
Math53: Ordinary Differential Equations
Autumn 2004

Unit 4 Summary

Systems of Linear ODEs

Extremely Important: linear independence; basis for a vector space; matrix invertability and de-
terminants; characteristic polynomial of a matrix; eigenvalues and eigenvectors; generalized eigen-
vectors and eigenspaces; matrix exponential.

Very Important: solving systems of linear first-order ODEs with constant coefficients, homoge-
neous and inhomogeneous; phase-plane sketches for planar autonomous systems of linear first-order
ODEs with constant coefficients; stability of the origin as an equilibrium point of such systems;
fundamental matrix; structure of solutions of homogeneous and inhomogeneous systems of linear
first-order ODEs.

Important: high-order ODEs and systems of first-order ODEs; real form of general solution for
systems with complex eigenvalues; uniqueness and existence theorem for systems of linear ODEs.

Linear Algebra

Throughout this section A denotes an n×n matrix:

A =







a11 . . . a1n

...
...

an1 . . . ann







(1) Matrix A is nonsingular if for every v∈R
n, there exists x∈R

n such that

Ax = v or







a11 . . . a1n

...
...

an1 . . . ann













x1

...
xn






=







c1

...
cn






if x =







x1

...
xn






, v =







c1

...
cn






.

Matrix A is invertible if it has an inverse, i.e. there exists a matrix B such that AB = I = BA,
where I = In is the identity matrix. If AB = I, then BA = I, provided that A and B are square
matrices. If AB =I and AC =I, then B =C. Thus, if A has an inverse, it is unique, and denoted
by A−1. Furthermore,

A is nonsingular ⇐⇒ A is invertible ⇐⇒ detA 6= 0

If det A 6= 0, in the n=2 case A−1 is given by

A =

(

a b
c d

)

=⇒ A−1 = 1
det A

(

d −b
−c a

)

, detA = ad − bc



In general, there is a three-step procedure for computing A−1. The last step of this procedure
involves division by det A. If A and B are square matrices,

det (AB) = (det A) · (det B) = det (BA), but det (A+B) 6= (det A) + (detB)

(2) The set of vectors v1, . . . ,vk in R
n, or in any vector space, is linearly independent if

c1v1 + . . . + ckvk = 0, c1, . . . , ck ∈ R (or C) =⇒ c1, . . . , ck = 0.

In other words, no nontrivial linear combination of the vectors v1, . . . ,vk is the zero vector 0. The
set of vectors v1, . . . ,vn in R

n, or in any vector space V , is a basis for R
n, or for V , if for every v

in R
n, or in V , there exists a unique tuple (c1, . . . , cn) such that

v = c1v1 + . . . + cnvn.

Equivalently, the set of vectors v1, . . . ,vn is a basis for V if the vectors v1, . . . ,vn are linearly
independent and span V , i.e. for every v in V , there exists a tuple (c1, . . . , cn) such that

v = c1v1 + . . . + cnvn.

Can you show that these two definitions are equivalent? In the case of R
n:

(i) {v1, . . . ,vn} is a linearly independent set of vectors in R
n if and only if

(ii) {v1, . . . ,vn} is a basis for R
n if and only if

(iii) det





| . . . |
v1 . . . vn

| . . . |



 6= 0.

(3) An eigenvector v for A with eigenvalue λ∈R is a nonzero column n-vector such that

Av = λv or







a11 . . . a1n

...
...

an1 . . . ann













c1

...
cn






= λ







c1

...
cn






=







λc1

...
λcn






if v =







c1

...
cn







If v is an eigenvector for A with eigenvalue λ, so is cv for any number c. If v1 and v2 are eigen-
vectors for A with the same eigenvalue λ, so is v1+v2. If v1, . . . ,vk are eigenvectors for A with
distinct eigenvalues λ1, . . . , λk, i.e. λi 6= λj whenever i 6= j, the vectors v1, . . . ,vk are linearly in-
dependent. If some of these eigenvalues are the same, the vectors v1, . . . ,vk may or may not be
linearly independent.

(4) The eigenvalues of A are the roots of the characteristic polynomial for A:

det
(

A−λI) = det











a11−λ a12 . . . a1,n−1 a1n

a21 a22 − λ a2n

...
...

an1 an2 . . . an,n−1 ann−λ










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However, repeated roots of the characteristic polynomial may or may not correspond to different
linearly independent eigenvectors. If the multiplicity of a root λ of the characteristic polynomial
is q, there exist q linearly independent generalized eigenvectors v1, . . . ,vq for A with eigenvalue
λ, i.e.

(A−λ)rvi = 0 for some r

In fact, r = q works in the given case. If vi is an actual eigenvector, r = 1 suffices, by definition.
Furthermore, v1, . . . ,vq can be chosen in such a way that

Av1 = λv1 and Avi+1 = vi + λvi+1 for i = 1, 2, . . . , q−1.

Thus, it is always possible to find a basis {v1, . . . ,vn} of generalized eigenvectors for A such that

Avi = λivi + aivi−1, where ai =0 or ai =1, ai =0 if i=1 or λi−1 6=λi,

where λi is the eigenvalue corresponding to the generalized eigenvector vi. Then,

A = BDB−1, where D =











λ1 a2 0 . . .
0 λ2 a3 . . .
... . . .

. . .
. . .

0 . . . 0 λn











and B =





| . . . |
v1 . . . vn

| . . . |



 . (1)

Can you check this? The above basis v1, . . . ,vn and matrix B, however, may be complex. In such
a case, v1, . . . ,vn is a C-basis for C

n, not an R-basis for R
n.

(5) If A is an n×n matrix, the exponential of A is the n×n matrix given by

eA = In + 1
1!

A + 1
2!

A2 + 1
3!

A3 + . . . =
k=∞
∑

k=0

1
k!

Ak where A0 =In, A2 =AA, A3 =AAA, . . .

Note that this is the same power series as for ea, if a is a real or complex number. By definition,
if A is the zero matrix, eA =In. Another property of the matrix exponential is

If AB = BA, then eA+B = eAeB = eBeA (2)

Using this property, we can conclude that
(i) eA is an invertible matrix and (eA)−1 = e−A;
(ii) if H(t) = etA, then H ′(t)=AH(t)=H(t)A.

If A is a diagonal matrix, then eA is also a diagonal matrix, and the diagonal entires of eA are the
exponentials of the corresponding diagonal entries of A. For example,

A =





λ1 0 0
0 λ2 0
0 0 λ3



 =⇒ eA =





eλ1 0 0
0 eλ2 0
0 0 eλ3





However, if A is not a diagonal matrix, the entries of eA are not usually the exponentials of the
entries of A, and it may be very hard to determine them directly from the power series definition
of the exponential. On the other hand, it may be possible to find a basis {v1, . . . ,vn} for R

n, or
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C
n, such that eAvi is easy to compute for each i. Since {v1, . . . ,vn} is a basis, an arbitrary vector

v has the form

v = C1v1 + . . . + Cnvn, C1, . . . , Cn ∈ C =⇒ eAv = C1e
Av1 + . . . + CneAvn.

This is usually sufficient for solving systems of linear ODEs with constant coefficients. The product
eAvi can be computed for generalized eigenvectors of A. For example,

Av1 = λv1, Av2 = av1 + λv2 =⇒ eAv1 = eλv1, eAv2 = aeλv1 + eλv2 (3)

These two relations are sufficient for the n=2 case.

(6) In order to compute eA for an arbitrary square matrix, one makes use of the relation

eBDB−1

= BeDB−1

and (eq1). The exponential of the matrix D as in (eq1) can be computed directly from the
definition. This approach is analogous to the one described in Section 9.8: if {y1(t), . . . ,yn(t)} is
a fundamental set of solutions for the ODE, then

Y (t) =





| . . . |
y1(t) . . . yn(t)
| . . . |



 =⇒ etA = Y (t)Y (0)−1 (4)

On the other hand, if A has only one eigenvalue λ, (A−λI)n is the zero matrix, and the power
series for the exponential of A−λI quickly truncates. Since λI commutes with all matrices, one
can compute eA by using (eq2) with A=λI and B=A−λI.

Systems of Linear ODEs with Constant Coefficients

(1) A system of first-order linear ODEs with constant coefficients can be written as

y′ = Ay + f , y=y(t) =







y1(t)
...

yn(t)






, where A =







a11 . . . a1n

...
...

an1 . . . ann






, f = f(t) =







f1(t)
...

fn(t)






.

This system is called homogeneous if f = 0. A system of first-order linear ODEs with constant
coefficients can be solved by the integrating factor method for first-order linear ODEs:

y′ = Ay + f =⇒ y(t) = etAv + etA
∫ t

t0
e−sAf(s) ds, v ∈ R

n (5)

Note that the function yh =yh(t) defined by (eq5) with f =0, i.e. the first term on the right-hand
side, is the general solution of the corresponding homogeneous system of ODEs. Thus, the general
solution to an inhomogeneous system of ODEs is given by

y′ = Ay + f =⇒ y = yp + yh (6)
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where yp is a solution to the inhomogeneous system, e.g. the function y corresponding to v = 0

to (eq5). The relation (eq6) is valid for any system of linear ODEs, with constant or non-constant
coefficients.

(2) The main difficulty in solving a system of linear ODEs with constant coefficients is dealing
with the terms in (eq5) involving etA. This is not difficult to do if there is a basis for R

n, or C
n,

of eigenvectors for A:

y′ = Ay =⇒ y(t) = C1e
λ1tv1 + . . . + Cneλntvn, C1, . . . , Cn ∈ R (or C)

if {v1, . . . ,vn} is a basis for R
n (or C

n) and Av1 = λ1v1, . . . , Avn = λnvn
(7)

(3) If we are looking for real solutions, we will need to rewrite (eq7) in a different way if some of
the eigenvalues λi are complex, and not real. If vi is an eigenvector for A with eigenvalue λi and
λi is complex, v̄i is an eigenvector for A with eigenvalue λ̄i and the vectors vi and v̄i are linearly
independent. Thus, if n = 2 and A has an eigenvector v1 with a complex eigenvalue λ1, then
the two eigenvalues of A are complex conjugates, λ1, λ2 = a±ib, and C

2 has a basis of conjugate
eigenvectors {v1,v2 =w1±iw2}. The general solution in this case can be written as

y′=Ay =⇒
y(t) =

(

A1 cos bt+A2 sin bt
)

eatw1 +
(

A2 cos bt−A1 sin bt
)

eatw2,

= eat(w1 w2)

(

cos bt sin bt
− sin bt cos bt

)(

A1

A2

)

A1, A2∈R (or C)

if λ1 =a+ib, b 6=0, v1 =w1+iw2 6= 0, and Av1 = λ1v1

This expression is obtained by setting C1, C2 =(A1∓iA2)/2 in (eq7). Note that if A1 and A2 are
arbitrary complex constants, so are C1 and C2. On the other hand, the solution corresponding to
A1 and A2 is real if and only if A1 and A2 are real.

(4) Another potential problem with (eq7) is that R
n, or C

n, may not have a basis of eigenvectors
for A. If so, we can use a basis of generalized eigenvectors. If n=2 and A has only one eigenvalue λ,
by (eq3),

y′ = Ay =⇒ y(t) =
(

C1e
λt+C2ateλt

)

v1 + C2e
λtv2, C1, C2 ∈ R (or C)

if v1,v2 are lin. indep., Av1 = λv1, and Av2 = av1+λv2

Once an eigenvector v1 for the eigenvalue λ is found, v2 can be taken to be any vector in R
2 which

is not a multiple of v1, and the number a is determined by computing Av2.

(5) The general solution to an inhomogeneous system of linear first-order ODEs with constant-
coefficients is given by (eq5), or more generally by

y′ = Ay + f =⇒ y(t) = (etAB)v + (etAB)
∫ t

t0
(esAB)−1f(s) ds, v ∈ R

n (8)

for any invertible n×n-matrix B. For a good choice of B, the product etAB may be easier to
compute than etA. For example,

y′ = Ay + f =⇒ y(t) = Y (t)v + Y (t)
∫ t

t0
Y (s)−1f(s) ds, v ∈ R

n

if Y =Y (t) is a fundamental matrix for y′ = Ay as in (eq4)
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(6) A solution to an initial value problem can be obtained directly by

y′ = Ay + f , y(t0) = y0 =⇒ y(t) = etA
(

e−t0Ay0 +
∫ t

t0
e−sAf(s) ds

)

More generally, if Y =Y (t) is any fundamental matrix for y′=Ay,

y′ = Ay + f , y(t0) = y0 =⇒ y(t) = Y (t)
(

Y (t0)
−1y0 +

∫ t

t0
Y (s)−1f(s) ds

)

CAUTION: What determines whether the general solution of y′ = Ay involves a term with an
extra t, e.g. teλt, is NOT whether A has multiple eigenvalues, but whether it is possible, or not, to
find enough eigenvectors of A to form a basis for R

n. For example, the matrices

A1 =

(

1 0
0 1

)

and A2 =

(

1 1
0 1

)

both have a double (generalized) eigenvalue of λ=1 and an eigenvector

v1 =

(

1
0

)

.

The first matrix also has

v2 =

(

0
1

)

,

as well any other nonzero vector, as an eigenvector. Thus, it is possible to find a basis of eigenvectors
for A1 and the general solution of y′ = A1y will not involve an extra t. On the other hand, it is
impossible to find an eigenvector for A2 which is linearly independent of v1. Thus, the general
solution of y′=A2y will involve an extra t. Since

A2v2 = 1 · v1 + λ · v2,

from (2) and (4) above we conclude that

y′ = A1y =⇒ y(t) = C1e
tv1 + C2e

tv2

y′ = A2y =⇒ y(t) = (C1+C2t)e
tv1 + C2e

tv2.

Both of these expressions are in fact special cases of (4), with a = 0 in the first case and a= 1 in
the second case.

Qualitative Descriptions

(1) As is the case for linear ODEs, every initial-value problem

y′ = Ay + f , y(t0) = y0, A = A(t), f = f(t), (9)
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has a unique solution, provided the functions A and f are continuous near t0. Furthermore, the
interval of the existence of the solution to (eq9) is the largest interval on which A and f are defined.
If A is a constant matrix, it follows that the phase-space solution curves for the system y′=Ay do
not intersect. Can you explain why?

(2) Every homogeneous system of linear ODEs y′=Ay has an equilibrium solution, y(t)=0. This
solution can be asymptotically stable, stable, or unstable. If A is a constant matrix and the real
part of every eigenvalue of A is negative, all solutions y=y(t) approach 0 at t−→∞, and thus 0

is an asymptotically stable equilibrium point of the system. If the real parts of some eigenvalues
of A are negative and of the others are zero, some solutions y=y(t) approach 0 at t−→∞, while
others approach closed orbits. In this case, 0 is a stable equilibrium point of the system, as every
solution starting near 0 stays near 0. Finally, if the real part of at least one eigenvalue of A is
positive, some solutions y =y(t) move away from 0 and approach ∞ at t−→ 0, and thus 0 is an
unstable equilibrium point of the system.

(3) If A is a constant matrix, the system y′=Ay is autonomous, i.e. it does not involve t explicitly.
Thus, if y=y(t) is a solution to this system, so is ỹ(t)=y(t−c). The latter solution traces the same
curve y(t) in R

n, but is delayed by time c. For this reason, the qualitative behavior of solutions of
y′=Ay is well represented by the non-intersecting curves y(t) traced out in the phase space, i.e. R

n.

(4) While systems of first-order ODEs arise in applications by themselves, they can also be used
to replace high-order ODEs. For example, the initial value problem

y′′′ + y′y′′ + ty = 0, y(t0) = y0, y′(t0) = y1, y′′(t0) = y2,

is equivalent to the initial value problem





y
u
v





′

=





u
v

−uv − ty



 , y(0) =





y(0)
u(0)
v(0)



 =





y0

y1

y2



 .

Can you explain why? Such replacements are often useful, because many numerical methods and
methods of qualitative analysis apply only to first-order ODEs and systems of first-order ODEs.

Phase-Plane Portraits for Autonomous Systems

(1) In general, a solution y=y(t) to a system of ODEs, such as y′=Ay+f , is a vector-valued func-
tion. In other words, y(t) is a point in R

n for each t. As the time t changes, the point y(t) traces
a curve in the phase space R

n, i.e. the space of all possible states y. Such curves are phase-space
solution curves for the ODE. They do not specify what y(t) is at a given moment t, but they do
show all values of y(t) taken as t changes from −∞ to ∞. If the system is autonomous, i.e. does not
involve t explicitly, such as y′ =Ay, the phase-space solution curves do not intersect. Below there
is a discussion of what phase-plane portraits look like for A=2×2 const in the most important cases.
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(2) First, suppose A has two distinct real nonzero eigenvalues, λ1 and λ2. Let v1 and v2 be
corresponding eigenvectors. In this case, the general real solution is given by

y(t) = C1e
λ1tv1 + C2e

λ2tv2, C1, C2 ∈ R. (10)

The phase-plane portraits in the three main cases are shown below.

λ1 <λ2 <0

x

y

v1

v2

0 asympt. stable

λ1 <0<λ2

x

y

v1

v2

0 unstable

0<λ1 <λ2

x

y

v1

v2

0 unstable

In all three portraits, the origin y=0 is an equilibrium point, as is the case for all homogeneous
linear equations y′ = Ay. This one-point solution curve corresponds to C1 = C2 = 0 in (eq10).
All three portraits feature four distinguished rays, which correspond to the two eigenspaces of the
matrix A, i.e. to the linear spans of the eigenvectors v1 and v2. The two v1-rays are the solution
curves for the ODE described by (eq10) with C1 6=0 and C2 =0. Similarly, the two v2-rays are the
solution curves described by (eq10) with C1 =0 and C2 6=0.

If C1, C2 6= 0, the second term in (eq10) dominates the first as t −→∞. Thus, the second term
determines the slopes of the solution curves for C1, C2 6=0 as t−→∞. In other words, as t−→∞,
such solution curves come closer and closer to being parallel to the v2-line. Similarly, as t−→−∞,
these solution curves come closer and closer to being parallel to the v1-line. In the case of the
middle sketch, these solution curves also approach the corresponding line. However, this is the
case only in one of the two cases, t−→∞ or t−→−∞, in the first and the last sketch.

For example, in the last sketch, as t−→∞, the second term in (eq10) becomes much bigger than
the first, but the first one is getting bigger and bigger nevertheless. Thus, the expression in (eq10)
does not approach the second term as t−→ 0. On the other hand, as t−→−∞, the second term
approaches zero much faster than the first term does. Thus, any solution curve with C1, C2 6= 0,
“leaves” the origin tangent to the v1-line.

Can you sketch the phase-plane portrait if one of the eigenvalues is zero?
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(3) Next, suppose that

A =

(

∗ b
c ∗

)

has a complex eigenvalue λ1. A corresponding eigenvector v1 must then also be complex. Further-
more, v2 = v̄1 is an eigenvector of A with eigenvalue λ2 = λ̄1. The general complex solution of the
ODE y′=Ay is given by (eq10), with C1, C2∈C. We can extract the general real solution as done
above and in Section 9.2. However, in order to sketch the corresponding phase-plane portrait, the
only information we need to know is the real part of the eigenvalues and the lower-left entry of the
matrix A, i.e. c. All six possible phase-plane portraits are shown below.

c < 0

Re λ < 0

x

y

Re λ = 0

x

y

Re λ > 0

x

y

c > 0
x

y

0 asympt. stable

x

y

0 stable

x

y

0 unstable

All spirals make infinitely many loops around the origin, going away and toward the origin. The
radii increase by a fixed factor with each full rotation. Note that the direction of rotation, i.e. pos-
itive (counterclockwise) or negative (clockwise), is the same as the sign of c.

Can you explain why the phase-plane portraits look as depicted above? What can you say about the
direction of rotation if c=0?
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(4) Finally suppose that

A =

(

∗ b
c ∗

)

has a double eigenvalue λ1, λ2 =λ, and the λ-eigenspace is 1-dimensional. Let v1 be an eigenvector.
If v2 is a vector linearly independent of v1, the general solution of y′=Ay is described by

v2 = av1 + λv2 =⇒ y(t) =
(

C1+C2at
)

eλtv1 + C2e
λtv2, C1, C2 ∈ R. (11)

The phase-plane portraits in the four main cases are shown below.

c<0 or b>0

λ < 0

x

y

v1

λ > 0

x

y

v1

c>0 or b<0 x

y

v1

0 asympt. stable

x

y

v1

0 unstable

Note that in this case the phase-plane portraits are “half”-way between a nodal sink/source and a
spiral sink/source. In particular, they all feature two opposite rays, but not four, directed accord-
ing to the sign of the eigenvalue. There is a half-rotation, instead of infinitely many full ones, in
each of them. The direction of rotation is determined by either of the off-diagonal entries of A,
according to the same rule as in the complex-eigenvalues case. The difference is that the c-test for
the direction of rotation always suffices in the complex-eigenvalues case, but not in this case. So,
we may sometimes need to use the b-test for the direction of rotation, which is less natural, since
negative/positive b means positive/negative rotation.

Can you sketch the phase-plane portrait if λ=0? What can you say about the direction of rotation
if b and c are both negative/zero/positive?
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