4, 973–998

[17] P. Griffiths and J. Harris, Principles of Algebraic Geometry, John Willey & Sons, 1994

[18] I. Itenberg, V. Kharlamov, and E. Shustin, A Caporaso-Harris type formula for Welschinger
invariants of real toric del Pezzo surfaces, Comment. Math. Helv. 84 (2009), no. 1, 87-126

[19] I. Itenberg, V. Kharlamov, and E. Shustin, Welschinger invariants of small non-toric Del
Pezzo surfaces, J. EMS 15 (2013), no. 2, 539–594

[20] I. Itenberg, V. Kharlamov, and E. Shustin, Welschinger invariants of real del Pezzo surfaces
of degree ě 3, Math. Ann. 355 (2013), no. 3, 849–878

[21] J. Kollár, Example of vanishing Gromov-Witten-Welschinger invariants, J. Math. Sci. Univ.
Tokyo 22 (2015), no. 1, 261-278

[22] M. Kontsevich and Y. Manin, Gromov-Witten classes, quantum cohomology, and enumerative
geometry, Comm. Math. Phys. 164 (1994), no. 3, 525–562

[23] Y.-P. Lee and R. Pandharipande, A reconstruction theorem in quantum cohomology and quan-
tum K-theory, Amer. J. Math. 126 (2004), no. 6, 1367–1379

[24] J. Li and G. Tian, Virtual moduli cycles and Gromov-Witten invariants of general symplec-
tic manifolds, Topics in Symplectic 4-Manifolds, 47-83, First Int. Press Lect. Ser., I, Inter-
nat. Press, 1998

[25] D. McDuff and D. Salamon, J-holomorphic Curves and Symplectic Topology, Colloquium Pub-
lications 52, AMS, 2004

[26] S. Natanzon, Moduli of real algebraic curves and their superanalogues: spinors and Jacobians
of real curves, Russian Math. Surveys 54 (1999), no. 6, 1091–1147

[27] Y. Ruan and G. Tian, A mathematical theory of quantum cohomology, J. Differential Geom. 42
(1995), no. 2, 259–367

[28] J. Solomon, Intersection theory on the moduli space of holomorphic curves with Lagrangian
boundary conditions, math/0606429

[29] J. Solomon, A differential equation for the open Gromov-Witten potential, pre-print 2007

[30] J. Walcher, Evidence for tadpole cancellation in the topological string, Comm. Number Theory
Phys. 3 (2009), no. 1, 111-172

[31] J.-Y. Welschinger, Invariants of real symplectic 4-manifolds and lower bounds in real enumer-
ative geometry, Invent. Math. 162 (2005), no. 1, 195–234

[32] J.-Y. Welschinger, Spinor states of real rational curves in real algebraic convex 3-manifolds
and enumerative invariants, Duke Math. J. 127 (2005), no. 1, 89-121

[33] A. Zinger, Real Ruan-Tian perturbations, math/1701.01420

45


