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Abstract

These notes present a systematic treatment of local properties of J-holomorphic maps and
of Gromov’s convergence for sequences of such maps, specifying the assumptions needed for
all statements. In particular, only one auxiliary statement depends on the manifold being
symplectic. The content of these notes roughly corresponds to Chapters 2 and 4 of McDuff-
Salamon’s book on the subject.
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1 Introduction

Gromov’s introduction [6] of pseudoholomorphic curves techniques into symplectic topology has
revolutionized this field and led to its numerous connections with algebraic geometry. The ideas
put forward in [6] have been further elucidated and developed in [14, 17, 11, 15, 16, 10, 3] and
in many other works. The most comprehensive introduction to the subject of pseudoholomorphic
curves is without a doubt the monumental book [12]. Chapters 2 and 4 of this book concern two of
the three fundamental building blocks of this subject, the local structure of J-holomorphic maps
and Gromov’s convergence for sequences of J-holomorphic maps. The present notes contain an
alternative systematic exposition of these two topics with generally sharper specification of the
assumptions needed for each statement. Chapter 3 and Sections 6.2 and 6.3 in [12] concern the
third fundamental building block of the subject, transversality for J-holomorphic maps. A more
streamlined and general treatment of this topic is the concern of [19].

The present notes build on the lecture notes on J-holomorphic maps written for the class the author
taught at Stony Brook University in Spring 2014. The lectures themselves were based on the hand-
written notes he made while studying [11] back in graduate school and were also influenced by the
more thorough exposition of the same topics in [12]. The author would like to thank D. McDuff
and D. Salamon for the time and care taken in preparing and updating these books, the students
in the Spring 2014 class for their participation that guided the preparation of the original version
of the present notes, and X. Chen for thoughtful comments during the revision process.

1.1 Stable maps

A (smooth) Riemann surface (without boundary) is a pair (X,j) consisting of a smooth two-
dimensional manifold ¥ (without boundary) and a complex structure j in the fibers of 7. A nodal
Riemann surface is a pair (3,j) obtained from a Riemann surface (i, j) by identifying pairs of dis-
tinct points in a discrete subset Sy, C % (with no point identified with more than one other point);
see the left-hand sides of Figures 1 and 2. The pair (f],j) is called the normalization of (X,j); the
images of the points of Sy, in ¥ are called the nodes of 3. We denote their complement in 3 by >*.
An irreducible component of (3,j) is the image of a topological component of S in ¥. Let
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where x(2) is the Euler characteristic of 3, be the (arithmetic) genus of ¥. An equivalence between
Riemann surfaces (¥,j) and (¥',j’) is a homeomorphism h : ¥ — ¥’ induced by a biholomor-
phic map h from (X,j) to (¥',j"). We denote by Aut(X,j) the group of automorphisms, i.e. self-
equivalences, of a Riemann surface (X,]j).

Let (X, J) be an almost complex manifold. If (3,j) is a Riemann surface, a smooth map u: ¥ — X
is called J-holomorphic map if
duoj = Jodu: TY — u*'TX.

A J-holomorphic map from a nodal Riemann surface (%, j) is a tuple (3,j, u), where u: ¥ — X is a
continuous map induced by a J-holomorphic map u: ¥ — X; see Figures 1 and 2. An equivalence
between J-holomorphic maps (X,j,u) and (¥',j,u’) is an equivalence

he (8,3) — (2,1
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Figure 1: A stable J-holomorphic map

between the underlying Riemann surfaces such that u=u'oh. We denote by Aut(X,j, u) the group
of automorphisms, i.e. self-equivalences, of a J-holomorphic map (X,j,u). A J-holomorphic map
(3,j,u) is called stable if (X,j) is compact and Aut(X,j,u) is a finite group.

The Riemann surface (X,j) on the left-hand side of Figure 1 is obtained by identifying the marked
points of two copies of a smooth elliptic curve (3o, jo, 27), i.e. a torus with a complex structure
and a marked point. The Riemann surface (2o, jo) with the marked point 2] is biholomorphic to
C/A with the marked point 0 for some lattice A CC and thus has an automorphism of order 2 that
preserves z; (it is induced by the map z— —z on C). This is the only non-trivial automorphism of
(20, o) preserving 2] if jo is generic; in special cases, the group of such automorphisms is either Z4
or Zg. Each automorphism of (Xg,jo) preserving zi gives rise to an automorphism of (X,j) fixing
one of the irreducible components. There is also an automorphism of (3, j) which interchanges the
two irreducible components of 3. Since it does not commute with the automorphisms preserving
one of the components, Aut(X,j) ~ Dy in most cases and contains Dy in the special cases. If
u: X — Y is the identity on each irreducible component, (X,j, u) is a stable J-holomorphic map;
the interchange of the two irreducible components is then the only non-trivial automorphism of
(2,j,u). The J-holomorphic maps u: ¥ — ¥y obtained by sending either or both irreducible
components of ¥ to z{ instead are also stable, but have different automorphism groups. If (3o, jo)
were taken to be the Riemann sphere P!, the J-holomorphic map u: ¥ — ¥ restricting to the
identity on each copy of ¥y would still be stable. However, a map u: ¥ — Y sending either copy
of ¥ to z} would not be stable, since the group of automorphisms of P! fixing a point is a complex
two-dimensional submanifold of PSLs.

Let (X,j) be a compact connected Riemann surface of genus g. If g >2, then Aut(X,j) is a finite
group. If g=1, then Aut(X,j) is an infinite group, but its subgroup fixing any point is finite. If
g=0, then the subgroup of Aut(X,j) fixing any pair of points is infinite, but the subgroup fixing any
triple of points is trivial. If in addition (X, .J) is an almost complex manifold and u: ¥ — X is a
non-constant J-holomorphic map, then the subgroup of Aut(X,;j) consisting of the automorphisms
such that u=woh is finite; this is an immediate consequence of Corollary 3.4. If (3,j) is a compact
nodal Riemann surface, a J-holomorphic map (X,j,u) is thus stable if and only if

e every genus 1 topological component of the normalization ¥ of ¥ such that u restricts to a
constant map on its image in ¥ contains at least 1 element of Sy, and

e every genus 0 topological component of 3 such that u restricts to a constant map on its image
in ¥ contains at least 3 elements of Ss.



1.2 Gromov’s topology

Given a Riemann surface (3,j), a Riemannian metric g on a smooth manifold X determines the
energy E,(f) for every smooth map f: ¥ — X; see (2.5) and (2.6). The fundamental insight in [6]
that laid the foundations for the pseudoholomorphic curves techniques in symplectic topology
and for the moduli spaces of stable maps and related curve-parametrizing objects in algebraic
geometry is that a sequence of stable J-holomorphic maps (3;, j;, u;) into a compact almost complex
manifold (X, J) with

liminf(‘wo(Ei)‘+a(2i)+Eg(ui)> < 00 (1.1)
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has a subsequence converging in a suitable sense to another stable J-holomorphic map.

The notion of Gromov's convergence of a sequence of stable J-holomorphic maps (X;,j;, u;) to
another stable J-holomorphic map (X, joo, so) comes down to

GC1) |m(X)|=|m0(Ex0)| and a(X;)=a(Xs) for all ¢ large,

(Xoo,Joo) 18 at least as singular as (X;,);) for all ¢ large,

(

(GC2
(GC3) the energy is preserved, i.e. Fg(u;) — Ey(uso) as i —> 00, and
(

)
)
)
GC4) u; converges to Uy uniformly in the C*°-topology on compact subsets of ¥%_.

Most applications of the pseudoholomorphic curves techniques in symplectic topology involve
J-holomorphic maps from the Riemann sphere P'. This is a special case of the situation when
the complex structures j; on the domains ¥; of w; are fixed. The condition (GC4) can then be
formally stated in a way clearly indicative of the rescaling procedure of [6].

Definition 1.1 (Gromov’s Convergence I). Let (X,.J) be an almost complex manifold with
Riemannian metric g and (X,j) be a compact Riemann surface. A sequence (X,j,u;) of stable
J-holomorphic maps converges to a stable J-holomorphic map (Yo, joc, Uso) if

(1) (Zoo,jco) is obtained from (,j) by identifying a point on each of ¢ trees of Riemann spheres P!,
for some ¢€ 7= with distinct points 27, ..., 2] €%,
(2) Egluso) = lim Ey(u;),
1—> 00

(3) there exist h; € Aut(X,j) with ¢ € ZT such that w;oh; converges to us uniformly in the
C*°-topology on compact subsets of X —{z],..., 2},

(4) for each z7,...,2; €XCXq and all i€ Z™ sufficiently large, there exist a neighborhood U; CX
of z;f, an open subset Uj;.; CC, and a biholomorphic map 1;.;: Uj,; — U; such that

(4&) Uj;i CUj;i_H and C = Ufil Uj;i for every j=1,... ,E,

(4b) wjohjot)j,; converges to uo uniformly in the C°°-topology on compact subsets of the

complement of the nodes oo, w3, ..., w;;kj in the sphere IP)Jl- attached at z7 € X,

(4c) condition (4) applies with X, (2§, ..., z}), and u;oh; replaced by P!, (w;;l, - w;f;kj), and
u;oh;0;,;, respectively, for each j=1,...,¢.



by

Uso
Yoo = X

Figure 2: Gromov’s limit of a sequence of J-holomorphic maps u;: ¥ — X

An example of a possible limiting map with £=2 trees of spheres is shown in Figure 2. The recursive
condition (4) in Definition 1.1 is equivalent to the Rescaling axiom in [12, Definition 5.2.1] on
sequences of automorphisms ¢, of P!; they correspond to compositions of the maps 1j.; associated
with different irreducible components of ¥,,. The single energy condition (2) in Definition 1.1
is replaced in [12, Definition 5.2.1] by multiple conditions of the Energy axiom. These multiple
conditions are equivalent to (2) if the other three axioms in [12, Definition 5.2.1] are satisfied.

Theorem 1.2 (Gromov’s Compactness I). Let (X, J) be a compact almost complex manifold with
Riemannian metric g, (X,j) be a compact Riemann surface, and u; : ¥ — X be a sequence of
non-constant J-holomorphic maps. If liminf Eq(u;) < oo, then the sequence (¥,j,u;) contains a
subsequence converging to some stable J-holomorphic map (Xs0,joo, Uso) in the sense of Defini-
tion 1.1.

This theorem is established in Section 5.3 by assembling together a number of geometric statements
obtained earlier in these notes. In Section 5.4, we relate the convergence notion of Definition 1.1 in
the case of holomorphic maps from CP! to CP", which can always be represented by (n+1)-tuples
of homogeneous polynomials in two variables, to the behavior of the linear factors of the associated
polynomials.

The convergence notion of Definition 1.1 can be equivalently reformulated in terms of deformations
of the limiting domain (X, joo) so that it readily extends to sequences of stable J-holomorphic
maps with varying complex structures j; on the domains ¥;. This was formally done in the algebraic
geometry category by [4], several years after this perspective had been introduced into the field
informally, and adapted to the almost complex category by [10]. We summarize this perspective
below.

Let (X,j) be a nodal Riemann surface. A flat family of deformations of (X,j) is a holomorphic map
7: U — A, where U is a complex manifold and AcCC¥ is a neighborhood of 0, such that

e 7 1()\) is a nodal Riemann surface for each A€ A and 7—1(0)= (%, j),
e 7 is a submersion outside of the nodes of the fibers of ,

e for every \* = (A\},...,\%) € A and every node z* € 7~1(\*), there exist i € {1,..., N} with
Af =0, neighborhoods A« of A* in A and U~ of z* in U, and a holomorphic map

U: Uy — {((Al,...,)\N),:B,y)EAA*><(C2: :Ey:)\i}

such that ¥ is a homeomorphism onto a neighborhood of (A*,0,0) and the composition of ¥
with the projection to Ay« equals 7y, .
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Figure 3: A complex-geometric presentation of a flat family of deformations of (X4, j00) =7 1(0)
and a differential-geometric presentation of the domains of the maps w; in Definition 1.3.

If 7: Ud — A is a flat family of deformations of (¥, ) and ¥ is compact, there exists a neighborhood
U* CU of X* Cn~1(0) such that

Ty U — Do=m(U*) C A
is a trivializable X*-fiber bundle in the smooth category. For each A€ Ag, let
Yy: 2F — m ) NU*

be the corresponding smooth identification. If A\; € A is a sequence converging to 0 € A and
u;: m () — X is a sequence of continuous maps that are smooth on the complements of the
nodes of 7=1()\;), we say that the sequence u; converges to a smooth map u : ¥* — X u.c.s.
(uniformly on compact subsets) if the sequence of maps

uioy,: ¥ — X

converges to v uniformly in the C*°-topology on compact subsets of 3*. This notion is independent
of the choices of U* and trivialization of 7|y.

Definition 1.3 (Gromov’s Convergence II). Let (X,J) be an almost complex manifold with a
Riemannian metric g. A sequence (X%;,j;,u;) of stable J-holomorphic maps converges to a stable
J-holomorphic map (Yoo, oo, Uso) if Ey(ui) — Eg(us) as i —> 00 and there exist

(a) a flat family of deformations m: U — A of (X, joo)s
(b) a sequence \; € A converging to 0€ A, and

(c) equivalences h;: m~ (\;) — (34, 7s)

such that u;oh; converges t0 Uso|xx  u.cC.8.

By the compactness of ¥, the notion of convergence of Definition 1.3 is independent of the choice
of metric g on X. It is illustrated in Figure 3. If the Riemann surfaces (¥;,j;) are smooth, the
limiting Riemann surface (X, joo) is obtained by pinching some disjoint embedded circles in the
smooth two-dimensional manifold ¥ underlying these Riemann surfaces.



If (3;,j;)=(%,j) for all ¢ as in Definition 1.1, only contractible circles are pinched to produce ¥n;
it then consists of ¥ with trees of spheres attached. The family 7: &/ — A is obtained by starting
with the family

mo: Up=Cx 3 — C,

then blowing up Uy at a point of {0} x X to obtain a family 7 : 4 — C with the central fiber
> E’]Tl_l(()) consisting of ¥ with P! attached, then blowing up a smooth point of ¥, and so on.
The number of blowups involved is precisely the number of nodes of ¥, i.e. four in the case of
Figure 2 and two in the case of Figure 3. The pinched annuli on the right-hand side of Figure 3
correspond to ¢q(Bs(2a3))U0s(Bs(284)) in the notation of [12, Chapters 4,5].

With the setup of Definition 1.3, let Bs(z*) CU denote the ball of radius § € R* around a point
z* €U with respect to some metric on . Then,
lim lim diam, (uz (hi(w_l()\i)ﬂBg(z*)))) =0 V2 eds. (1.2)
§—01—00
This is immediate from the last condition in Definition 1.3 if z* € X% . If 2* € ¥ — X% is a node
of ¥, (1.2) is a consequence of both convergence conditions of Definition 1.3 and the maps u;
being J-holomorphic. It is a reflection of the fact that bubbling or any other kind of erratic C°-
behavior of a sequence of J-holomorphic maps requires a nonzero amount of energy in the limit,
but the two convergence conditions of Definition 1.3 ensure that all limiting energy is absorbed

by u|sx and thus none is left for bubbling around the nodes of ¥,. An immediate implication
of (1.2) is that u;(h;(7~1(\;)NBs(2*))) is contained in a geodesic ball around us(2*) in X. Thus,

for all 4 € Z" sufficiently large. If ¥ is a tree of spheres (and thus so is each 3;), then u; with 4
sufficiently large lies in the equivalence class in 79(X) determined by us for the same reason.

Theorem 1.4 (Gromov’s Compactness II). Let (X,J) be a compact almost complex manifold
with a Riemannian metric g and (X;,j;,u;) be a sequence of stable J-holomorphic maps. If
it satisfies (1.1), then it contains a subsequence converging to some stable J-holomorphic map
(X0, Joos Uso) in the sense of Definition 1.5.

This theorem is obtained by combining the compactness of the Deligne-Mumford moduli spaces
Mj 1 of stable (possibly) nodal elliptic curves and M, of stable nodal genus g>2 curves with the
proof of Theorem 1.2 in Section 5.3. One first establishes Theorem 1.4 under the assumption that
each (%;,j;) is a smooth connected Riemann surface of genus g > 1 (the g =0 case is treated by
Theorem 1.2). If g =1, we add a marked point to each domain (¥;,j;) and take a subsequence
converging in M ; to the equivalence class of some stable nodal elliptic curve (X, i, 25.). If g>2,
we take a subsequence of (X;,j;) converging in ﬂg to the equivalence class of some stable nodal
genus g curve (X/_,j..). This ensures the existence of a flat family of deformations 7': U’ — A’ of
(X,i%), of a sequence X; € A’ converging to 0 € A’, and of equivalences h; : 7'~ H(\)) — (4, ;).
The associated neighborhood U’ of X% in U’ can be chosen so that 7/~1(\)—U"* consists of finitely
many circles for every N € A’ sufficiently small. The complement of the image of the associated
identifications
Yh S — 7Oy NU

in 7/71(\) has the same property.



One then applies the construction in the proof of Theorem 1.2 to the sequence of J-holomorphic
maps
ujohl: ¥ — X

to obtain a J-holomorphic map @ from the normalization i;o of ¥ and finitely J-holomorphic
maps from trees of P!. Each of these trees will have one or two special points that are asso-
ciated with points of f]f)o (the latter happens if bubbling occurs at a preimage of a node of X/
in igo) Identifying these trees with the corresponding points of igo as in the proof of Theorem 1.2,
we obtain a J-holomorphic map (X, joo, Uso) satisfying the requirements of Definition 1.3. It is
necessarily stable if g > 2, or ¥/ is smooth, or ¥, contains a separating node. Otherwise, the
identifications h} may first need to be reparametrized to ensure that either the limiting map ul is
not constant or the sequence u;oh; produces a bubble at least one smooth point of ifx,

A k-marked Riemann surface is a tuple (3,j,z21,...,25) such that (3,j) is a Riemann surface
and z1,...,2; € ¥* are distinct points. If (X,J) is an almost complex manifold, a k-marked
J-holomorphic map into X is a tuple (X%,j, 21, ..., 2k, u), where (3,j, 21,...,2x) is k-marked Rie-

mann surface and (X,j,u) is a J-holomorphic map into X. The degree of such a map is the
homology class
A=u,¥] € Hy(X;Z).

The notions of equivalence, stability, and convergence as in Definition 1.3 and the above convergence
argument for smooth domains (3;, j;) readily extend to k-marked J-holomorphic maps. The general
case of Theorem 1.4, including its extension to stable marked maps, is then obtained by

e passing to a subsequence of (X;,j;, u;) with the same topological structure of the domain,

e viewing it as a sequence of tuples of J-holomorphic maps with smooth domains with an additional
marked point for each preimage of the nodes in the normalization, and

e applying the conclusion of the above argument to each component of the tuple.

1.3 Moduli spaces

The natural extension of Definition 1.3 to marked J-holomorphic maps topologizes the moduli
space My (X, A; J) of equivalence classes of stable degree A k-marked genus g J-holomorphic
maps into X for each A€ Ha(X;Z). The evaluation maps

evi:ﬁg,k(XvA;J) —>X7 (E,j,Zl,...,Zk,U) —>’LL(ZZ')7
are continuous with respect to this topology. If 2g+k& > 3, there is a continuous map

f: My k(X, A J) — Mg g

to the Deligne-Mumford moduli space of stable k-marked genus g nodal curves obtained by forget-
ting the map u and then contracting the unstable components of the domain.

There is a continuous map

Pttt Mg g (X, A3 J) — Mg (X, A; ) (1.3)
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Figure 4: Section sy of the fibration (1.3) with k=3

obtained by forgetting the last marked point z;y; and then contracting the components of the
domain to stabilize the resulting k-marked J-holomorphic map. For each i=1, ..., k, this fibration
has a natural continuous section

it My (X, A5 J) — My i1 (X, A; )

described as follows. For a k-marked nodal Riemann surface (X, 3, 21, . . ., 2x), let (X', 21, ..., 2k41)
be the (k+1)-marked nodal Riemann surface so that (¥',j’) consists of (X,j) with P! attached at z;,
24,21 ePt, and z; =z;e¥ for all j=1,...,k different from k; see Figure 4. We define

Sl‘([z,j,?«j, c .,Zk,u]] = [E,,j/721, s -7Z;g+17u/]a

with (X',§',2,...,2,,,) as described and u’ extending u over the extra P! by the constant map
with value u(z;). The pullback o
Li — mg,k(Xv A7 J)

of the vertical tangent line bundle of (1.3) by s; is called the universal tangent line bundle at the
i-th marked point. Let ¢;=c;(L}) be the i-th descendant class.

A remarkable property of Gromov’s topology which lies behind most of its applications is that
the moduli space ﬁg,k(X , A; J) is Hausdorff and has a particularly nice deformation-obstruction
theory. In the algebraic-geometry category, the latter is known as a perfect two-term deformation-
obstruction theory. In the almost complex category, this is reflected in the existence of an atlas of
finite-dimensional approximations in the terminology of [10] or of an atlas of Kuranishi charts in the
terminology of [10].

If (X, J) is an almost complex manifold and J is tamed by a symplectic form w, then the energy
E4(u) of degree A J-holomorphic map u with respect to the metric g determined by J and w is
w(A); see (2.7). In particular, it is the same for all elements of the moduli space M, (X, A4; J).
If in addition X is compact, then Theorem 1.4 implies that this moduli space is also compact.
Combining this with the remarkable property of the previous paragraph, the constructions of
[1, 9, 10, 3] endow ﬁg,k(X, A; J) with a virtual fundamental class. It depends only on w, in a
suitable sense, and not an almost complex structure J tamed by w. This class in turn gives rise to
Gromov-Witten invariants of (X,w):

(Tacur, . . 7Takak>iA = ((¢fevion) ... (Yprevion), [y k(X, 4; J)}Vir> €Q

for all a; €Z2° and a; € H*(X; Q).



2 Preliminaries

An outline of these notes with an informal description of the key statements appears in Section 2.1;
Figure 5 indicates primary connections between these statements. Sections 2.2 introduces the most
frequently used notation and terminology and makes some basic observations.

2.1 Overview of the main statements

The main technical statement of Section 3 of these notes and of Chapter 2 in [12] is the Carleman
Similarity Principle; see Proposition 3.1. It yields a number of geometric conclusions about the local
behavior of a J-holomorphic map u: ¥ — X from a Riemann surface (¥, j) into an almost complex
manifold (X, J). For example, for every z € ¥ contained in a component of ¥ on which u is not
constant, the /-th derivative of u at z in a chart around u(z) does not vanish for some ¢€Z™; see
Corollary 3.3. We denote by ord,u € Z* the minimum of such integers ¢ and call it the order of u
at z; it is independent of the choice of a chart around wu(z). If u is constant on the component of ¥
on containing z, we set ord,u=0. A point z€w is singular, i.e. d,u=0, if and only if ord, u#1.

If u is not constant on every connected component of 3, the singular points of u and the preimages
of a point z € X are discrete subsets of 3; see Corollary 3.4. In the case X is compact, the second
statement of Corollary 3.4 implies that

ord,u= Zordzu € 7=" VrelX; (2.1)

ze€u~1(z)

we call this number the order of u at x. If = ¢ Im(u), then ord,u = 0. By Corollary 3.11, the
number (2.1) is seen by the behavior of the energy (2.5) of u and its restrictions to open subsets
of 3. This observation underpins the Monotonicity Lemma for J-holomorphic maps, which bounds
below the energy required to “escape” from a small ball in X; see Proposition 3.12.

The main technical statement of Section 4 of these notes and of Chapter 4 in [12] is the Mean Value
Inequality. It bounds the pointwise differentials d,u of a J-holomorphic map u from (X, j) into (X, J)
of sufficiently small energy E,(u) by E,(u), i.e. by the L2norm of du, from above and immediately
yields a bound on the energy of non-constant .J-holomorphic maps from S? into (X, .J) from below;
see Proposition 4.1 and Corollary 4.2, respectively. The Mean Value Inequality also implies that
the energy of a J-holomorphic map u from a cylinder [~ R, R] x S* carried by [~R+T, R—T]x S*
and the diameter of the image of this middle segment decay at least exponentially with T, provided
the overall energy of u is sufficiently small. As shown in the proof of Proposition 5.5, this techni-
cal implication ensures that the energy is preserved under Gromov’s convergence and the resulting
bubbles connect.

Another important implication of Proposition 4.1 is that a continuous map from a Riemann surface
(3,)) into an almost complex manifold (X, J) which is holomorphic outside of a discrete collection
of points and has bounded energy is in fact holomorphic on all of ¥; see Proposition 4.8. This
conclusion plays a central role in the proof of Lemma 5.4. Theorem 1.2 is deduced from Lemma 5.4
and Proposition 5.5 in Section 5.3.

Combined with Proposition 3.1 and some of its corollaries, Proposition 4.1 implies that every non-
constant J-holomorphic map from a compact Riemann surface (X,j) factors through a somewhere

10
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Figure 5: Connections between the main statements leading to Theorem 1.2 and Proposition 4.11

injective J-holomorphic map from a compact Riemann surface (X',j’); see Proposition 4.11. The
proof of this statement with X compact appears in Chapter 2 of [12], but uses the Removal
Singularities Theorem proved in Chapter 4 of [12]. Proposition 4.1 is the key technical step in
establishing transversality for the moduli spaces of simple J-holomorphic maps and constructing
pseudocycles out of these spaces; see [19].

2.2 Notation and terminology

Let (X,j) be a Riemann surface, V' be a vector bundle over ¥, and
pn €T(S;T*E®rV)  and g € T(5;T*E%%@pV).
For a local coordinate z=s+it, define

9(u@in) = (9(1(0s),n(0s)) +9(1(8:), n(8r)))dsAdt
g(unin) = (9(1(8s), 1(8y)) —g(1(r), n(0s))) dsAdt .

By a direct computation, the 2-forms g(1®;n) and g(uAjn) are independent of the choice of local
coordinate z=s+it. Thus, (2.2) determines global 2-forms on ¥ (which depend on the choice of j).

(2.2)

We denote by i the standard complex structure on C and by Jcr the standard complex structures
on C™ and T'C™. For an almost complex structure J and a 2-form w on a manifold X, we define a
2-tensor and a 2-form on X by

gs(v,0) = (w(v, Juv') — w(Jv,U’)),

Vo, o' €T, X, z€X. (2.3)

N =N =

(w(Jv, JV') — w(v,v"))

WJ(U) U/) =
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We note that
gs(v,v) + g7 (v, 0") = 2w(v,v") + g (v+JV v+ JV) + 2wy (v, V") Vo, €T X, zeX. (2.4)

The 2-form w tames J if g(v,v) >0 for all v €T X nonzero; in such a case, w is nondegenerate and
g is a metric. The almost complex structure J is w-compatible if w tames J and w;=0.

Let X be a manifold, (X,j) be a Riemann surface, and f: ¥ — X be a smooth map. We denote
the pullbacks of a 2-tensor g and a 2-form w on X to the vector bundle f*T'X over X also by g
and w. If g is a Riemannian metric on X and U C X is an open subset, let

BN =35 [oliedn e amd  E(RU)=E (M) (25)

be the energy of f and of its restriction to U. By the first equation in (2.2),

By =5 |16l (26)

is the square of the L?-norm of df with respect to the metric ¢ on X and a metric gs, compatible
with j. In particular, the right-hand side of (2.6) depends on the metric g on X and on the complex
structure j on X, but not on the metric g», on ¥ compatible with j.

Let J be an almost complex structure on a manifold X and (X,j) be a Riemann surface. For a
smooth map f: X — X, define

o5f = %(df—i—Jodfoj) eI((T7%,) M @c fX(TX, J)) .

If wis a 2-form on X taming J and u: > — X is J-holomorphic, then

Eg,(f) = /2 (ffw+295(05f @05 f)+[*wy) (2.7)

by (2.5) and (2.4). If J is w-compatible, the last term above vanishes. A smooth map u: ¥ — X
is J-holomorphic if d;u=0. For such a map, the last two terms in (2.7) vanish.
For each RER™, denote by Br CC the open ball of radius R around the origin and let

By = BrR—{0}.
If in addition (X, g) is a Riemannian manifold and z € X, let B{(z) C X be the ball of radius &
around x in X with respect to the metric g.
Let (X,J) be an almost complex manifold and (X,j) be a Riemann surface. A smooth map
u: X — X is called

e somewhere injective if there exists z €Y such that u=!(u(z))={z} and d,u#0,

e multiply covered if u = u'oh for some smooth connected orientable surface X', branched cover
h:¥—3 of degree different from +1, and a smooth map u': ¥ — X,

e simple if it is not multiply covered.

By Proposition 4.11, every J-holomorphic map from a compact Riemann surface is simple if and
only if it is somewhere injective (the if implication is trivial).
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3 Local Properties

We begin by studying local properties of J-holomorphic maps u from Riemann surfaces (X,)) into
almost complex manifolds (X, J) that resemble standard properties of holomorphic maps. None of
the statements in Section 3 depending on X being compact; very few depend on ¥ being compact.

3.1 Carleman Similarity Principle

Carleman Similarity Principle, i.e. Proposition 3.1 below, is a local description of solutions of a non-
linear differential equation which generalizes the equation dju=0. It states that such solutions
look similar to holomorphic maps and implies that they exhibit many local properties one would
expect of holomorphic maps.

Proposition 3.1 (Carleman Similarity Principle, [2, Theorem 2.2]). Suppose n € Z*, p,e € R"
with p>2, J € LY(B¢; EndgC"), C € LP(B¢; EndgC"™), and ue LY(B; C") are such that

u(0) =0, J(2)? = —Idcn, us(2) + J(2)us(2) + C(2)u(z) =0 V z=s+it€B,. (3.1)
Then, there exist 6 € (0,€), ® € LY(Bs; GL2y,R), and a Jen-holomorphic map o: Bs— C™ such that

o(0) =0, J(2)®(z) = ®(2)Jcn, u(z) =P(2)o(z) V z€B;s. (3.2)

By the Sobolev Embedding Theorem [18, Corollary 4.3], the assumption p > 2 implies that u is a
continuous function. In particular, all equations in (3.1) and in (3.2) make sense. This assumption
also implies that the left-hand sides of the third equation in (3.1) and of the second equation in (3.2)
and the right-hand side of the third equations in (3.2) lie in L.

Example 3.2. Let ¢: C— C denote the usual conjugation. Define

. -1
~ _ i A 1 0 1 0 2 9 L
J(z1,292) = (—2islc i) = ( oc 1>J(Cz<81c 1) :CF — C° Vzy=s;+it;,

u: C — C2, u(s+it) = (2,32).

Thus, J is an almost complex structure on C? and v is a j—holomorphic map, i.e. it satisfies the

~

last condition in (3.1) with J(z)=J(u(z)) and C(z)=0. The functions

0:C—C? o(2)=(z,0), O: C — GL4R, P(s+it) = (SC"l‘iSt (1)) ,

satisfy (3.2).

Corollary 3.3. Let n, p, €, J, C, and u be as in Proposition 3.1. If in addition Jy=Jcn and u
does not vanish to infinite order 0, then there exist {€Z" and o€ C"—0 such that

ot
lim 4207
z—0 z
Proof. This follows from (3.2) and from the existence of such ¢ and « for o. O

13



Corollary 3.4. Suppose (X, J) is an almost complex manifold, (X,j) is a Riemann surface, and
u: X — X is a J-holomorphic map. If u is not constant on every connected component of X2, then
the subset

u ' ({u(2): z€%, du=0}) C %

is discrete. If in addition x € X, the subset u=1(z) C X is also discrete.

Proof. The first and third equations in (3.2) immediately imply the second claim (but not the first,
since ® may not be in C'). The first claim follows from Corollary 3.3 and Taylor’s formula for u
(as well as from Corollary 3.6). O

Before establishing the full statement of Proposition 3.1, we consider a special case.

Lemma 3.5. Suppose n € Z* and p,e € RT are as in Proposition 3.1, A € LP(B¢; EndcC"), and
we LY (Be; C") are such that

u(0) =0, us + Jonug(2) + A(2)u(z) =0 V 2=s+it€ B, (3.3)
Then, there exist 6 € (0,¢), ® € LY (Bs; GL,,C), a Jen-holomorphic map o: Bs— C™ such that
o(0) =0, ®(0) = Idcn, u(z) = ®(2)o(z) V z€B;s. (3.4)
Proof. For each § €10, €], we define

A(z), if z€By;

As € LP(§% EndcC") by As(z) = ,
0, otherwise;

Dy : LY (5% EndcC") — LP(S% (T*S*)* @cEndcC”) by DsO = (O,+Jcn©;+As0)dz.

Since the cokernel of Dy =20 is isomorphic H'(S?;C)®cEndcC", Dy is surjective and the homo-
morphism

Dy: IX(S% EndcC) — LP(S%; (T*5%) ! @cEndcC?) & EndcC?,  © — (Dy©, 0(0)),
is an isomorphism. Since
|D5© — Do®||,, < sl l©llco < CllAs| o @]y ¥ © € LA(S% EndeC™)
and ||As||» — 0 as § — 0, the homomorphism
Ds: IX(S? EndcC") — LP(S%; (T*5%) % @cEndcC") @ EndcC®,  © — (Ds0,0(0)),
is also an isomorphism for § > 0 sufficient small. Let O :DJ_I(O, Idgn). Since Dy is an isomorphism,

leo < 035 Tdce |y < € Ds(O51c0) |, = ' 4],

Since ||As|r — 0 as § — 0, ©5 € LY(Bs; GL,C). By (3.3) and DsO5=0, the function az@glu

satisfies
a(0) =0, os+Jenoy=0 V z € By,

i.e. 0 is Jon-holomorphic, as required. O
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Proof of Proposition 3.1. (1) Since B, is contractible, the complex vector bundles u*(T'C", Jgn)
and u*(T'C", J) over B, are isomorphic. Thus, there exists

U € LY(Be; GLg,R) st. J(2)¥(z) =¥(z)Jen V zE€B..
Let v=U"14. By the assumptions on u, veLY(B; C") and
0(0) =0,  vs(2) + Jonvy(2) + C(2)v(z) =0V z=s+it€ B, (3.5)
where C =01 (U, + J¥, + C¥) € LP(B.; EndgC").

Thus, we have reduced the problem to the case J=Jcn.

(2) Let Ct= %(6 F J(CnéJ(Cn) be the C-linear and C-antilinear parts of 6’, ie. Ot Jon = +JenCE.
With (-, -) denoting the Hermitian inner-product on C" which is C-antilinear in the second input,
define

-2 : . - -
De LOO<B€;EndRCn), D(z)w _ |U(Z)‘ <v(z),w>v(z), if U(Z)%O, A=C"t +C™D.
0, otherwise;

Since DJen =—Jen D and Do=v, A € LP(B,; EndcC") and Av=Cwv. Thus, by (3.5),
vs + Jenvy + Av =0.

The claim now follows from Lemma 3.5. O

Corollary 3.6. Suppose n € Z*, e € R, J is a smooth almost complex structure on C" with
Jo=Jcn, and u: Be — C" is a J-holomorphic map with w(0) =0. Then, there ezist § € (0,¢€),
C € RY, ® € C%Bs; GLa,R), and a Jen-holomorphic map o : Bs — C" such that ® is smooth
on By,

0(0) =0, ®(0)=1Idce, J(u(2))®(2) = ®(2)Jen, u(z) = B(2)o(z), |d.®| <CVzeB;.

Proof. We can assume that u is not identically 0 on some neighborhood of 0 € B,. Similarly to (1)
in the proof of Proposition 3.1, there exists

U e C®(C™ GLypR) st W(0) =Iden, J(z)¥(x)=U(z)Jen ¥ zeCm.

Let v(2) = ¥(u(z))"tu(z). By Corollary 3.3, we can choose complex linear coordinates on C"
so that
v(2) = (f(2),9(2))h(z) e CaC™' VY 2€B.

for some € € (0, €), holomorphic function A on B with h(0) =0, and continuous functions f and
g on By with f(0) =1 and ¢(0) =0. By Lemma 3.7 below applied with f above and with each
component of g separately, there exists 6 € (0, €') so that the function

©: By — GLoaR,  ®(2) = ¥ (u(2)) (208 (1)> ’

is continuous on By and smooth on Bs—0 with |d,®| uniformly bounded on Bs—0. Taking
o(z)=(h(z),0), we conclude the proof. O
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Lemma 3.7. Suppose e€R™, and f,h: B.— C are continuous functions such that h is holomor-
phic, h(z)#0 for some z € B, and the function

B, — C, z — f(2)h(2), (3.6)
is smooth. Then there exist 6 € (0,¢) and C €R™T such that f is differentiable on B.—0 and
|d.f|<C  VzeB;—0. (3.7)

Proof. After a holomorphic change of coordinate on Bys C B, we can assume that h(z) = z¢ for
some £ €Z>°. Define
9:Bos — C, g(z) = f(2)2" = f(0)z".

By Taylor’s Theorem and the smoothness of the function (3.6), there exists C' >0 such that the

smooth function g satisfies
|g(z)} < Ozt V zeBs.

Dividing ¢ by z¢, we thus obtain (3.7). O

Remark 3.8. Corollary 3.6 refines the conclusion of Proposition 3.1 for J-holomorphic maps.
In contrast to the output (®,0) of Proposition 3.1, the output of Corollary 3.6 does not depend
continuously on the input u with respect to the L{-norms. This makes Corollary 3.6 less suitable
for applications in settings involving families of J-holomorphic maps.

3.2 Local structure of J-holomorphic maps

We now obtain three corollaries from Proposition 3.1. They underpin important geometric state-
ments established later in these notes, such as Propositions 3.12 and 4.11 and Lemma 5.4.

Corollary 3.9 (Unique Continuation). Suppose (X, J) is an almost complex manifold, (X,)) is a
connected Riemann surface, and
u,u’: (3,j) — (X, J)

are J-holomorphic maps. If ug and ufy agree to infinite order at zo €X, then u'=u'.

Proof. Since the subset of the points of ¥ at which u and u' agree is closed to infinite order, it is
enough to show that v =’ on some neighborhood of zg. By the continuity of u, we can assume
that X =C", ¥= By, 20=0, and u(0),%/(0)=0. Let

w=u'—u: B, — C".

Since J is C1,

n

1 1
J(z+y) = J(x) +/ Mdt: J(:v)—i—Zyl/ 0

—_— dt. 3.8
0 dt <" Jo Oy (3:8)

z+ty

Since u and v’ are J-holomorphic, (3.8) implies that

dsw + J (u(2))Ow + C(2)w(z) = 0, where C € LP(By; EndgC"),

- Lag
Cz)y = yz</
2) ; o Oui

dt) 6{UJ|Z .
v(z)+tw(z)
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By Proposition 3.1, there thus exist 6 € (0, 1), ® € L}(Bs; GL2,R), and holomorphic map w: Bs — C™
such that

w(z) = ¢(2)w(z) V z € Bs.
Since w vanishes to infinite order at 0, it follows that w(z) =0 for all z € Bs (otherwise, w would

satisfy the conclusion of Corollary 3.3) and thus w(z)=0 for all z € Bs. O

Corollary 3.10. Suppose (X, J) is an almost complex manifold,

u, u' (27])¢ (Elaj/) — (Xv J)
are J-holomorphic maps, zo € ¥ is such that d,;u#0, and zy € ¥’ is such that u'(z)) = u(zo). If
there exist sequences z; € X —zy and z} €X' —z{ such that

lim z = 2o, lim 2, =2, and wu(z)=1u(z) VieZ",
1—>00 1—00

then there exists a holomorphic map o: U' — X from a neighborhood of z{y in ¥’ such that o(z() = 2o
and u'|yr =uoo.

Proof. Tt can be assumed that (2.}, z0), (X', 2{,) = (B1,J0,0), where B; C C is the unit ball with
the standard complex structure. Since d,,u# 0 and wu is J-holomorphic, u is an embedding near
0€ By and so is a slice in a coordinate system. Thus, we can assume that

u, ' = (v,w): (B1,0) — (CxC"1)0), u(z) = (2,0) € CxC" 1,

and u,u’ are J-holomorphic with respect to some almost complex structure

o Julzy) Ji(zy) . n—1 n—1 n—1
J(x,y) = ( Ion(z.y) Jon(zy) :CxC" " — CxC" 7, (x,y) e CxC" .

Since J is C1,

Ldg(z, ty) 0J;j
Jij(x,y) = Jij(x,0 +/ —H = dE = i, 0) +§ y/ - 3.9
i(xy) = Jij(x,0) ; & j o |, my (3.9)
Since u is J-holomorphic,
Jo1(2,0) =0, Joo(z,002=—-Id VazeB; cC. (3.10)

Since v is J-holomorphic,
Osw + Jog (U(Z), w(z))@tw + Jo1 (v(z), w(z))@tv =0.
Combining this with (3.9) and the first equation in (3.10), we find that
Osw + Jog (v(z), O)Btw + C(2)w(z) =0, where C € LP (Bl; EndR(C"_l),

n—1 1 1
i1 0 9Yi l(u(z)tw(z)) 0 Y l(u(z)tw(z))

By Proposition 3.1 and the second identity in (3.10), there thus exist 6 € (0, 1), ® € L ( Bs; GLa,,—2R),
and holomorphic map w: Bs— C"~! such that

w(z) = ¢(2)w(z) V z€ Bs.

Since u'(2}) =u(z;), w(z}) =0 for all i € Z*. Since z, — 0 and z] #0, it follows that w=0. This
implies the claim with U’ =Bs and o=v. O
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Corollary 3.11. Let (X, J) be an almost complex manifold with a Riemannian metric g and v € X
be such that g is compatible with J at x. If u: X — X is a J-holomorphic map from a compact
Riemann surface with boundary, then

L By u (BY(w)))

6—0 w52 = ordzu.

Proof. By the continuity of u, we can assume that X =C", J agrees with the standard complex
structure Jcn at the origin, g agrees with the standard metric gcn at the origin, 3= Bg for some
ReR*, and u(0)=0. In particular, there exists C>1 such that

}Jx—Jcn’ < C|z|, ‘gx—gcn} < Clz| VazeC'st. |z <1, (3.11)
where | - | denotes the usual norm of x (i.e. the distance to the origin with respect to gcn).

Let /=ordgu and o€ C"~'—0 be as in Corollary 3.3, where 0 € By, is the origin in the domain of .
Thus, there exist e€(0,1) and C €R" such that

u(z) =a- (zg—i—f(z)), }f(z)‘ < Clz|! V z€B.. (3.12)
Let z=s+it as before. By (3.12), there exists C € R™ such that
us(z) = a- (L2714 £(2), ue(z) = a- (G214 £i(2), |fo(2)], [ fi(2)] < Cl2l° ¥ z€B.. (3.13)
We can also assume that the three constants C in (3.11), (3.12), and (3.13) are the same, C'>1,
Coe = (C+Clal+C?|al)e < 1,
and |u(z)|<1 for all z€ B.. By (3.11)-(3.13),

u(2)lg
o[

)

us(2)lg
lafel2]= )

lug(2)]g _ 1' < Cz| + C]a\|z|€ + C’2|aHZ|€+1

|al¢]z|1 (3.14)

< Cqulz| VY ze€ B,

where | - |; denotes the distance to the origin in C" with respect to the metric g and the corre-
sponding norm on T'C".

Given r€(0,1), let 6, €(0, €) be such that

Ca <(1_2i)|a|> v <r. (3.15)

For any 0 €0, 6,], (3.14) and (3.15) give

1/¢
A< (qam) = w9 eBO).

1/¢
u(z) € Bj(0) = |z| < ((1—5r)|a]> ;

5 \M us(2)|y  |ue(2)]
< -— 1—p < 1532719 9 < 14
'Z'—<<1—r>|a|> = " a2 TafdleT <
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Combining these, we obtain

(1= 2 (Jall) 2! 1 ws|?+ |ug
/z|<( Ol < o A (Rl

=\ (1+7)|a]
2 0—1)2
/ §0) I

(1 7)\a|

IN

Evaluating the outer integrals, we find that

Y2 < (s 0 (B2(0))) < (7 Cns?.
14r AN 0 = \1-r

These inequalities hold for all 7€ (0,1) and § € (0, d,.); the claim is obtained by sending r—0. [

3.3 The Monotonicity Lemma

Proposition 3.12 below is a key step in the continuity part of the proof of the Removal of Singularity
Proposition 5.1. The precise nature of the lower energy bound on the right hand-side of (3.16)
does not matter, as long as it is positive for § >0.

Proposition 3.12 (Monotonicity Lemma). If (X,J) is an almost complex manifold and g is a
Riemannian metric on X compatible with J, there exists a continuous function Cyj: X — RT
with the following property. If (X,j) is a compact Riemann surface with boundary, w: ¥ — X is a
J-holomorphic map, x€ X, and 6 €R™ are such that w(0X)NBY(x)=0, then

62

Ey(u) > (ordxu)m .

(3.16)

Ifw(-,-) =g(J-,-) is a symplectic form on X, then the above fraction can be replaced by the product
W(;QG_CQ’J(:E)&Z

According to this proposition, “completely getting out” of the ball Bs(z) via a J-holomorphic map
requires an energy bounded below by a little less than 762. Thus, the L?-norm of a J-holomorphic
map u exerts some control over the C%-norm of u. If p > 2, the L{-norm of any smooth map f
from a two-dimensional manifold controls the C%-norm of f. However, this is not the case of the
L2-norm, as illustrated by the example of [12, Lemma 10.4.1]: the function

1, if 2| < ¢
Jo R —[0.1),  flz)= (R, ife<la <L
0, if [z| > 1;

with any e€(0,1) is continuous and satisfies

/ ‘dfﬁyg lne '

It is arbitrarily close in the L2-norm to a smooth function ]A”; Thus, it is possible to “completely

get out” of BY(z) using a smooth function with arbitrarily small energy (f(g does this for the ball
Bi(1) in R).
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By (2.7), the holomorphic maps are the local minima of the functional
CLX) SR [ Ey()- [ e,
%

for every compact Riemann surface (X,j) without boundary. This fact underlines Lemma 3.16,
the key ingredient in the proof of the Monotonicity Lemma. Lemma 3.16 implies that the ratio of
Ey(u;u=(B{(z))) and the fraction on the right-hand side (3.16) is a non-decreasing function of 4,
as long as u(@E)ﬂBg(l‘):@. By Corollary 3.11, this ratio approaches ord,u as § approaches 0.
These two statements imply Proposition 3.12.

We first make some general Riemannian geometry observations. Let (X,g) be a Riemannian
manifold. Denote by exp: Wy, — X, the exponential map from a neighborhood of X in T'X with
respect to the Levi-Civita connection V of g. For each v€T X, we denote by

Wi [0,1] — X, (1) = exp,(10),
the geodesic with 7, (0)=v. Let
rg: X — RY  and  dy: XxX — R0
be the injectivity radius of exp and the distance function. For each x € X, define
Go € T(BY (@) TX) by expy(G(y) =2, 9C(¥), GW) <rg(2)* YyeB) (o).

Lemma 3.13. Let (X, g) be a Riemannian manifold and x € X. If a: (—€,¢) — X is a smooth
curve such that a(0) GBfg(x) (x), then

dy(z, (7))’ = 9@ (0),G(a(0))
Proof. If B(1)=exp; ! a(7), then
parln(m o) = S I8P _ =9(80.50)

By Gauss’s Lemma,

9(8'(0), 8(0)) = g({ds(0) exp, }('(0)), {ds(0) exp, }(8(0))) = g(’(0), —Cx((0))) -
This establishes the claim. O

Lemma 3.14. If (X, g) is a Riemannian manifold, there exists a continuous function Cy: X — R
with the following property. If v€ X, veT, X with |v|, < %rg(a:), and T— J(7) is a Jacobi vector
field along the geodesic ~, with J(0)=0, then

|[7'(1) = T ()|, < Co(a)ulg] (V)] -
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Proof. Let Ry be the Riemann curvature tensor of g and f(7)=|7J'(7)—J(7)|g. Then, f(0)=0
and

f()f(r) = %%f(T)Q =g(rJ" (1), 7J'(1)=J (7)) = Tg(R(+'(7), J(7))y'(7), 7 (7) = I (7))
< Cy(@)|olg] I (1) g7 f (7).
If Cy is sufficiently large, then |J(7)|; <Cy(z)|J(1)|g. Thus,
FO) (1) < Co(@)ol3|To(7)|gm f(7) < Col@)?ulgl T (L)]gmf(7),  f'(7) < Cyla)*[uf5] T (1)]g7.
The claim follows from the last inequality. O

Corollary 3.15. If (X, g) is a Riemannian manifold, there exists a continuous function Cy: X — RT
with the following property. If x€ X, then

‘Vwa|y + w‘g < Cg(x)dg(x,y)2|w\g VweT,X, yerg(x)/Q(x).

Proof. Let T—wu(s, 7) be a family of geodesics such that

= w.

d
u(s,0) =z, u(0,1) =y, gu(s, 1)
5=0

Since T—u(s, 7) is a geodesic,

d
EU(S,T) = {duf(&o) exp, } (ur(s,0)) = = (u(s, 1)),
=1
Bdu(s,T) _ D du(s,7) V.G
dr ds (S,T):(O,l) ds dr (877'):(0,1) wHrly

Furthermore, J(7)= %u(s, T)‘s is a Jacobi vector field along the geodesic 7— u(0, 7) with

=0
_ D du(s,7)

JO) =0, JO)=w, J(1)=T=2

= —Vulzly-
(s,7)=(0,1)

Thus, the claim follows from Lemma 3.14. ]

Lemma 3.16. Suppose (X,w) is a symplectic manifold, J is an almost complex structure on X
tamed by w, and V is the Levi-Civita connection of the metric gy. If (3,j) is a compact Riemann
surface with boundary and u: ¥ — X is a J-holomorphic map, then

/QJ(dU®jV§) :/ (u*{V5WJ}+LuJ(du/\jV§)) VEET (XN, u"TX) s.t. £lox=0.
by b
Proof. For T €R sufficiently close to 0, define

ur: 2 — X, u-,—(Z) =C€XPy(z) (TE(Z))

Since £|gx =0, ur|gs =u|sy. Denote by S the closed oriented surface obtained by gluing two copies
of ¥ along the common boundary and reversing the orientation on the second copy. Let

ﬂT:§]—>X
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be the map restricting to u,; on the first copy of ¥ and to u on the second.
By (2.7),

E(T)EEgJ(uT)—/uin—Eg(,(u):/Aﬁiw+2/gj(8u7®j€)u7) >0 V.
> > b

Since w is closed and u, represents the zero class in Hy(X;Z), the first integral on the right-hand
side above vanishes. Thus, the function 7— E(7) is minimized at 7=0 (when it equals 0) and so

d /1 .
= d’7'<2 /EQJ(dUT&dUT) — /EUTWJ>

the last equality above uses the definition of E(u,) in (2.5).

)

7=0

Let z=s+it be a local coordinate on (X,j). Since V is torsion-free,

Q(M ) _ D dus _ Ddus
dr' Ple=o T dr ds |,_, ds dr | _

D D
SREEVE | = Ve

Since V is also g-compatible,

1d D D
_ =Ty 2 (ur dsAdt
. <9J <U ar (ur) 7_0) + g5 (Ut ar (ur)e r_0>> S

779J(dur®jduf)
= gs(us, V&) + g7 (us, Vi) = gy (du®; VE)
>) dsAdt
T7=0

2dr
D D
= (e} )+ (| _o) e 3
Combining this with (3.17), we obtain the claim. O

d
—utwy

dr 7

7=0
=u{Vews}+wy (du/\j Vﬁ) .

Proof of Proposition 3.12. Let §; : X — R' be a continuous function such that for every
x € X there exists a symplectic form w, on Bgég(x)(x) so that J is tamed by w, on Bgég(x) (x)
and compatible with w, at . We assume that 20,(x) <ry(x) for every x € X. It is sufficient to
establish the proposition for each € X and each § <{d4(x) under the assumption that the metric g
is determined by J and w, on ng () (x).

Choose a C*°-function n: R— [0, 1] such that

1, ifr< %; ;
= < 0. 3.18
n(r) {0’ ifr>1; n'(r) < ( )

For a compact Riemann surface with boundary (3,j), a smooth map u: ¥ — X, z€ X, and § e R™,
define

Muws € CO(LR),  Muasls) = ”(W)v

1

Eyzn(0) = 2/277u7$’5(z)g(du®jdu) . Eul.(6) =E, (u;u_l(Bg(x))).
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We show in the remainder of this proof that there exists a continuous function Cy j: X — R™T
such that
—OF,, . (8) + 2By 4. (8) < 2C, 7(2)0 By 4.4(8) + Cy 1 (x)8*EL, , , () (3.19)

UM U,T,1

for every compact Riemann surface with boundary (X,j), J-holomorphic map u: ¥— X, and
6€(0,04(x)) such that u(0X)NBY(x)=0. This inequality is equivalent to

<%W%w%w%0

By Lebesgue’s Dominated Convergence Theorem, E, . () approaches E, .(6) from below as n
approaches the characteristic function x(_, 1) of (—00,1). Thus, the function

(52
= Eus®) [ o,

is non-decreasing as long as u(9X)NBY(x)=0. By Corollary 3.11,

. 52 - Eue(d)
Ji, (520t ) = ity = e

This implies the first claim.

Fix z€ X. We note that

For a compact Riemann surface with boundary (3,j), a smooth map u: ¥ — X, and 6 € (0, 04(z)),
let

§u,x,§ € F(E>U*TX)’ fu,x,n?(z) = _nu,x,é(z)Cx (u(z)),

the vanishing assumption in (3.18) implies that &, 5 is well-defined. If u(8¥)NBJ(x) =0, then
uzslox=0. By Lemma 3.13,

b)) 1
5 >6dg<x,u<z>>g(

Véuwslz = n’( o, Go(u(2))) Go(w(2)) = Nuyw6(2)Vodau.  (3.21)

Along with Corollary 3.15, (3.20), and the last assumption in (3.18), this implies that

/Z dg(z,u(2))|[g(du@; VEuzs)| < 26°E,, , ,(8) + 2(14Cy(2)8%) 6 By e(0). (3.22)

By the w,-compatibility assumption on J at z, there exists a continuous function C': X —R™
such that

/ ‘(wI)J(dU/\j V{u,m;)‘ < C(m)/ dg (w,u(z))|g(du®jV§u,z75)‘
b b

for all w and § as above. Along with this, Lemma 3.16 implies that there exists a continuous
function C: X —R™ such that

‘ /E g(du®j vﬁu,z,(S) < C(‘T)/E (g (du®] du) |£u,a¢,5| +dg (l‘, u(z)) ‘g(du®] vﬁu,zﬁ) ’)
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for every compact Riemann surface with boundary (X,j), J-holomorphic map u: ¥ — X, and
§€(0,04(x)) such that u(9X)NBY () =0. Combining this with (3.22), we conclude that there exists
a continuous function C: X — R™ such that

‘ /E 9(du; Véus.s)

for all v and ¢ as above.

< C(2)(0Ey2(8)+6°E,, , ,(0)) (3.23)

Suppose (X,j) is a compact Riemann surface with boundary, u: ¥ — X is a smooth map, and
d€(0,04(x)). Let z=s+it be a coordinate on (X,j). By (3.21),

g(us;ngu,x,é) = 77/ <d9($75u<2))> 5dg( ! g(ustx(u(z’)))z

z,u(z)) (3.24)
+77u,x,§(z)g uS,Vs(—ﬁx)Lz)-
By Corollary 3.15,
|u5|2 < g(us,VS(—Cx)]z) + Cg(x)dg(x,u(z))2|us|2 Vzeu ! (ng(z)(:c)) . (3.25)

If u is J-holomorphic, then |us|=|u¢|, (us,us) =0, and

(s )y . u(2))2 = s PICo ()P 2 gn, Cou(2)? 4 g (). (3:26)
Since 7' <0, (3.24)-(3.26) give
Ly (dg(fﬂ, U(Z))> dg(z, u(z))

(luas [P [ee?) 4 10,6 (2) (Juis | e )

2 1) ) (3.27)
< Q(U87 vs&u,m,&) + g(utu vt&u,m,&) + Cg(I)TIu,x,a(Z)dg(% u(z))2 (‘u5‘2+|ut’2)'
Along with (3.20), this implies that
6B, 4., (0) +2Ey 4.,(8) < /Z 9(du®; V€ 5) + 2C4(2)6° By g.n(9) (3.28)

for every compact Riemann surface with boundary (X,j), J-holomorphic map u: ¥ — X, and
0€(0,d4(x)). Combining this inequality with (3.23), we obtain (3.19).

Suppose w=g(J-, ) is a symplectic form on X. By Lemma 3.16, the left-hand side of (3.23) then
vanishes. From (3.28), we thus obtain

—0E!, 4, (8) + 2By 2 n(8) < 2C, ()02 By (5) -

u7x777

The reasoning below (3.19) now yields the second claim. O

4 Mean Value Inequality and applications

We now move to properties of J-holomorphic maps u from Riemann surfaces (X,j) into almost
complex manifolds (X, J) that are of a more global nature. They generally concern the distribution
of the energy of such a map over its domain and are consequences of the Mean Value Inequality
for J-holomorphic maps. These fairly technical properties lead to geometric conclusions such as
Propositions 4.3 and 5.1.
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4.1 Statement and proof

According to Cauchy’s Integral Formula, a holomorphic map u: Br — C” satisfies

U/(O — i U(Z)

d .
omi f, 22 z Vre(0,R)

This immediately implies that a bounded holomorphic function defined on all of C is constant. The
Mean Value Inequality of Proposition 4.1 bounds the norms of the differentials of J-holomorphic
maps of sufficiently small energy away from the boundary of the domain “uniformly” by their
L?-norms. In general, one would not expect the value of a function to be bounded by its integral.
The Mean Value Inequality implies that a J-holomorphic map which is defined on all of C and has
sufficiently small energy is in fact constant; see Corollary 4.2.

Proposition 4.1 (Mean Value Inequality). If (X, J) is an almost complex manifold and g is a
Riemannian metric on X compatible with J, there exists a continuous function hjyg: X xR— R
with the following property. If u: B — X is a J-holomorphic map such that

u(Bgr) C BY(x) and Ey(u) < hyg(x,r)

for some x€ X and r €R, then

2 16
‘d0u|g < WE‘Q(U)' (4.1)
Proof. Let ¢(z)= %|dzu|§. By Lemma 4.7 below, A¢>—A ;5 ,¢? with A;,: X xR—RT determined
by (X, J,g). The claim with hj;,=7/8A;, thus follows from Proposition 4.6. O

Corollary 4.2 (Lower Energy Bound). If (X, J) is a compact almost complex manifold and g is a
Riemannian metric on X, then there exists hy, € RT such that Eg(u)>hy, for every non-constant
J-holomorphic map u: S? — X.

Proof. By the compactness of X, we can assume that g is compatible with J. Let h;, > 0 be
the minimal value of the function A;, in the statement of Proposition 4.1 on the compact space
X x[0,diamg(X)]. If u: S*— X is J-holomorphic map with Ey(u)<hyg,

16

R2 Eq(u) V 2€C, RERT

by Proposition 4.1, since Br(z) C C as Riemann surfaces. Thus, d,u=0 for all z€ C, and so u is
constant. O

If ¢: U — R is a C*-function on an open subset of R?, let

H? H?
Ap = 7¢+th Gss + Ot

denote the Laplacian of ¢.

Exercise 4.3. Show that in the polar coordinates (r,6) on R2,

A¢ - ¢7‘T‘ + T_1¢r + 7“_2¢99 . (42)
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Lemma 4.4. If ¢: B —R is C?, then

2rR$(0) = —R (InR—Inr)A¢ + ®. (4.3)
(r,§)€EBRr OBr

Proof. By Stokes’ Theorem applied to ¢df on Br— Bs,

27 rR
f 6do — ¢d9:/ qudr/\dez// (r¢y)r—tdrdd
O0BRr 0B Br—Bs 0 Jé
27 27 rR
:/ (lnR—lnd)(Sqﬁr((S,G)dG—&—/ / (In R—In7)(¢pr + v~ ¢p)r drdf;
0 0 Jé

the last equality above is obtained by applying integration by parts to the functions Inr —In R
and r¢,. Sending 0 — 0 and using (4.2), we obtain

1
= ¢ —2m¢(0) —O—i—/ (InR—Inr)Ag,
R OBRr (r,0)eBgr
which is equivalent to (4.3). O

Corollary 4.5. If ¢: BR—R is C? and Ap>—C for some C €RT, then

1 1
“CR?>+ — . 4.4
5 t o @ (4.4)

$(0) <

Proof. By (4.3),
2 pr T‘2
27r7’¢(0)§Cr/ / (Inr—Inp)pdpdd + p=Cr-2m- —+ ¢  Vre(0,R).
0 Jo 0By 4 0Br

Integrating the above in r € (0, R), we obtain

R? R*
219(0) - — < 2nC - — .
wol0) 5 <70 o+ [ 0
This inequality is equivalent to (4.4). O
Proposition 4.6. If ¢ : Br — R2% is C? and there exists A € RT such that A¢ > —A¢? and

T
¢ < —, then
Br 8A

$(0) < ¢. (4.5)

7
Proof. Replacing A by A=R2A and ¢ by

0:B1— R,  §(2) = ¢(Rz),
we can assume that R=1, as well as that ¢ is defined on Bj.

(1) Define
f:[0,1) — R=Y by  f(r)=(1-7)>max¢.

B,
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Figure 6: Setup for the proof of Proposition 4.6

In particular, f(0)=¢(0) and f(1)=0. Choose r*€[0,1) and z* € B« such that

f(r*)=sup f and d(z*) =supop =c*.

BT‘*
Let §=21(1—7r*)>0; see Figure 6. Thus,
f(r*+9) f(r) . *
sup ¢ < sup ¢ = ” < =4¢(z") =4c".
Bs(z*) Bysys (1—(7‘ —|—(5))2 i(l*’l“*)z
In particular, A¢ > —A¢? > —16Ac*? on Bs(z*).
(2) Using Corollary 4.5, we thus find that
* * 1 *2 2 1 *2 2 1
" =¢(2") < 5 - 16Ac™ - p"+ —5 ¢ <24cp"+ — [ ¢V pegl0,d].
8 % JB, (=) < B,
If 24¢*6% < %, the p=49 case of the above inequality gives
o< [ 6 s@=10)< e =1 2 <> [ g
2 - 71'(52 B: ’ a - - o B ’

as claimed. If 2Ac*6? > 1, pE(4Ac*)7% < 6 and (4.6) gives

1 4Ac*
¢ <2402 + ¢ / 0.
By

4Ac* T

T
Thus, — < ¢, contrary to the assumption.
8A B

(4.6)

O]

Lemma 4.7. If (X, J) is an almost complex manifold and g is a Riemannian metric on X com-
patible with J, there exists a continuous function Ajg: X xR—RT with the following property.
If QCC is an open subset, u: Q— X is a J-holomorphic map, and u(Q)C Bi(x) for some x€ X

and reR, then the function ¢(z)z%|dzu|§ satisfies Ap > —Ayq(z, )¢

Proof. Let z=s-+it be the standard coordinate on C. Denote by us and u; the s and t-partials of u,
respectively. Since u is J-holomorphic, i.e. us=—Ju, and g is J-compatible, i.e. g(J-, J-)=g(-,"),

\uslg = |ut|§. Since the Levi-Civita connection V of g is g-compatible and torsion-free,

1 d?
iﬂ\us\g = |Veusly + (ViVius, ur), = [Veus|y + (ViVsur, us), -
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Similarly,
1 d2 9 2
§E|Ut|g = ‘Vsut}g + <VSVtus,Ut>g. (48)
Since us = —Juy,
(vsvtu37ut>g = —<stt(JUt),Ut>g
= —<JVthut,ut>g — <(V3J)Vtut,ut>g — <Vs((VtJ)ut),ut>g (4.9)
= _<vsvtutaus>g - <(vs<])vtutaut>g - <Vs((VtJ)Ut),Ut>g~

Putting (4.7)-(4.9), we find that
%Agb — (Vo + | Ve 4 (By s ur ), — (V) Vo, g, — (Vo((Vidyur), ), (4:10)
where Ry is the curvature tensor of the connection V. Since u(2) C BY(z),
[(Ry (e, us)us, us)g| < Cyl,m)|uslglud g,
(V) sttty | < Caglars Dltelglialy|[Ve(Tus)], < g, ) utslgluly (gl + Vvl
< (Cagla,r)+Cgl,r))uslgluelg + [Veuslg

[(Vs((VeT)ur),ue)g| < Cogler, ) urlg(luslgluelg+V suely)

< (@, m)luslglurlg + Cug(w, r)?[urlg + [Vauelg.

(4.11)
Combining (4.10) and (4.11), we find that

1
JB0 2 =C () (Jus| g lue 5+ luslgluel g+ luelg) > =3C (2, 1),

as claimed. n

4.2 Regularity of J-holomorphic maps

By Cauchy’s Integral Formula, a continuous extension of a holomorphic map u: By —C" over
the origin is necessarily holomorphic. By Proposition 4.8 below, the same is the case for a
J-holomorphic map u: By — X of bounded energy.

Proposition 4.8. Let (X, J) be an almost complex manifold and g be a Riemannian metric on X.
If RERY and u: Bgr — X is a continuous map such that u|B;§ is a J-holomorphic map and
Ey(u; By) < oo, then u is smooth and J-holomorphic on Bg.

For a smooth loop v: S — X, define

~(0) = %7(610) € Ty ey X and ly(y) = /:ﬂh'(ﬁ)}gde e R0
to be the velocity of v and the length of ~y, respectively.
Lemma 4.9 (Isoperimetric Inequality). Let (X, J,g), R, and u be as in Proposition 4.8 and
Y ST — X, *yr(ew) = u(rew) Vre(0,R).
There exist 6 € (0, R) and C €R™ such that
Ey(u; BY) < Cly(v)>  Vre(0,0). (4.12)
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Yo Tr

Figure 7: The maps from an annulus and two disks glued together to form the map F,; : 52— X
in the proof of Lemma 4.9

Proof. Let exp be as above the statement of Lemma 3.13, J, and w, be as in the first two sentences
in the proof of Proposition 3.12,

xzo =u(0), o =d4(z0), wo = wWay, E:(0,R) — R, E(r)=E,(u;By).

We can assume that the metric ¢ is determined by J and wp on Bgo (o).

For a smooth loop 7: S* — Bj (20), define
&y St — T, X by exp,, fv(ew) = 'y(eie), }{7(619)} < dp,
FriBr— X, [y(re") = expy,(rgy(e7)).
In particular,
003, = 6], < )20 |00ty ()], = |dye, oy (€L0))], < L7/ (6)

for some C'€R™ determined by xy. Thus,

/ fiwo
B

’

27 pl
< C/ ‘8Tf7(pew)}g’r_lﬁgfy(reie)‘gr drdé
0 Jo

o , (4.13)
< C'y(w) / 17/ (0)| rdrdf = ~C'4y(~)?
0 Jo g 2

for some C,C’ € R determined by xg and wy.

By Proposition 4.1 and the finiteness assumption on E(u; By), there exists 6 € (0, R/2) such that

‘%’,(9)5 = }ﬁgu(rew)‘g = 7“2‘8 u(e ‘6)‘ < gE(27“) vV re(0,9), (4.14)
Cy(vr)? = 1287 E(2r) vV re(0,9). (4.15)
By the continuity of u, we can assume that u(Bas) C By (wo). For r€(0,6) and pe(0,r), define
F:S*— X

to be the map obtained from u|p,_p, by attaching disks to the boundary components 9B, and
0B, and letting F), be given by f,, and f, on these two disks, respectively; see Figure 7. Since

F,,.. is homotopic to a constant map and wy is closed,

0—/ wo = Ey(u; B,—B,) /f wo — /f%wo
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Combining this with (4.13) and (4.15), we obtain
Ey(u; B,—B,) < Cly(v)* + CE(2p) (4.16)

for some C' € R" independent of r and p as above. Since E4(u; By) <0, E(2p) — 0 as p—0.
Taking the limit of (4.16) as p—0, we thus obtain (4.12). O

Corollary 4.10. If (X, J,g), R, and u are as in Proposition 4.8, there exist § € (0, R) and u, C € R™T
such that
|dyeioul, < Crt™t Vre(0,4). (4.17)

Proof. Let ~,, 6, C, and E(r) be as in the statement and proof of Lemma 4.9. Thus,

1

2T pr 27 2
2 1
E(r)= 2/0 ; ‘dpeieu‘gpdpde < Cly(yr)? = 2Cr2< ; }dreieu‘gd9>

2m
< Crr? ‘dreieu‘de =207rE (r) Vre(0,9).
0 g

This implies that
(r 2" E(r)) >0, E(r) <6 VEOTE@S) V2T = Wre(0,6).
Combining this with (4.14), we obtain (4.17) with ¢ replaced by §/2. O

Proof of Proposition 4.8. With p as in Corollary 4.10, let p € RT be such that p > 2 and
(1—p)p<2. In particular,

ulBg, € LY(Bry2; X), dyulBy, =0 € LP(Brya; X).
By elliptic regularity, this implies that u is smooth; see [12, Theorem B.4.1]. By the continuity of
Oju, u is then J-holomorphic on all of Bpg. O

4.3 Global structure of J-holomorphic maps

We next combine the local statement of Proposition 3.1 and some of its implications with the
regularity statement of Proposition 4.8 to obtain a global description of J-holomorphic maps.

Proposition 4.11. Let (X, J) be an almost complex manifold, (X,j) be a compact Riemann surface,
u: X — X be a J-holomorphic map. If u is simple, then u is somewhere injective and all limit

points of the set
{ze%: ]u_l(u(z))|>1} (4.18)

are critical points of u.

Suppose (X, J) is an almost complex manifold, (¥,j) is a Riemann surface, and u: ¥ — X is a
J-holomorphic map. Let
S =Y —u(u({z€2: du=0})) (4.19)

be the preimage of the regular values of u and

R, C X, xX,
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be the subset of pairs (z,2’) such that there exists a diffeomorphism ./, : U, — U, between
neighborhoods of z and 2’ in X satisfying

0. (2) =2 and Uy, = uow,,. (4.20)

Denote by R, C3X x X the closure of R;,.

It is immediate that R} is an equivalence relation on ¥ and u(z) = u(2’) whenever (z,z2') € R%.
Thus, R, is also a reflexive and symmetric relation and u(z) = u(z’) whenever (z,2') € R,. By
Lemma 4.14 below, R, is transitive as well. We denote this equivalence relation by ~,. Let

hy: Y — Y'=%/~, and u:Y — X (4.21)
be the quotient map and the continuous map induced by wu, respectively. In particular,
u=u'ohy: ¥ — X.

In the case ¥ is compact, we will show that ¥’ inherits a Riemann surface structure j’ from j so
that the maps h, and u' are j’- and J-holomorphic, respectively. If the degree of h is 1, we will
show that all limit points of the set (4.18) are critical points of u.

Lemma 4.12. Suppose (X,J) is an almost complex manifold, R € R*, and uw: Bg — X is a
non-constant J-holomorphic map such that d.u#0 for all z€ Bj,. Then there exist meZ* and a
neighborhood Uy of 0 in Br such that

hy: UgsNBg — hy (UgNBg) C By (4.22)
18 a covering projection of degree m.

Proof. By the continuity of u, we can assume that X =C", u(0) =0, and Jy=Jcn. As shown in
the proof of Corollary 3.11, there exist e€ (0, R) and 6 € (0, €/2) such that

Uy = u_l(u(B(;))ﬁBe C Bos.
By Proposition 3.1 and the compactness of Bys C Bg, the number
m(z) = |hy ! (hu(2))NUo|

is finite for every z € UyNB.

Suppose z; € By and zi € Uy are sequences such that z; converges to some zj € B§ with z; # 2z for
all i and hy(z;)=hy(z]) for all i. Passing to a subsequence, we can assume that z, converges to
some z( € Bas. By the continuity of u, u(z}) =u(z) and so z{, € Up. Corollary 3.10 then implies
that hy(2() =hu(20). Since Bj is connected, this implies that the number m(z) is independent of
2€UygNBY; we denote it by m.

Suppose z € UpN By and
h;l (hu(z)) NUy = {zl, . ,zm} .

Let ¢;: Uy — U, for i=1, ..., m be diffeomorphisms between neighborhoods of z; and z; in UpNB%,
such that
©i(21) = 2, u=uop; Vi, UinNU; =0 Yi#j,
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and w: Uy — X is injective. Then h,(U;) C By is an open neighborhood of hy(z),
m
hy ' (ha(U0)) N Uy = |_| Ui,
i=1
and hy,: U;— hy(U7) is a homeomorphism. Thus, (4.22) is a covering projection of degree m. [

Lemma 4.13. Suppose (X,J), R, and u are as in Lemma 4.12. Then there exists a neighbor-
hood Uy of 0 in Br such that

Wo: hy(Uy) — C, hu(z) = I 7 (4.23)
2'€hy  (hu(2))NUo

is a homeomorphism from an open neighborhood of h,(0) in By to an open neighborhood of 0 in C
and Woohy|y, is a holomorphic map.

Proof. By Lemma 4.12, there exists a neighborhood Uy of 0 in Bg so that (4.22) is a covering
projection of some degree m€Z™. Since the restriction of u to By, is a J-holomorphic immersion,
the diffeomorphisms ¢; as in the proof of Lemma 4.12 are holomorphic. Thus, the map

\IIOOhU|UoﬂB;‘%: UoﬂBE — C, zZ— H 2
2'ehy  (hu(2))NUo

is holomorphic. Since it is also bounded, it extends to a holomorphic map
ifoi Uy — C.

This extension is non-constant and vanishes at 0.

After possibly shrinking Uy, we can assume that there exist k€Z* and C € R such that
C7H|2F < |Wo(2)| < CH2F V2ely. (4.24)
Since Wo(2')=W(z) for all 2/ € hy  (hy(z))NUp, it follows that
C2|z| < || < C?|z| V2 eh; (ha(2))NUy, z€Uy,

C™2m|z|™ < }\f'o(z)‘ < O™ V z e Up.

Along with (4.24), the last estimate implies that k=m and that cT>0 has a zero of order precisely m
at z=0. Thus, shrinking ¢ in the proof of Lemma 4.12 if necessary, we can assume that 50 is
m:1 over UpNBj. This implies that the map (4.23) and its extension over the closure of h,(Up)
in BY; are continuous and injective. Since the closure of h,(Up) is compact and C is Hausdorff, we
conclude that (4.23) is a homeomorphism onto an open subset of C. O

Lemma 4.14. Suppose (X, J), (X,j), and u are as in Proposition 4.11 and (x,y) €R,,. For every
neighborhood U, of x in X, the image of the projection

RuNUpxX) — X

to the second component contains a neighborhood Uy of y in X.
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Proof. By Corollary 3.4, the last set in (4.19) is finite. By the same reasoning as in the last part
of the proof of Lemma 4.12,
hy: 35— hy(Z5) C X (4.25)

is a local homeomorphism. Since u(z)=wu(z") for all (z,2z") € R}, the definition of 3 thus implies
that (4.25) is a finite-degree covering projection over each topological component of h,(X?). Since
the complement of finitely many points in a connected Riemann surface is connected, the degree
of this covering over a point h,(z) depends only on the topological component of 3 containing z.
For any point z € 3, not necessarily in X, we denote this degree by d(z).

By Corollary 3.4, the set
S = u_l(u(:v)) cX

is finite. Let W C X be a neighborhood of u(x) such that the topological components X4 of u =1 (W)
containing the points s€ S are pairwise disjoint (if U is a union of disjoint balls around the points
of S, then

W=X—-—uX-U)

works). By Lemma 4.12, for each s €S there exists a neighborhood U, of s in Xg such that
hu: Uj—{s} — hy(U—{s}) C ¥

is a covering projection of some degree mgs € Z*; we can assume that U, C U,. Along with the
compactness of ¥, the former implies that

\hil (hu(y/)) N U5/;| € {Oams} Vo' eUlLNTE, s,8'€S,
> et (b)) NUL| = d(s) ¥y U, NSk, §'€s. (4.26)
seS

Define
Py(S) ={5'CS: > my=d(y)}.

ses’

Let U,/ CU, be a connected neighborhood of y. For each S"€P,(S), define
s =y €U/NEy: {seS: hyt (ha(y))NUL A0} =5"}.
By (4.26), these sets partition U,/N¥y. Since each set
{y €UyNZy: by (hu(y)NUL#0}

is open, (4.26) also implies that each set UZZ’_ & is open. Since the set U:L,// N} is connected, it follows
that Uy NY}, = Uyg for some Sy € Py(S). Since (z,y) € Ry, x € Sy. Thus, the image of the
projection

RuNULxX) — X

to the second component contains the neighborhood Uy of y in . O

Corollary 4.15. Suppose (X,J), (X,j), and u are as in Proposition 4.11. The quotient map h,,
in (4.21) is open and closed.
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Proof. The openness of h, is immediate from Lemma 4.14. Suppose A C ¥ is a closed subset and
y; € hy; ' (hu(A)) is a sequence converging to some y € X. Let z; € A be such that hy(x;) =hy(y;)-
Passing to a subsequence, we can assume that the sequence z; converges to some x € A. Since
¥ — X7 consists of isolated points, we can also assume that y; € 3% and so (z;,y;) € Ri. Thus,
(z,y) ERy and so y € h; ' (hy(A)). We conclude that h, is a closed map. O

Proof of Proposition 4.11. Let ¥', h,, and u' be as in (4.21). By the second statement in
Corollary 4.15 and [13, Lemma 73.3], ¥’ is a Hausdorff topological space. Fix a Riemannian met-
ric g on X.

For (z,2') € R} with z#2/, the neighborhoods U, and U,/ as in (4.20) can be chosen so that they
are disjoint and u|y, is an embedding. Since u is J-holomorphic, ¢,, is then a biholomorphic
map and hy|y, is a homeomorphism onto h,(U,) C ¥/. Thus, the Riemann surface structure j
on 3 determines a Riemann surface structure j’ on h,(X}) so that hy|s: is a holomorphic covering
projection of h,(%}) and u'[,,(s:) is a J-holomorphic map with

Ey(u's hy(2})) < Eg(u). (4.27)

By Corollary 3.4, X! — h,(3%) consists of finitely many points. By the first statement in Corol-
lary 4.15 and by Lemma 4.13, j’ extends over these points to a Riemann surface structure on ¥'; we
denote the extension also by j’. Since the continuous map h,, is j’-holomorphic outside of the finitely
many points of ¥—X it is holomorphic everywhere. Since the continuous map «’ is J-holomorphic
on hy(X7F), (4.27) and Proposition 4.8 imply that it is J-holomorphic everywhere.

Suppose z€X and z;, 2} €Y with ¢€Z™ are such that

d,u # 0, 2i # 25y u(z) = u(2)) Vi, lim z; = z.

1—>00

Passing to a subsequence, we can assume that the sequence z; converges to some point 2’ €
with u(2") =wu(z). Since the restriction of u to a neighborhood of z is an embedding, 2’ # z. By
Corollary 3.10, there exists a diffeomorphism ./, as in (4.20). Thus, hy(z) =hy(Z"), the map h,, is
not injective, and w is not simple. ]

4.4 Energy bound on long cylinders

Proposition 4.16 and Corollary 4.17 below concern J-holomorphic maps from long cylinders. Their
substance is that most of the energy and variation of such maps are concentrated near the ends.
These technical statements are used to obtain important geometric conclusions in Sections 5.2
and 5.3.

Proposition 4.16. If (X, J) is an almost complex manifold and g is a Riemannian metric on X,
then there exist continuous functions 854,hy4,Cyg: X — RT with the following properties. If
u: [-R, R x S' — X is a J-holomorphic map such that Imu C Bg} (u(0 1))(u(O, 1)), then
J,g ;
Ey(u; [-R+T,R—T)xS") < Cyg(u(1,0))e TEy(u) VT >0. (4.28)
If in addition Eg(u) < hjg(u(0,1)), then

diamg (u([~R+T, R—T]xSY)) < Crg(u(1,0))e /2 [Ey(u) VT >1. (4.29)
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Corollary 4.17. If (X,J) is a compact almost complex manifold and g is a Riemannian metric
on X, there exist hjq,Cjy, € RT with the following property. If u: [—R,R] X Sl — X isa
J-holomorphic map such that Eg4(u) <h;g4, then

Eg(u; [-R+T,R—T]xS") < Cyge T Ey(u) VT >1,
diamg (u([~R+T, R—T]xSY)) < Crge /2 /Ey(u) VT >2.

As an example, the energy of the injective map
[-R,R] x S* — C,  (s,0) — s,

o2R_ sz)

is the area of its image, i.e. 7( e . Thus, the exponent e~ 7 in (4.28) can be replaced by e 2T
in this case. The proof of Proposition 4.16 shows that in general the exponent can be taken to
be e *T" with p arbitrarily close to 2, but at the cost of increasing C' 7,9 and reducing 6.

Lemma 4.18 (Poincare Inequality). If f: S' —R"™ is a smooth function such that f027rf(0)d9:0,

then ) )
/ £(0)d6 < / £(6)[2a6.
0 0
k<oo . 9
roof: We can write = are'™. Since =0, ap=0. us,
Proof: Wi ite f(6) = > age™. Since [;" f(0)d0=0 0. Th
k>—oc0
o k<oo k<oo o
/ FOPO= 3 < Y kgl = / £(6)[2d6.
0 k>—oc0 k>—0o0 0

Proof of Proposition 4.16. 1t is sufficient to establish the first statement under the assumption
that (X,g) is C™ with the standard Riemannian metric, J agrees with the standard complex
structure Jcn at 0€ C™, and u(0,1)=0. Let

= 1
ou = §(Ut + JCTLU@) .

By our assumptions, there exist ',C' >0 (dependent on u(0,1)) such that
|0.u| < Cold.u| ¥V zeu(Bs(0), 6 <4 (4.30)
Write u= f+ig, with f, g taking values in R"™ and assume that Imu C Bs(0). By (2.4),
|duf? = 4|8u|® + 2d(f-dg).

Combining this with (4.30) and Stokes’ Theorem, we obtain

/ |dul? < 40252/ |dul? + 2/ frg9dd — 2/ f-g9db. (4.31)
[—tt] xSt [—t,¢] xSt {t}xS1t {—t}xSt

Let J?: f— % 027r fdé#. By Holder’s inequality and Lemma 4.18,

1 1

~ ~ 2 2

‘/ f'gedé" _ ‘/ f-ged9‘ < (/ \f|2d9> (/ |99|2d9>

{£t}xS1 {£t}xS1 {£t}xS1 {£t}xS1
1 1
- 2 21
<(f Jara) ([ ) <5 [ jwkas.
{£t}x St {£t}x St {£t}x St
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Since i i
3lug|® = 2lug|?® + ‘ut - 28u’2 < 2|dul? + 8|8u}2,

the inequalities (4.30)-(4.32) give

(1_40252)/ duf? < 2(1+4C%?) (/ dul*d6 +/ \du\2de).
[—,¢] xS 3 {1}x St {—t}x St

Thus, the function

1
e(T) = By (u; [-R+T, R-T]) = 2/[ R+T,R—T]x 5!
— N p— ><

satisfies £(T) < —¢/(T) for all T € [—R, R, if § is sufficiently small (depending on C'). This im-
plies (4.28).

|du|?dAdt

Let hyg4(z)=(z,054(x)), with hy4(-,-) as in Proposition 4.1 and ¢ 4(-) as provided by the previous
paragraph. Suppose wu also satisfies the last condition in Proposition 4.16. By Proposition 4.1
and (4.28),

[Ageoyul < 3y/Bylus [=[t]=1, 1] +1]x 51) < 31/Crg (u(0, 1))eHI=R2, /B ()

for all t € [-R+1, R—1] and € S*. Thus, for all t;,ts €[~R+T, R—T] with T>1 and 0,0, € S?,

to
dg (u(t1,01), u(te, 62)) 53\/CJ,g(u(o,1))Eg(u) <7Te(1+t1|R)/2+ / e(Ht'R)/th)

t1

< (3m+12)4/Crg(u(0,1)) T2 By (u).

This establishes (4.29). O

Lemma 4.19. If (X,J) is a compact almost complex manifold and g is a Riemannian metric
on X, there exists a continuous function €54: RT — RT with the following property. If §€RT and
u: (=R, R)x S — X is a J-holomorphic map with Ey(u) < €;,4(5), then

diamg (u([—-R+1,R—1]x S')) < 6.

Proof. By Proposition 3.12 and the compactness of X, there exists ¢;, € R with the following
property. If (3,j) is a compact connected Riemann surface with boundary, u: ¥ — X is a non-
constant J-holomorphic map, € X, and § €R™ are such that u(@E)ﬂBg(:c) =(), then

Ey(u) > cj46%. (4.33)

Let hj4, >0 be the minimal value of the function %, in the statement of Proposition 4.1 on the
compact space X x [0, diamg(X)].

Suppose u: (—R, R) xS'— X is a J-holomorphic map with E,(u)<h,, and

6y = diamg (u([—R+1, R—1]x SY)) > 324/ E,(u).
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By the first condition on u,

16
diamg (u(rx S')) < 8y/Ey(u) Vre[—R+1,R-1]. (4.34)

Let r_, 70,74 €[~R+1,R—1] and 6_, 6,0, € S* be such that

|doul? < —Ey(u) V¥ 2€[-R+1,R-1]xS",

r_ <rg<rTq, dg(u(ro,Ho),u(ri,Hi)) > —0y -

N

By (4.34), we can apply (4.33) with

¥ =[r_,ry]xS, x = u(ro, bp), d = iéu,

and u replaced by its restriction to ». We conclude that

€Jg <2
E > 0z .

It follows that the function

) 52 ¢y
€1g: RT — R, €7¢(0) = min (hJ,g’ 3927 169(52>,

has the desired property. O

Proof of Corollary 4.17. Let § eR™ be the minimum of the function §; , in Proposition 4.16 and
€74(-) be as in Lemma 4.19. Take C 4 to be the maximum of the function C ;4 in Proposition 4.16
times e and hj,€RT to be smaller than the minimum of the function A4 in Proposition 4.16 and
the number €,4(9). O

5 Limiting behavior of J-holomorphic maps

This section studies the limiting behavior of sequences of J-holomorphic maps from Riemann
surfaces into a compact almost complex manifold (X, J). The compactness of X plays an essential
role in the statements below, in contrast to nearly all statements in Sections 3 and 4.

5.1 Removal of Singularity

By Cauchy’s Integral Formula, a bounded holomorphic map u: By —C" extends over the origin.
By Proposition 5.1 below, the same is the case for a J-holomorphic map u: By — X of bounded
energy if X is compact.

Proposition 5.1 (Removal of Singularity). Let (X, J) be a compact almost complex manifold and
u: By — X be a J-holomorphic map. If the energy Eq(u) of u, with respect to any metric g on X,
18 finite, then u extends to a J-holomorphic map u: Bp— X.

A basic example of a holomorphic function w: C* — C that does not extend over the origin 0€C
is z—>1/z. The energy of u|p; with respect to the standard metric on C is given by

1 9 1 27 rR )
E(u;B}"%)ZQ/B |dul :/B |Z"2:/0 /0 r~drdf £ oc.
R R
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The above integral would have been finite if |du|? were replaced by |du|?>~¢ for any e > 0.

This

observation illustrates the crucial role played by the energy in the theory of J-holomorphic maps.

By Cauchy’s Integral Formula, the conclusion of Proposition 5.1 holds if J is an integrable almost

complex structure and u(Bj) is contained in a complex coordinate chart for some ¢ € (0, R)

. We

will use the Monotonicity Lemma to show that the latter is the case if the energy of u is finite; the

integrability of J turns out to be irrelevant here.

Proof of Proposition 5.1. In light of Proposition 4.8, it is to sufficient to show that u extends
continuously over the origin. Let ¢4, hj4€RT be as in the proof of Lemma 4.19. We can assume

that R=1 and u is non-constant. Define
v:R™ xSt — X, v('r,ew) :u(er'%).
This map is J-holomorphic and satisfies Eg(v)=FE4(u) < oo.

Since Ey(u) < oo,
lim Ey(v; (—o00,r)x St = im B, (u; BS) = 0.

r—>—00

In particular, there exists R€R™ such that
Eg(v;(—oo,r)xSl) < hjg Vr<R.
By Proposition 4.1 and our choice of k4, this implies that

}dzv}z < 17r—6Eg(v; (—oo,r—|—1)><Sl) V z€(—o0,7) xS, r<R-1,

diamg (v({r}xS")) < 4ﬁ\/Eg(v; (—oo,r+1)xS1) Vr<R-1.
Combining the last bound with (5.1), we obtain

lim diam, (v({r}xS")) = 0.

r—>—00

Thus, it remains to show that lim wv(r,1) exists.
r——00

Since X is compact, every sequence in X has a convergent subsequence. Suppose there exist

SeRY, zye X, ip,rp, €R™ s.t.
dg(z,y) > 30, Th41 < ik < T, v({ik}xsl) C Bs(z), v({rk}xSl) C Bs(y).

We thus can apply (4.33) with X, z, and u replaced by
Y = [Tk+177"k]><51, zp = u(ig, 1), and vg =vly,,

respectively. We conclude that
E4(v) > ZEQ(U; k) = ZEg(Uk) > ZCJ7962 = 00.
k k k

However, this contradicts the assumption that E,(v)=E,(u) < co.
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Tk+1 ik Tk 1

Figure 8: Setup for the proof of Proposition 5.1

5.2 Bubbling

The next three statements are used in Section 5.2 to show that no energy is lost under Gromov’s
convergence procedure, the resulting bubbles connect, and their number is finite.

Lemma 5.2. Suppose (X,J) is an almost complex manifold with a Riemannian metric g and
u;: B1— X is a sequence of J-holomorphic maps converging uniformly in the C°°-topology on
compact subsets of By to a J-holomorphic map u: B1 — X such that the limit

m = lim lim Fy(u;; Bs) (5.2)

6—0i—>0c0

exists and is nonzero.

(1) The limit m(d) = lim E,(u;; Bs) exists and is a continuous, non-decreasing function of 6.
1—> 00
(2) For every sequence z; € By converging to 0, ignoo Eq(ui; Bs(zi)) =m(9).

(8) For every sequence z; € By converging to 0, u€ (0,m), and i€ Z" sufficiently large, there exists
a unique 0;(p) € (0,1—12;|) such that Ey(us; By, (2i)) = p. Furthermore,

lim lim lim Eg(u;; Brs(2i) = Bs,(u)(2i)) = m—p. (5.3)

R—00 §—0i—>00
Proof. (1) Since du; converges uniformly to du on compact subsets of Bf,
m(d) = lim E (uZ,Bg) = lim lim FE (uZ,B(;/) + hm lim F (ui;Bg—Bg/)

1—>00 6’ —01—>00 —0i—>00

=m+ lim E, (u; Bg—B(;/) =m+ E,(u; Bs).
0'—0
Since E4(u; Bs) is a continuous, non-decreasing function of ¢, so is m(d).
(2) For all ¢, " eRT and z;i € Bs, Bs_g CB(g(Zi) C Bsysr- Thus,
Ey(ui; Bs—s) < Eg(us; Bs(2:)) < Eg(ug; Bstsr)

for all 1€ Z™ sufficiently large and

lim m(6—4") < lim lim Ey(w; Bs(z)) < lim m(6+4") vV eRY.

'—0 ¢0'—01—>00 '—0

The claim now follows from (1).
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(3) By (2), (1), and (5.2),
lim Eg(ui; Bs(z)) = m(6) > m.

1—>00

Thus, there exists i(u) €ZT such that
Eg(ui; Bs(z)) > p Vi =i(p).

Since Ey(u;; Bs(2;)) is a continuous, increasing function of § which vanishes at 6 = 0, for every
i>i(p) there exists a unique 0;(u1) € (0,9) such that Ey(u; Bs, () (2i)) = p-

By (2), (1), and (5.2),

A iy i o (s Bras(20) = i, Jim m(F0) = fiy = .
Combining this with the definition of d;(x), we obtain (5.3). O

Corollary 5.3. If (X, J) is a compact almost complex manifold with a Riemannian metric g, then
there exists hjg€RY with the following properties. If ui: B1 — X is a sequence of J-holomorphic
maps converging uniformly in the C°°-topology on compact subsets of BT to a J-holomorphic map
u: B1— X such that

lim max ‘duz| =00

i—00 B, 9
and the limit (5.2) exists, then
(1) m > hJ,g;

(2) for every sequence z; € Bs converging to 0 and p€ (m—~hyg,,m), the numbers §;(p) € (0,1—|z;])
of Lemma 5.2(3) satisfy

Gl lim Ey(ui; Bre,() (i) = m, (5.4)
lim lim lim diamg(u;(Bs(2i) = Bps,(u)(2i))) = 0. (5.5)

R—00 §—0i—>0

Proof. Let hj, be the smaller of the constants hj4 in Corollaries 4.2 and 4.17. Let u;, u, and m
be as in the statement of the corollary.

(1) For each i€ Z™, let
Mi:m;aX!dzui‘ eR"
By g

and z; 6?/2 be such that |d,,u;|g=M;. Since M; — 00 as i —» 0o and u; converges uniformly in
the C*°-topology on compact subsets of B} to u, z;—0. For i€ Z™ such that |z;|+1/v/M;<1/2,
define

vi: B g5 — X, vi(2) :ui(z7;+z/Mi).

Thus, v; is a J-holomorphic map with

sup ‘dvi‘g = ’dovi‘g =1, Ey(vi) = Eg(ui; Bl/m(zi)) < Eg(ui; BIZi|+1/\/M) . (5.6)
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By the first statement in (5.6) and the ellipticity of the J-operator, a subsequence of v; converges
uniformly in the C'°°-topology on compact subsets of C to a non-constant J-holomorphic map
v: C— X. By the second statement in (5.6) and Lemma 5.2(1),

Eg(v) < lim sup F (wi Byyyar(22)) < Jim 1im g (u;; Bs) = m. (5.7)
By Proposition 5.1, v thus extends to a J-holomorphic map v: P' — X. By Corollary 4.2,
Ey(v) = Eg(v) = hyyg -

Combining this with (5.7), we obtain the first claim.

(2) By the first two statements in Lemma 5.2 and (5.2),
lim lim FE,(u;; Bs(z)) = li J) = m. .
im lim Eg(u;; Bs(2)) Jim m(d) =m (5.8)

6—0i—00

After passing to a subsequence of u;, we can thus assume that there exists a sequence §; — 0
such that

lim By (ui; Bs,(2i)) = m. (5.9)

11— 00

Since §; — 0, (5.8) and (5.9) imply that
lim lim Ey(u;; Brs,(2)) = m. (5.10)

R—00 i—>00

Suppose p€ (m—hy,,m). By (5.10) and the definition of 6;(1),

lim lim Eg(u;BRgi(Zi)—B(gi(#)(Zi)) =m—u < h],g .

R—00 i—00

Thus, Corollary 4.17 applies with (R, T) replaced by (3 In(Rd;/5;(11)),In R) and u replaced by the
J-holomorphic map

v: (=R, R) x 9l X, U(r, eie) = u(ZH- R6;:6; (1) er+i9),
By the first statement of Corollary 4.17,

C
Eg(u; Bs,(2i)) — Eg(u; Brs,(u)(2i)) = Eq(u; Bs,(2i) = Brs, () (%)) < é’g Ey(u)

for all 7 sufficiently large (depending on R); see Figure 9. Combining this with (5.9), we obtain (5.4).

It remains to establish (5.5). By (5.3), for all R>0 and sufficiently small § >0 (depending on R)
there exists i(R, ) €Z™ such that

Eg (ui; BR&(Zi)_Béi(u) (Zz)) < h]7g Vi> l(R, (5)

Thus, Corollary 4.17 applies with (R, T) replaced by (% In(RJ/d;(11)), In R) and u replaced by the
J-holomorphic map

v: (~R,R)xS' — X, v(r, eig) = u(zi—i— R66; () e”ig).
By the second statement of Corollary 4.17,

diamy (us(Bs () ~ B () < 2

This gives (5.5). O

hig  Yi>i(R,0).
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energy

In 6; (p) 0i(n)+In R In §; Ind;+In R

Figure 9: Tllustration for the proof of (5.4)

Lemma 5.4. If (X,J) is a compact almost complex manifold with a Riemannian metric g, then
there exists a function N : R — 7 with the following property. If (¥,j) is compact Riemann surface,
Sy C X is a finite subset, and u;: U;—> X 1is a sequence of J-holomorphic maps from open subsets
of ¥ with

U; C Ui+1, Y—5Sp = UUi’ and EEliminng(ui) < 00, (5.11)

) 1—00
=1

then there exist a subset S CX with |S|<N(E)+|So| and a subsequence of u; converging uniformly
in the C*°-topology on compact subsets of ¥—S to a J-holomorphic map u: ¥ — X.

Proof. Let hj4 be the minimal value of the function provided by Proposition 4.1. For E€R™, let
N(E)€Z=" be the smallest integer such that E<N(E)hy,.

Let X, So, ui, and E be as in the statement of the lemma and N =N (FE)+|Sp|. Fix a Riemannian
metric gy on ¥. For z € ¥ and 0 € ¥, let Bs(z) C ¥ denote the ball of radius ¢ around z. By
Proposition 4.1, there exists C € R™ with the following property. If u: ¥ — X is a .J-holomorphic
map, z€3, and § ER™, then

Ey(u; Bs(2)) < hyg — |dzul, < C/6°. (5.12)
For every pair 4, j€Z™", let {zfj}{le be a subset of points of ¥ containing Sy such that

N
z € ij =3- UBZ/J (zfj) = Eg(ui; Bl/j(z)ﬁUi) <hjg- (5.13)
k=1

By (5.12) and (5.13),
|daui, < Cj*>  VzeXj st By(2)CU. (5.14)

After passing to a subsequence of {u;}, we can assume that the sequence Ej (u;) converges to E
and that the sequence {zfj}iew converges to some z;“ €Y for every k=1,...,N and j€Z". Along
with (5.14) and the first two assumptions in (5.11), this implies that

lim sup ‘dzui‘g < Cj? VzeXj. (5.15)

i—00

After passing to another subsequence of {u;}, we can assume that the sequence {z;€ }jez+ converges

to some z*€¥ for every k=1,...,N.
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By (5.15) and the ellipticity of the J-operator, a subsequence of u; converges uniformly in the
C*°-topology on compact subsets of ¥} to a J-holomorphic map v;: ¥ — X. By (5.15) and the
ellipticity of the J-operator, a subsequence of this subsequence in turn converges uniformly in the
C*-topology on compact subsets of £3 to a J-holomorphic map vp: X5 — X. Continuing in this
way, we obtain a subsequence of u; converging uniformly in the C°*°-topology on compact subsets
of ¥7 to a J-holomorphic map v;: X% — X for every j €7Z7*. The limiting maps satisfy

_ o
vj|2jmz;, = vjt|synzy, Vg, ELT.

Thus, the map
u:Z*EZ*—{zk} — X, u(z) = vj(z) VzeXj,

is well-defined and J-holomorphic.

By construction, the final subsequence of u; converges uniformly in the C'°°-topology on compact
subsets of ¥X* to u. This implies that

Ey(u) <liminf Ey(u;) = E.

71— 00

By Proposition 5.1, u thus extends to a J-holomorphic map > — X. ]

5.3 Gromov’s convergence

We next show that a sequence of maps as in Corollary 5.3 gives rise to a continuous map from
a tree of spheres attached at 0 € By, i.e. a connected union of spheres that have a distinguished,
base component and no loops; the distinguished component will be attached at oo € S? to 0€ B;.
The combinatorial structure of such a tree is described by a finite rooted linearly ordered set, i.e. a
partially ordered set (I, <) such that

(RS1) there is a minimal element (root) ig €I, i.e. ig<h for every he I—{ip}, and
(RS2) for all hq, ho,i€1 with hq, ho <1, either A1 =ho, or hy <ho, or hy < hy.

For each ¢ € I —{ip}, let p(i) € I denote the immediate predecessor of i, i.e. p(i) € I such that
h <p(i) <i for all h € I —{p(i)} such that h <i. Such p(i) € I exists by (RS1) and is unique
by (RS2). In the first diagram in Figure 10, the vertices (dots) represent the elements of a rooted
linearly ordered set (I, <) and the edges run from i€l —{iy} down to p(7).

Given a finite rooted linearly ordered set (I, <) with minimal element ig and a function
2 I—{ig} —C, i— 2z, st (p(il),zil) #* (p(ig),ziz) Vi1,i9 € I—{io}, 11 F 1o, (516)

let
Y= <|_|{z} ><S2)/N’ (i,00) ~ (p(i), zi) Viel—{ig};
el
see the second diagram in Figure 10. Thus, the tree of spheres ¥ is obtained by attaching oo in
the sphere indexed by i to z; in the sphere indexed by p(i). The last condition in (5.16) insures
that ¥ is a nodal Riemann surface, i.e. each non-smooth point (node) has only two local branches
(pieces homeomorphic to C).
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o OO0

Figure 10: A rooted linearly ordered set and an associated tree of spheres

Proposition 5.5. Let (X,J) be a compact almost complex manifold with a Riemannian metric g
and u; : By — X be a sequence of J-holomorphic maps converging uniformly in the C°°-topology
on compact subsets of By to a J-holomorphic map u: B1 — X. If the limit

m= lim lim E,(u;; Bs) (5.17)

6—0i—r0c0

exists and is nonzero, then there exist

(1) a nodal Riemann surface (Boo,ioo) consisting of By with a tree of Riemann spheres P! attached
at 0€ By,

(2) a J-holomorphic map tus: Yoo — X,

(3) a subsequence of {u;} still denoted by {u;}, and

(4) a biholomorphic map ; U; — By 2, where U; CC is an open subset,
such that

(4a) E4(tuso; Xoo—B1) =m, U; CUiy1, and C = J;2, U;,

(4b) u;o1h; converges to us uniformly in the C*°-topology on compact subsets of the complement
of the nodes oo, w7, ..., w;, in the sphere ]P’(l] attached at 0 € By,

(4¢) if uoo|]p(1) is constant, P} contains at least three nodes of Yeo;

(4d) (4) applies with By, ({u;},0), and m replaced by a neighborhood of w; in C, ({u;o);}, wr),
and

m,. = lim lim Ey(u;0t5; Bs(w))), (5.18)
6—01—00
respectively, for each r=1,... k.
Proof. Let hjg4 be the smaller of the numbers A4 in Corollaries 4.2 and 5.3. In particular, m>h,.
For each i€ Z™ sufficiently large, choose z; € B, /2 so that
maix‘dui‘g = |ds - (5.19)

ZEBl/Q g
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Since u; converges uniformly in the C°°-topology on compact subsets of B} to u, z; — 0 as i — o0.
Thus, By/s(z) C By for all i € Z* sufficiently large. By Lemma 5.2(3), for all i € Z* sufficiently
large there exists d; € (0,1/2) such that

hJ,g

Eg(ui;B&'(Zi)) =m- 9

(5.20)

Define
i Uiz{wG(C: zi+5inBl/2} — B9 by Yi(w) = z;+6w.

Since §; — 0, the second property in (4a) holds.

For each i € Z™T sufficiently large, let
V; = uiogbi: Ul — X.

Since u; is J-holomorphic and ; is biholomorphic onto its image, v; is a J-holomorphic map with
Ey(vi) = Eg(ug; Byj2). Along with Lemma 5.2(2), this implies that

lim Ey(v;) =m(1/2) < o0
11— 00

By Lemma 5.4, there thus exist a finite collection w7, .. ., w} € C of distinct points and a subsequence
of {u;}, still denoted by {u;}, such that v; converges uniformly in the C'*°-topology on compact
subsets of P!'—{co,w},...,w}} to a J-holomorphic map u: P! — X. In particular, (4b) holds and
|dv;4 is uniformly bounded on compact subsets of P! —{oo, w?, ..., w;}. We can also assume that
the limit (5.18) exists for every r=1,...,k. We note that

B3 = i o o, B ) + 3 it By B
r=1 r=1 .
= lim limZFE (vi, BR) = hm lim By (ui, BRéi(Zz‘)) =m;

R—00 i—00 R—00 i—00

the last equality holds by (5.4).

Let 6o €R™ be such that the balls Bs,(w}) are pairwise disjoint. If

limsup max ‘dvl| < 00
i—>00  Bjy (wy)

for some r, then {v;} converges uniformly in the C*°-topology on Bjs,(w}) to v by the ellipticity of
the 0-operator. Thus, we can assume that

lim  sup |dvi‘ =00
T By (w)

for every r=1,..., k. In light of Corollary 5.3(1), mj;. > % .

We next show that u(0) =v(c0), i.e. that the bubble (P}, v) connects to (Bi,u) at z=0. Note that

dg(u(0),v(00)) = lim lim dg(u(d),v(R)) = lim lim lim dg(u;(z;+96),vi(R))

R—006—0 R—006—0i—>0

= lim lim hm d (ui(zi+5),ui(zi+R6i))

R—r006—0i—>

< (z; .
Jim T i diam (5B (2) ~ B, (2)
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1 @ 50/5;

Figure 11: The energy distribution of the rescaled map v; in the proof of Proposition 5.5

Along with (5.5), this implies that u(0) =v(00).

Suppose v: P! — X is a constant map. By (5.21), k> 1 and so there exists w* € C such that
|dy=vi| —> 00 as i — 00. By (5.19) and the definition of ;, |[dov;| > |dy ;| for all we C contained
in the domain of v; and so |dgv;| — 0o as i —> oco. By (5.18) and (5.20),

"'= lim lim E,(v;) < lim E,(v;: B) = lim E,(u;: Bs (%)) =m —
mo = lim M Fo(vi) < lim By(vs Br) = lim B (ui; By (2)) = m

b
2 )

and so k>2, as claimed in (4c). Since the amount of energy of v; contained in C— B; approaches

hyg/2, as illustrated in Figure 11, there must be in particular a bubble point w} with |w}| =1,
though this is not material.

The above establishes Proposition 5.5 whenever k=0 by taking
Uso|g1 = U and uoo’[% = .

Since mj. > h, for every r, k=0 if m<2h;,. If k>1, m), <m—h;4 by (5.21) because Eg4(v)>hy,
if v is not constant by Corollary 4.2 and k > 2 otherwise by the above. Thus, by induction on
[m/hj4]€ZT, we can assume that Proposition 5.5 holds when applied to {v;} on Bs,(w}) C C with
r=1,...,k. This yields a tree ¥, of Riemann spheres P! with a distinguished smooth point oo
and a J-holomorphic map v, : X, — X such v,(c0) =v(w;) and E,(v,) =m;].. Combining the last

;
equality with (5.21), we obtain
k

E4(v) +ZEg(vr) =m.

r=1

Identifying oo in the base sphere of each ¥, with w; € P(l), which has been already attached to 0 € BY,
we obtain a J-holomorphic map us: oo —> X with the desired properties; see Figure 12. ]

Proof of Theorem 1.2. Fix a Riemannian metric gy, on ¥. For z€ ¥ and § € X, let Bs(z) C X
denote the ball of radius § around z.
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By

Figure 12: Gromov’s limit of a sequence of J-holomorphic maps u;: By — X

By Lemma 5.4, there exist a finite collection 27,...,2; € X of distinct points and a subsequence
of {u;}, still denoted by {u;}, such that u; converges uniformly in the C'*°-topology on compact
subsets of ¥ —{z},..., 2/} to a J-holomorphic map u: ¥ — X. In particular, |du;|, is uniformly
bounded on compact subsets of X —{2f,...,2;}. We can also assume that the limit

M= 51210 B (i3 B3 (23)

exists for every j=1,...,¢. We note that

¢ l ¢
Egy(u) + ij = lim lim Eg(u;¥— U B(;(z;)) + lim lim Ey(u; Bg(z;))
j=1 j=1

§—0i— 00 7 d—0i—ro0 (5_22)

=

B 5h—r>n01'£noo By(ui) = ignoo Eq(us).

Let 6o €R™ be such that the balls Bs,(z]) are pairwise disjoint. If

limsup max dui} < 00

i—00 By (2])

for some j, then {u;} converges uniformly in the C'**-topology on By, (z}) to u by the ellipticity of
the O-operator. Thus, we can assume that

lim  sup }du,‘ =0
1—00 7350 &)

for every j=1,...,¢.

For each j=1,...,¢, Proposition 5.5 provides a tree 3; of Riemann spheres P! with a distinguished
smooth point co and a J-holomorphic map v; : £; — X such v;(c0) = v(w}) and E4(vj) = m;.
Combining the last equality with (5.22), we obtain

L
Eg(v) +ZEg(Uj) = lim Ey(uy).

- —00
Jj=1

Identifying the distinguished point oo of each 3; with z; € X, we obtain a Riemann surface (Xoo;joo)
and a J-holomorphic map e : Yoo —> X with the desired properties.
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If ¥=P! and the limit map u above is constant, then £>1 by (5.22). Suppose £€{1,2}. Let

and parametrize P! so that 27 =0. Define
hi: Pt — P hi(z) = zi+z/M;,

and apply the preceding argument with wu; replaced by u;oh;. By the proof of Corollary 5.3(1), the
limiting map |y is then non-constant and (X, jeo, ) is a stable J-holomorphic map. O

5.4 An example

We now give an example illustrating Gromov’s convergence in a classical setting.

Let n€Z", with n>2, and P*~!=CP"~!. Denote by ¢ the positive generator of Ho(P"1;Z)~Z,

i.e. the homology class represented by the standard P! CP"~!. A degree d map f: P! —P" !is a

continuous map such that f,[P!]=d¢. A holomorphic degree d map f: P! —sP"~! is given by
[u,v] — [Ri(u,v),..., Rn(u,v)]

for some degree d homogeneous polynomials R1,...,R; on C? without a common linear factor.
Since the tuple (ARy, ..., AR,) determines the same map as (R, ..., R,) for any A€ C*, the space
of degree d holomorphic maps f: P! —sP"~! is a dense open subset of

Xn4 = ((Sym?C*)" — {0}) /C* m P+,

Suppose fi: P! — P! is a sequence of holomorphic degree d>1 maps and
Ri = [Ri1,-- - R € Xna

are the associated equivalence classes of n-tuples of homogeneous polynomials without a common
linear factor. Passing to a subsequence, we can assume that [Ry] converges to some

R= [(vlu—ulv)dl . (Umu—umv)d’”Sl, el (vlu—ulv)dl e (vmu—umv)d’"sn] €Xpdq, (5.23)
with dy,...,dy, €Z" and homogeneous polynomials
S=[S1,...,5)] € Xn4
without a common linear factor and with dp € Z=°. By (5.23),

do+di+...+d,, =d.

Rescaling (Ry.1, ..., Ri.yn), we can assume that
lim Ry = (viu—u10)® ... (0pu—1umv)®™S; Vi=1,...,n. (5.24)
k—soo
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Suppose zy € C—{u1/v1,...,Un/Vn}. Since the polynomials Si,...,S, do not have a common
linear factor, Sj,(20,1)# 0 for some ig=1,...,n. This implies that Ry, (z0,1)#0 for all k large
enough and so

lim Ry.i(z,1) li_r)noo Ryi(z21) (v12—u)® ... (V2 —Um)¥™Si(2,1) Si(z,1)

1 = = =

k—o0 Riig(2,1)  lim Rpy(2,1)  (viz—u1)® ... (Umz—tm)® S (2,1)  Sip(2,1)
k—o0

for all i=1,...,n and z close to zg. Furthermore, the convergence is uniform on a neighborhood
of z9. Thus, the sequence f,, C*°-converges on compact subsets of P —{[u1,v1],. .., [tm,vm]} to
the holomorphic degree dg map ¢: P! — P"~! determined by S.

Let w be the Fubini-Study symplectic form on P"~! normalized so that (w,¢)=1 and E(-) be the
energy of maps into P?~! with respect to the associated Riemannian metric. For each § >0 and
j=1,...,m, denote by Bs([uj,v;]) the ball of radius ¢ around [u;, v;] in P! and let

— | Bs([uj, v5])
j=1
For each j=1,...,m, let
M1 (L)) = i lim B(fii B([ugvy]) € R

be the energy sinking into the bubble point [u;, v;]. By Theorem 1.2, the number my,, , 1({fx}) is the
value of w on some element of Ho(P""1;Z), i.e. an integer. Below we show that m[uyv]] {fe})=

Since the sequence f;, C*-converges to the degree dy map g: P! — P"~! on compact subsets of
Pl_{[ula Ul]v ey [umvvm]}7

do = (w,dol) = E(g) = 6h_n>10Eg(g;]P’};) = 5h_1>n0kli_1>nooE(fk;P§).

Thus,

m

; g5 ({£}) Z Jim tim B(fi; Bs([u, vj)) = 5h_n>10kh_1>nooE(fk§]LJIBé([uj>Uj]))
= 5hi)n0khi>noo( g(fk)_ g(fk:;]P)é)) =d—do=di1+...+dp

In particular, my, . ({fx}) =d; if m=1, no matter what the “residual” tuple of polynomials S is.
We use this below to establish this energy identity for m>1 as well.

By (5.24), for all ke Z™ sufficiently large there exist Aj.;.j.,, €C with i=1,...,n, j=1,...,m, and
p=1,...,d; and tuples
Sk = [Sk:;la - ,Sk;n] S xn;do

of polynomials without a common linear factor such that

lim Sy =S lim Aggjp =1 Vi, j
/CLI?OO k ) kglw k550 %, 7,D,
m  d;
Rysi(u,0) = [T TT(vju—Awsisgipusv) - Suiiu,v) ¥ ki
j=1p=1
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For each jo=1,...,m, let
Ty = [Tjo;lv e ’Tjo;"] € xmd_djo

be a tuple of polynomials without a common linear factor. If in addition, i=1,...,n, e€R, and
keZt, let
m
S... = w—uv)% . S; T =1
1;]0;€(uvv) - (vju UJU) l(uvv) te ]0;1(ua U)? t R
J#Jo
dj,
Riijose (U, v) = Rpi(u,v) + € H(Ujou_)‘k‘;i;jo;pujov) - Tosi(u,v), i=1,...,n.
p=1

The polynomials within each tuple (S;.jo:c)i=1,....,n and (Rp.ijo:e)i=1,....,n have no common linear factor
for all e € R* sufficiently small and k sufficiently large (with the conditions on € and k& mutually
independent). We denote by

Jrsjose: P! —P !

the holomorphic degree d map determined by the tuple
Rijose = [Rk;l;jo;ea R ka;jo;E] .

Since
lim Ry = [(Ulu—ulv)djo Stijoser - - (vlu—ulv)djo Sn;jo;e] € Xpd
k—o0

and the polynomials S1,jg:c, - - -, Sn;jo;e have no linear factor in common,

lim  m B (fsjoses Bs (o vjo])) = My 050) ({Friiose}) = i (5.25)

6—0 k—00

by the m=1 case established above.

For § € R sufficiently small, e € R" sufficiently small, and k sufficiently large,

md;
IT TT(wse—Ansijipugo) - Sksiw,0) #0 -V [u, v] € Bas ([ugy, v50]).
J#jo p=1

Thus, the ratios

Risisjose(us v) 14 Tjy;i(u, v)
Rk;i(u,v) m  dj
71;[ Hl(vju—kk;i;j;pujv) + Shsi(u,v)
J#jo p=

converge uniformly to 1 on Bs([ujy, vj,]) as e—0. Thus, there exists k* € Z*1 such that

‘dsz;jo;e‘ _

lim sup sup W
zZ

e—0 k>k* ZeB(S([“jo ano])

1‘:0.

It follows that
lim lim lim E(fk;jo;e; B(S([Ujo, vjo]))

- 6—0 k—roc0 e—0

WHujg 5] ({fk}) = 5h_n>lo kh—>moo E(fk; Bs({tto, %]))

= ehi?o ah_r% kli_rflooE(fk;jo;e; Bs([ujo Ujo])) = Glii% djy = djo;
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the second-to-last equality above holds by (5.25).

Suppose that either dy>1 or m>3. Otherwise, the maps fi can be reparametrized so that dy#0;
see the last paragraph of the proof of Theorem 1.2 at the end of Section 5.3. By Theorem 1.2 and
the above, a subsequence of {fx} converges to the equivalence class of a holomorphic degree dy
map f: ¥ — P!, where ¥ is a nodal Riemann surface consisting of the component ¥y = P*
corresponding to the original P! and finitely many trees of P!’s coming off from . The maps on
the components in the trees are defined only up reparametrization of the domain. By the above,
fls, is the map g determined by the “relatively prime part” S of the limit R of the tuples of poly-
nomials. The trees are attached at the roots [uj,v;] of the common linear factors vju—u;v of the
polynomials in R; the degree of the restriction of f to each tree is the power of the multiplicity d;
of the corresponding common linear factor.

The same reasoning as above applies to the sequence of maps
(idp1, fi): Pt — P! xP" 1,

but the condition that either dy >1 or m >3 is no longer necessary for the analogue of the conclusion
in the previous paragraph. This implies that the map

S):)TO,O(IP)l><]P)n_17(Ld)) —>%n,d7 [fag] — [gof_l]a

from the subspace of M o(P1xP" 1, (1, d)) corresponding to maps from P! extends to a continuous
surjective map

ﬁo@ (Pl XPTL_17 (17 d)) — %n,d . (526)

In particular, Gromov’s moduli spaces refine classical compactifications of spaces of holomorphic
maps P! — P"~1. On the other hand, the former are defined for arbitrary almost Kahler manifolds,
which makes them naturally suited for applying topological methods. The right-hand side of (5.26)
is known as the linear sigma model in the Mirror Symmetry literature. The morphism (5.26) plays
a prominent role in the proof of mirror symmetry for the genus 0 Gromov-Witten invariants in [5]
and [8]; see [7, Section 30.2].
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