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1 Summary

Claim 1 ([FI, Proposition 3]) If N0,d is the number of degree d rational curves through 3d−1
general points in P

2, then

lim
d−→∞

d

√

N0,d

(3d−1)!

exists (and is nonzero).

Claim 1 is needed to establish [FI, Proposition 3], but is not proved in [FI]. It is shown in [FI] that

the numbers d

√

N0,d

(3d−1)! are bounded (above and below away from 0), but not that they converge;

see Section 2 for details. Mathematica suggests that these numbers are increasing (after the first
few terms), but it is not clear how this can be proved.

Conjecture 2 ([FI, Footnote 2]) If Ng,d is the number of degree d genus g curves through 3d−
1+g general points in P

2, then

Ng,d

(3d−1+g)!
= agb

dd−1− 5

2
(1−g)

(

1 + o(1)
)

,

for some b∈R
+ independent of g and for some ag∈R

+.

The g=0 case of this conjecture is [FI, Proposition 3]. Along with the Eguchi-Hori-Xiong recursion
for N1,d (proved in [P]), it almost implies the g=1 case; see Section 3.

Proposition 3 If Claim 1 is true, then

lim
d−→∞

d

√

N1,d

(3d)!
= lim

d−→∞

d

√

N0,d

(3d−1)!
.

For P
3, Mathematica suggests the following conjecture; it is based on the numbers up to d=200

(the computation of these numbers already takes a long time). As the convergence appears to be
very slow (for N0,d, it is still going noticeably even for d=1000), it is feasible that the limit below
is even independent of the slope chosen, but the numbers so far do not suggest this.
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Conjecture 4 If N0,d(p) is the number of degree d rational curves through 2d−p points and 2p
lines in general position in P

3, then

lim
d−→∞

αd

√

N0,αd(βd)

((2α+β)d)!

exists for α, β∈Z
+.

An upper bound on the sequences in Conjecture 4 can be obtained from a two-variable version of the
approach used in the proof of [FI, Proposition 3]; it also follows immediately from [Z, Theorem 1].
A lower bound appears more elusive, since the recursion of [RT, Theorem 10.4] for P

3 involves
negative coefficients; see Section 4.

2 On the proof of [FI, Proposition 3]

Let n1, n2, . . . be a sequence of numbers satisfying

nd = a
∑

d1+d2=d
d1,d2≥1

nd1nd2 ∀ d ≥ 2,

for some a>0. The generating function

Φ(q) ≡
∞
∑

d=1

ndq
d

then satisfies Φ(q) = n1q + aΦ(q)2. Thus,

Φ(q) =
1−√

1− 4an1q

2a
= − 1

2a

∞
∑

d=1

(

1/2

d

)

(−4an1q)
d =

∞
∑

d=1

(2d−2)!

d!(d−1)!
ad−1nd

1q
d ;

the middle equality above is the Binomial Theorem.

Corollary 5 If n1, n2, . . . is a sequence of numbers satisfying

nd = a
∑

d1+d2=d
d1,d2≥0

f(d1)f(d2)

f(d)
nd1nd2 ∀ d ≥ 2,

for some a>0 and f : Z+−→R, then

nd =
(2d−2)!

d!(d−1)!

ad−1

f(d)

(

f(1)n1

)d ∀ d ≥ 1.
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On the other hand, by Stirling’s formula [A, Theorem 15.19],

4d√
πd

(

1 +
1

4d

)−2

≤ (2d)!

(d!)2
≤ 4d√

πd

(

1 +
1

8d

)

. (1)

For each g∈Z
≥0 and d∈Z

+, let

ng,d =
Ng,d

(3d−1+g)!
.

By [RT, Theorem 10.4], the numbers n0,d are described by

n0,1 =
1

2
, n0,d =

∑

d1+d2=d
d1,d2≥1

f(d1, d2)n0,d1n0,d2 , where

f(d1, d2) =
d1d2((3d1−2)(3d2−2)(d+2) + 8(d−1))

6(3d−3)(3d−2)(3d−1)
=

d1d2(3d1d2(d+2)− 2d2)

2(3d−3)(3d−2)(3d−1)
.

(2)

Since

1

54

d1d2(3d1−2)(3d2−2)

d(3d−2)
=

d1d2(3d1−2)(3d2−2)(d−1)

6(3d−3)(3d−2)3d
≤ f(d1, d2)

≤ d1d2 · 3d1d2(d− 2
3)

23d
2 (3d−2)5d2

=
2

15

d21d
2
2

d2
,

Corollary 5 and (1) thus give

8

5

(

1

27

)d

d−7/2 ≤ n0,d ≤ 45

16

(

4

15

)d

d−7/2 .

This shows that the numbers

b− ≡ lim inf
d−→∞

d
√
n0,d and b+ ≡ lim sup

d−→∞

d
√
n0,d

are between 1/27 and 4/15, but not that they are the same.

Let

F0(z) =
∞
∑

d=1

n0,de
dz . (3)

By the above, there exists x0∈R such that this power series converges if Re z < x0 and diverges if
Re z > x0. Since n0,d∈R

+ for all d, there is no neighborhood of z=x0 on (all of) which this series
converges (otherwise, every point z0 with Re z0=x0 would have such a neighborhood). By (2),

(9 + 2F ′
0 − 3F ′′

0 )F
′′′
0 = 2F0 − 11F ′

0 + 18F ′′
0 + (F ′′

0 )
2. (4)

Since 0 < F0(z) < F ′′
0 (z) < F ′′

0 (z) < F ′′′
0 (z) for all z∈(−∞, x0),

3F ′′
0 − 2F ′

0 < 9 ∀ z∈(−∞, x0). (5)
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In particular, the series for F0, F
′
0, and F ′′

0 converge at z = x0, while the series for F ′′′
0 does not

(otherwise, (4) could be used to compute all derivatives of F0 at z=x0). This implies that

lim sup
d−→∞

lnn0,d − d ln b+
ln d

∈ [−4,−3].

According to [FI, p16], this also implies that F0 admits an expansion around z=x0 of the form

F0(x0+z) = c0 + c1z +
c2z

2

2
+ λz2+α + . . . (6)

for some α∈(0, 1); this is justified in Section 5.1 By (6) and (4),

(

(9+2c1−3c2)− 3λ(1+α)(2+α)zα
)

· λα(1+α)(2+α)zα−1 = 2c0 − 11c1 + 18c2 + c22 + o(1).

This gives

9+2c1−3c2 = 0, 2α−1 = 0, −3λα(1+α)2(2+α)2 = 2c0−11c1+18c2+c22 . (7)

According to [FI, p17], this “corresponds to” the behavior in the g=0 case of Conjecture 2; this can
at most describe a suitable lim sup. The desired claim would follow from the following conjecture.

Conjecture 6 If the numbers n0,d are given by (2), the numbers d
√
n0,d are eventually increasing,

i.e. there exists d∗∈Z
+ such that

d
√
n0,d ≤ d+1

√
n0,d+1 ∀d ≥ d∗.

Some thoughts on this conjecture are in Section 6.

3 Proof of Proposition 3

Let

F1(z) =
∞
∑

d=1

n1,de
dz .

By [P, (8)],

n1,d =
(d−1)(d−2)

216
n0,d +

1

27d

∑

d1+d2=d
d1,d2≥1

(3d21−2d1)d2n0,d1n1,d2 . (8)

This implies that

(9 + 2F ′
0 − 3F ′′

0 )F
′
1 =

1

8

(

F ′′′
0 − 3F ′′

0 + 2F ′
0). (9)

By this identity and (5), the series for F1 converges at z if Re z < x0 and so

lim sup
d−→∞

d
√
n1,d ≤ lim sup

d−→∞

d
√
n0,d .

The opposite inequality follows directly from (8); it also holds for lim inf. This establishes Propo-
sition 3.

1This is proved using the Frobenius method, as P. Sarnak suggested.

4



If the g=0 case of Conjecture 2 is true, (8) implies that

lim inf
d−→∞

lnn0,d − d ln b

ln d
≥ −3

2
.

By (4) and Section 5, F1 admits an expansion around z=x0 of the form

F1(x0+z) = z−1
∞
∑

d=0

bdz
d/2 with b0 = −a5

48
6= 0.

Thus, F1 does not converge at z=x0 and so

lim sup
d−→∞

lnn0,d − d ln b

ln d
≥ −1 .

4 Comments on counts in P
3

For each d∈Z
+ and p∈Z

≥0, let

n0,d(p) =
N0,d(p)

(2d+p)!
.

By the recursion of [RT, Theorem 10.4],

n0,d(0) =
∑

d1+d2=d
d1,d2≥1

(d2−d1)d
2
1d2(2d2+1)

d(d−1)(2d−1)
n0,d1(0)n0,d2(1),

n0,d(1) =
d

2d+1
n0,d(0) +

∑

d1+d2=d
d1,d2≥1

d31d2(2d2+1)

d(2d−1)(2d+1)
n0,d1(0)n0,d2(1) ,

n0,d(p) =
d

2d+p
n0,d(p−1) +

∑

d1+d2=d
d1,d2≥1

∑

p1+p2=p
0≤pi≤2di

f(d1, d2, p1, p2)n0,d1(p1)n0,d2(p2),

n0,d(2d) =
1

2
n0,d(2d−1) +

∑

d1+d2=d
d1,d2≥1

d1d2(d(4d1−1)(4d2−1) + 8d1d2 − d)

8d(2d−1)(4d−1)
n0,d1(2d1)n0,d2(2d2),

where

f(d1, d2, p1, p2) =
(2d−1−p)!(2d1+p1)!(2d2+p2)!

(2d+p)!(2d1−p1)!(2d2−p2)!
(p2d1−p1d2)

(

d21

(

2p−2

2p1

)

− d22

(

2p−2

2p2

)

)

.

The first recursion above holds for d≥2, while the remaining ones are valid for all d≥1; the third
recursion is valid if 0<p<2d.

These recursions involve negative coefficients, even in the case of the first pair (which is a closed
pair of recursions). This makes obtaining a lower bound on the growth rather tricky.
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5 On the existence of the expansion (6)

Suppose F0 admits an expansion of the form

F0(x0+z) =
∞
∑

d=0

adz
d/2. (10)

The differential equation (4) is equivalent to

a1, a3 = 0 , (9+2a2−6a4)a5 = 0 ,

(9+2a2−6a4)
(d+2)(d+4)(d+6)

8
ad+6 = 2ad −

11(d+2)

2
ad+2 +

9(d+2)(d+4)

2
ad+4

−
∑

d1+d2=d
d1,d2≥0

(d1+1)(d1+3)(d1+5)(d2+3)

32
ad1+5

(

4ad2+3−3(d2+5)ad2+5

)

+
∑

d1+d2=d
d1,d2≥0

(d1+2)(d1+4)(d2+2)(d2+4)

16
ad1+4ad2+4 .

The last equation holds for all d≥0.

If F ′′′
0 (z) blows up as z−→x0 from the left, a5 6=0. In this case, the last two conditions above are

equivalent to

9+2a2−6a4 = 0 , −675

32
a25 = 2a0 − 11a2 + 36a4 + 4a24 , (11)

45(d+2)(d+3)(d+5)

32
a5ad+5 =

15(d+3)

8
a5ad+3 − 2ad +

11(d+2)

2
ad+2 −

9(d+2)(d+4)

2
ad+4

+
∑

d1+d2=d
d1,d2≥1

(d1+1)(d1+3)(d1+5)(d2+3)

32
ad1+5

(

4ad2+3−3(d2+5)ad2+5

)

−
∑

d1+d2=d
d1,d2≥0

(d1+2)(d1+4)(d2+2)(d2+4)

16
ad1+4ad2+4 ;

(12)

the last equation is valid for d≥1. For any fixed a0 and a2 such that

4a22 + 45a2 + 18a0 + 567 6= 0, (13)

these equations determine a4, two possible values for a5 ∈ C
∗, and ad for d ≥ 6. In particular,

|ad|≤|nd+5|, where
nd = C

(

1 + |a5|−1
)

∑

d1+d2=d
d1,d2≥1

d31d
3
2

d3
nd1nd2 ∀d ≥ 2

and n1 and C are sufficiently large.2 Thus, by Corollary 5 and (1), there exist A,C∈R
+ such that

|ad| ≤ C ′Ad
(

1 + |a5|−1
)d ∀ d∈Z

+ .

2Replace the defining equation for ad+5 by the inequality for the absolute values; then replace this inequality, by

a recursion with increasing terms; then use the increasing property to obtain a simpler recursion for some ãd+5 in

terms of ãd1+5ãd2+5 with d1+d2=d; finally change the index d+5 to d.
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It follows that (10) defines a singular solution of (4) on a neighborhood of z=x0 for any choice of
a0 and a2 such that (13) is satisfied.

If 4a22 + 45a2 + 18a0 + 567> 0, a2d ∈R and a2d+1 ∈ iR for all d, as can be seen by induction from
the defining equation for ad+5 above. Thus, F0(x)∈R for x∈ (x0−δ, x0+δ) for some δ∈R

+ and
F ′′′
0 (x) ∈ R

+ for all x ∈ (x0−δ, x0) for some δ∈ R
+ and one of the two possibilities for a5. If in

addition 0<a0<a2<a4/2, then

0 < F0(x) < F ′
0(x) < F ′′

0 (x) < F ′′′
0 (x) ∀x ∈ (x0−δ, x0) (14)

for some δ∈ (0, 1). If F0=F0(z) is any solution of (4) with Re z < x0 and |z−x0|<δ which is real
on (x0−δ, x0) and satisfies (14), then 9+2F ′

0−3F ′′
0 is a decreasing function on (x0−δ, x0). We show

below that in fact there is at most one such solution F0=F0(z) with

3F ′′
0 (x0) = 9+2F ′

0(x0) < ∞ ;

this implies that the function (3) admits an expansion of the form (10) with a1, a3=0 and a5 6=0.

Suppose F and G are solutions of (4) satisfying (14) with F0 replaced by F and G such that

F (x∗) = G(x∗), F ′(x∗) = G′(x∗), F ′′(x∗) < G′′(x∗)

for some x∗∈ (x0−1, x0); this implies that F ′′′(x∗)<G′′′(x∗). If F ′′′(x)<G′′′(x) for all x∈ (x∗, x′)
and some x′∈(x∗, x0), then

0 ≤ G′(x′)− F ′(x′) =

∫ x′

x∗

(

G′′(x)−F ′′(x)
)

dx ≤
(

G′′(x′)−F ′′(x′)
)

(x′−x∗) ≤ G′′(x′)−F ′′(x′).

It follows that

F (x) < G(x), F ′(x) < G′(x), F ′′(x) < G′′(x), F ′′′(x) < G′′′(x) ∀ x ∈ (x∗, x0); (15)

the first three inequalities also hold for x=x0 if F,G, F ′, G′, F ′′, G′′ are continuous at x=x0 from
the left.

For any δ∈R
+ and y=(y1, . . . , yn)∈C

n, let

Bδ(y) =
{

(y′1, . . . , y
′
n)∈C

n : |y′i−yi|<δ ∀ i=1, 2, . . . , n
}

, BR

δ (y) = Bδ(y) ∩ R
n .

Suppose a0, a2∈R are such that

0 < a0 < a2 <
9

10
, 4a22 + 45a2 + 18a0 + 567>0.

Choose δ∈(0, 1) such that for all (a′0, a
′
2)∈Bδ(a0, a2)

0 < Re a′0 < Re a′2 <
9

10
, Re

(

4a′22 +45a′2+18a′0+567
)

> 0,
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the series F0 in (10) converges whenever its coefficients are given by (11) and (12) with a1, a3=0
and (a0, a2) replaced by (a′0, a

′
2), and the corresponding function Fa′

0
,a′

2
satisfies (14) if (a′0, a

′
2)∈R.

In particular,

lim
z−→x0

Fa′
0
,a′

2
(z) = a′0, lim

z−→x0

F ′
a′
0
,a′

2
(z) = a′2, lim

z−→x0

F ′′
a′
0
,a′

2
(z) =

3

2
+

1

3
a′2 , (16)

=⇒ 9 + 2F ′
a′
0
,a′

2
(x)− 3F ′′

a′
0
,a′

2
(x) > 0 if (a′0, a

′
2)∈R

2, x∈(x0− δ, x0). (17)

By (15) and (16), the restriction of the map

Φ: Bδ(x0, a0, a2) −→ C
3, (z, a′0, a

′
2) −→

(

z, Fa′
0
,a′

2
(z), F ′

a′
0
,a′

2
(z)
)

,

to BR

δ (x0, a0, a2) is an injective map to R
3. Since Φ is a holomorphic map, the differential of

Φ is nonsingular at (x0, a0, a2) by the Weierestrass Preparation Theorem [GH, p8]. Thus, Φ is
biholomorphic onto an open neighborhood Vx0

of (x0, a0, a2) in C
3 if δ∈R

+ is sufficiently small by
the Inverse Function Theorem [GH, p18]. Its inverse is given by

Vx0
−→ Bδ(x0, a0, a2), (z, a′0, a

′
2) −→

(

z,Ψ(z, a′0, a
′
2)
)

,

for some holomorphic map Ψ: Vx0
−→C

2. Let δ′∈R
+ be such that Bδ′(x0, a0, a2)⊂Vx0

.

Suppose F0=F0(z) is any solution of (4) defined for z∈Bδ(x0) with Re z<x0 such that F0(x)∈R

for all x∈(x0− δ, x0), (14) is satisfied, and

lim
x−→−x0

F0(x) = a0 , lim
x−→−x0

F ′
0(x) = a2 , lim

x−→−x0

F ′′
0 (x) =

3

2
+

1

3
a2 , lim

x−→−x0

F ′′′
0 (x) = ∞ .

If x∗∈(x0−δ′, x0) is sufficiently close to x0, then

(a′0, a
′
2) ≡

(

F0(x
∗), F ′

0(x
∗)
)

∈ BR

δ′(a0, a2) .

If F ′′
Ψ(x∗,a′

0
,a′

2
)(x

∗)<F ′′
0 (x

∗), choose y∈R
+∩Bx0−x∗(0) so that

F ′′
Ψ(x∗+y,a′

0
,a′

2
)(x

∗+y) < F ′′
0 (x

∗).

Since (4) is a homogeneous differential equation, the function

{

z∈Bδ(x0−y) : Re z < x0−y
}

−→ C, G(z) = FΨ(x∗+y,a′
0
,a′

2
)(z+y),

is a solution of (4) satisfying

G(x∗) = a′0 = F0(x
∗), G′(x∗) = a′2 = F ′

0(x
∗) , G′′(x∗) = FΨ(x∗+y,a′

0
,a′

2
)(x

∗+y) < F ′′
0 (x

∗).

Furthermore, G is real on (x0−y−δ, x0−y) and satisfies (14) with F0 replaced by G and x0 by x0−y,
and G′′′(x)−→∞ as x−→x0−y from the left. However, this is impossible, since

G′′′(x) < F ′′′
0 (x) ∀x∈(x∗, x0−y)

according to (15). If F ′′
Ψ(x∗,a′

0
,a′

2
)(x

∗)>F ′′
0 (x

∗), choose y∈R
+∩Bx∗−(x0−δ)(0) so that

F ′′
Ψ(x∗−y,a′

0
,a′

2
)(x

∗−y) > F ′′
0 (x

∗).
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The function

{

z∈Bδ(x0+y) : Re z < x0+y
}

−→ C, G(z) = FΨ(x∗−y,a′
0
,a′

2
)(z−y),

is a solution of (4) satisfying

G(x∗) = a′0 = F0(x
∗), G′(x∗) = a′2 = F ′

0(x
∗) , G′′(x∗) = FΨ(x∗−y,a′

0
,a′

2
)(x

∗−y) > F ′′
0 (x

∗).

Furthermore, G is real on (x0+y−δ, x0+y) and satisfies (14) with F0 replaced by G and x0 by x0+y.
However, this is impossible, since F ′′′

0 (x)−→∞ as x−→x0, while

G′′′(x) > F ′′′
0 (x) ∀x∈(x∗, x0)

according to (15). Finally, suppose F ′′
0 (x

∗)=F ′′
Ψ(x,a′

0
,a′

2
)(x

∗). Since

9 + 2F ′
Ψ(x∗,a′

0
,a′

2
)(x

∗)− 3F ′′
Ψ(x∗,a′

0
,a′

2
)(x

∗) > 0

by (17), the differential equation (4) with F0 replaced by G has a unique solution satisfying

G(x0) = a′0 , G′(x0) = a′2 , G′′(x0) = F ′′
Ψ(x,a′

0
,a′

2
)(x

∗).

Thus, F0=FΨ(x∗,a′
0
,a′

2
). By the limiting conditions on F0 and F ′

0 above, Ψ(x∗, a′0, a
′
2)=(a0, a2), as

required.

For the purposes of Section 3, we note that

9 + 2F ′
0(x0+z)− 3F ′′

0 (x0+z) = z1/2
∞
∑

d=0

d+3

4

(

4ad+3 − 3(d+5)ad+5

)

zd/2.

In particular, the coefficient of the leading term above is −45a5/4 6= 0.

6 Some thoughts on Conjecture 6

The property of Conjecture 6 appears to be independent of the exact nature of f(d1, d2). In the
given case, it looks like d21d

2
2/d

2. What seems to matter is that the degree of the polynomial on
top in each variable separately (2 in this case) is at least as large as the degree of the polynomial
in d at the bottom.

For example, if

f(d1, d2) = a
dk1d

k
2

dk
,

for a ∈ R
+ and k ∈ R

≥0, then

nd =
(2d−2)!

d!(d−1)!

1

adk
(

n1a
)d

.

Thus, the eventually increasing property in this case is equivalent to

2d−2
∑

r=d+1

ln r −
d−1
∑

r=1
ln r − ln a− k ln d

d
<

2d
∑

r=d+2

ln r −
d
∑

r=1
ln r − ln a− k ln(d+1)

d+ 1
∀ d ≥ d∗.
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This is equivalent to

d ln(d+1) +
2d−2
∑

r=d+1

ln r −
d−1
∑

r=2

ln r − ln a+ k
(

d ln(1 +
1

d
)− ln d

)

< d ln(2d− 1) + d ln 2. (18)

Since lnx is an increasing function,

2d−2
∑

r=d+1

ln r <

∫ 2d−1

d+1
lnx = (x lnx− x)

∣

∣

∣

2d−1

d+1
= (2d−1) ln(2d−1)− (d+1) ln(d+1)− (d−2),

d−1
∑

r=2

ln r >

∫ d−1

1
lnx = (x lnx− x)

∣

∣

∣

d−1

1
= (d−1) ln(d−1)− (d−2).

Thus, the left-hand side of (18) is bounded by

(2d−1) ln(2d−1)− (d−1) ln(d−1)− ln(d+1)− ln a− k
(

ln d− 1
)

≤ d ln(2d−1) + (d−1) ln 2 + (d−1) ln
(

1 +
1

2(d−1)

)

− ln(d+1)− ln a

≤ d ln(2d−1) + (d−1) ln 2 +
1

2
− ln(d+1)− ln a ≤ d ln(2d−1) + d ln 2− ln(d+1)− ln a.

For d sufficiently large, the combination of the last two terms is negative, which establishes the
claim in this case.

It seems that the dependence of the property of Conjecture 6 only on the asymptotic behavior of
f(d1, d2) may be related to the following statement. Let p(q) ∈ qR[q] be a polynomial with positive
coefficients and vanishing constant term. Define the numbers nd by

∞
∑

d=1

ndq
d =

∞
∑

d=1

(2d−2)!

d!(d−1)!

1

adk
qd
(

1 + p(q)
)d

.

It appears that the numbers d
√
nd are eventually increasing. In other words, this property is

invariants under the change of variables,

q −→
(

1 + p(q)
)

q

if p(q) is a polynomial with positive coefficients and vanishing constant term. For the asymptotic
behavior conclusion, p(q) would perhaps need to be a power series with coefficients declining suffi-
ciently quickly (perhaps a convergent one?)
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