
Math53: Ordinary Differential Equations
Autumn 2004

Problem Set 8 Solutions

As this last problem set is the culmination of the course, you are very much encouraged to study
these solutions in detail. At the very least, please look over the problems involving sketches, espe-
cially 10.3:16. Good luck on the final exam!

Section 10.1: 2,8,19a,20 (32pts)

10.1:2; 10pts: Sketch the nullclines for the system
{

x′ = x(6 − 2x − 3y) = f(x, y)

y′ = y(1 − x − y) = g(x, y)

Find the equilibrium points for the system and label them on your sketch with their coordinates.
Use the Jacobian to classify each equilibrium point.
The x-nullcline is defined by the equation x′ = 0 or x(6−2x−3y) = 0. It consists of the two lines
x=0 and 2x+3y=6. The y-nullcline is defined by the equation y′=0 or y(1−x−y)=0. It consists
of the two lines y =0 and x+y=1. The equilibrium points are the intersections of the x-nullcline
with the y-nullcline:

{

x′ = 0

y′ = 0
⇐⇒

{

x(6−2x−3y) = 0

y(1−x−y)=0
⇐⇒

{

x=0 or 2x+3y=6

y=0 or x+y=1

⇐⇒ (x, y) = (0, 0), (0, 1), (3, 0), or

{

2x+3y=6

x+y=1

Thus, the equilibrium points are (0, 0), (0, 1), (3, 0) and (−3, 4); see the first sketch in Figure 1.
The Jacobian in this case is:

J(x, y) =
∂(f, g)

∂(x, y)
=

(

fx fy

gx gy

)

=

(

6 − 4x − 3y −3x
−y 1 − x − 2y

)

.

The type of each equilibrium point (xi, yi) is determined by the eigenvalues of the matrix J(xi, yi),
provided the eigenvalues are distinct and have nonzero real parts:

J(0, 0) =

(

6 0
0 1

)

=⇒ λ1 = 6, λ2 = 1 =⇒ (0, 0) is a nodal source

J(0, 1) =

(

3 0
−1 −1

)

=⇒ λ1 = 3, λ2 = −1 =⇒ (0, 1) is a saddle

J(3, 0) =

(

−6 −9
0 −2

)

=⇒ λ1 = −6, λ2 = −2 =⇒ (3, 0) is a nodal sink

J(−3, 4) =

(

6 9
−4 −4

)

=⇒ λ2 − 2λ + (−24 + 36) = 0 =⇒ λ1, λ2 = 1 ±
√

1 − 12 = 1 ± i
√

11

=⇒ (−3, 4) is a spiral source
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Figure 1: Phase-Plane Plot for Problems 10.1:2,8,20

10.1:8; 9pts: Sketch the nullclines for the system
{

x′ = y,

y′ = − cos x − 0.5y

Find the equilibrium points for the system and label them on your sketch with their coordinates.
Use the Jacobian to classify each equilibrium point.
The x-nullcline is defined by the equation x′=0 or y=0. The y-nullcline is defined by the equation
y′=0 or −cos x −0.5y = 0. The equilibrium points are the points of intersection of the nullclines:

{

x′ = 0

y′ = 0
⇐⇒

{

y = 0

y = −2 cos x
⇐⇒

{

y = 0

cos x = 0

Thus, the equilibrium points are (π
2+kπ, 0), where k is any integer; see the second sketch in Figure 1.

The Jacobian in this case is:

J(x, y) =
∂(f, g)

∂(x, y)
=

(

fx fy

gx gy

)

=

(

0 1
sin x −0.5

)

.

Thus,

k even =⇒ J
(π

2
+kπ, 0

)

=

(

0 1
1 −0.5

)

=⇒ λ2 + .5λ − 1 = 0 =⇒ λ1, λ2 =
−.5 ±

√
.25+4

2

=⇒ (π
2 +kπ, 0) is a saddle

k odd =⇒ J
(π

2
+kπ, 0

)

=

(

0 1
−1 −0.5

)

=⇒ λ2 + .5λ + 1 = 0 =⇒ λ1, λ2 =
−.5 ±

√
.25−4

2

=⇒ (π
2 +kπ, 0) is a spiral sink

10.1:19a; 3pts: The polar coordinates of a point P with Cartesian coordinates (x, y) are (r, θ),
where r is the radial length and θ is the angle with the positive x-axis. Using the relations:

x = r cos θ, y = r sin θ, and r2 = x2 + y2, tan θ =
y

x
,
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prove that:

r
dr

dt
= x

dx

dt
+ y

dy

dt
,

dθ

dt
=

1

r2

(

x
dy

dt
− y

dx

dt

)

Differentiating both sides with respect to t, we get:

r2 = x2 + y2 =⇒ 2r
dr

dt
= 2x

dx

dt
+ 2y

dy

dt
=⇒ r

dr

dt
= x

dx

dt
+ y

dy

dt

tan θ =
y

x
=⇒ 1

cos2 θ

dθ

dt
=

1

x2
(x

dy

dt
− y

dx

dt
) =⇒ dθ

dt
=

1

r2

(

x
dy

dt
− y

dx

dt

)

.

10.1:20; 10pts: The origin is an isolated equilibrium point of the system

{

x′ = −y − x3,

y′ = x

(a; 4pts) Compute the linearization of the system near the origin. What kind of equilibrium point
is predicted by this linearization?
The linearization near the origin is y′ = J(0, 0)y. The Jacobian in this case is:

J(0, 0) =

(

−3x2 −1
1 0

)

=

(

0 −1
1 0

)

.

The characteristic polynomial for the matrix is λ2 +1 = 0; its roots are λ1, λ2 = ±i. Thus, the
origin is a center for the linearization of the system at the origin; the direction of rotation is
counterclockwise. This implies that the origin is either a center, a spiral source, or a spiral sink for
the original system; the direction of rotation has to be counterclockwise.
(c; 1pt) Show that r′=−x4/r.
By 10.1:19a,

rr′ = xx′ + yy′ = x(−y − x3) + yx = −x4 =⇒ r′ = −x4

r

(d; 2pts) Show that θ′ = 1 + x3y/r2 and that x3y

r2 −→0 as r−→0.
By 10.1:19a,

r2θ′ = xy′ − yx′ = x2 − y(−y − x3) = r2 + x3y =⇒ θ′ = 1 +
x3y

r2
.

Since | cos θ|≤1 and | sin θ|≤1, by 10.1:19,

∣

∣

∣

x3y

r2

∣

∣

∣
=

∣

∣

∣

(r3 cos3 θ)(r sin θ)

r2

∣

∣

∣
≤ r2 =⇒ lim

r−→0

x3y

r2
= 0.

(e; 3pts) Use the above to explain the behavior of solution trajectories for the system near the
origin.
By (c), r′(t)<0, unless θ= π

2 +πk for k∈Z. Thus, r is nonincreasing. By (d),

1 − r2 ≤ θ′(t) ≤ 1 + r2.
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Thus, for r <1, θ is strictly increasing. It follows that for r <1, solution curves spiral toward the
origin counterclockwise; see the last sketch in Figure 1. In particular, the origin is a spiral sink.
However, the radius does not drop nearly as quickly with each period of rotation as it does for a
planar system with complex eigenvalues with negative real part.

Section 10.2:4 (8pts)

Find the equilibrium points of the system

{

x′ = x + y,

y′ = y(1 − x2)

and analyze their stability.
The coordinates (x, y) of each equilibrium point satisfy the system

{

x′ = 0

y′ = 0
⇐⇒

{

x + y = 0

y(1 − x2) = 0
⇐⇒

{

y = 0, or x = 1, or x = −1

y = −x.

Thus, there are three equilibrium points: (0, 0), (1,−1) and (−1, 1). The Jacobian in this case is

J(x, y) =
∂(f, g)

∂x, y
=

(

fx gx

gx gy

)

=

(

1 1
−2xy 1−x2

)

.

The equilibrium point (xi, yi) is unstable if the real part of an eigenvalue of J(xi, yi) is positive. It
is asymptotically stable if the real part of every eigenvalue of J(x,yi) is negative:

J(0, 0) =

(

1 1
0 1

)

=⇒ λ1 = λ2 = 1 > 0 =⇒ (0, 0) is unstable

J(1,−1) = J(−1, 1) =

(

1 1
2 0

)

=⇒ λ2 − λ − 2 = 0 =⇒ λ1 = −1, λ2 = 2

=⇒ (1,−1) and (−1, 1) are unstable/saddles

Section 10.3: 2,16 (25pts)

10.3:2; 3pts: Show that the x- and y-axes and each of the four quadrants are invariant sets for
the system

{

x′ = 4x(1−x) − xy

y′ = y(3−y) − xy

If (x(t), y(t)) lies on the x-axis, i.e. y(t) = 0, for some t, then by the second equation y′(t) = 0
and thus y(t) does not change, i.e. y(t) stays on the x-axis as t increases. Thus, the x-axis is an
invariant set for the system. Similarly, if x(t)=0 for some t, x′(t)=0 by the first equation. Thus,
the y-axis is also an invariant set for the system. It follows that the x- and y-axes are made up
of solution curves for the system. Since no two solution curves of the system can cross, any curve
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that starts in a quadrant cannot cross either axis and thus must stay in the same quadrant. It
follows that each of the four quadrants is an invariant set for the system.

10.3:16; 22pts: Find the equilibrium points of the system
{

x′ = 1 − x2 − y2

y′ = x − y

and determine their type. Sketch the nullclines and indicate the flow directions across each nullcline.
Sketch the phase-plane portrait of the system.
(i; 10pts) The equilibrium points are the solutions (x, y) of the system

{

x′ = 0

y′ = 0
⇐⇒

{

1 − x2 − y2 = 0

x − y = 0
⇐⇒

{

y = x

2x2 = 1

Thus, the equilibrium points are (1/
√

2, 1/
√

2) and (−1/
√

2,−1/
√

2). In order to determine their
type, we compute the Jacobian of f :

Jf(x, y) =

(

−2x −2y
1 −1

)

.

We then evaluate it at the equilibrium points and compute the corresponding eigenvalues:

Jf(1/
√

2, 1/
√

2) =

(

−
√

2 −
√

2
1 −1

)

=⇒ λ2 + (
√

2+1)λ + 2
√

2 = 0

=⇒ λ1, λ2 =
−(

√
2+1) ±

√

3−6
√

2

2

Jf(−1/
√

2,−1/
√

2) =

(√
2

√
2

1 −1

)

=⇒ λ2 − (
√

2−1)λ − 2
√

2 = 0

=⇒ λ1, λ2 =
(
√

2−1) ±
√

3+6
√

2

2

Thus, Jf(1/
√

2, 1/
√

2) has complex eigenvalues with negative real part. It follows that (1/
√

2, 1/
√

2)
is a spiral sink for the system; the direction of rotation is counterclockwise, since the bottom-left
entry in the matrix is positive. Since Jf(−1/

√
2,−1/

√
2) has a real negative eigenvalue and a

real positive eigenvalue, (−1/
√

2,−1/
√

2) is a saddle point for the system. In order to completely
describe the local structure, we should also compute the half-line slopes, i.e. find the eigenvectors
v1 and v2 for λ1 and λ2. However, given the multiple square roots involved in the expressions for
λ1 and λ2, the two slopes will involve too complicated an expression to be very informative.

(ii; 6pts) The x-nullcline is defined by x′ = 0, or x2+y2 = 1. The y-nullcline is defined by y′ = 0,
or y=x; see the first sketch in Figure 2. Their intersections are the two equilibrium points. Along
the y-nullcline, i.e. the dotted line y=x, the y-component of the vector field f for the system is 0.
Thus, the flow is horizontal across the line y = x. It goes left if x′ < 0 and right if x′ > 0. Inside
of the unit circle, x2+y2 < 1; thus, by the first equation in the system x′ > 0 inside of the circle,
and x′ <0 outside of the circle, as indicated on the first sketch in Figure 2. Along the x-nullcline,
i.e. the dashed circle x2+y2 =1, the x-component of the vector field f is 0. Thus, the flow is vertical
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Figure 2: Sketches for Problem 10.3:16

across this circle. Above the line y=x, y>x and thus y′<0 by the second equation in the system,
i.e. the flow is downward. Similarly, below the line y = x, y < x and thus y′ > 0, i.e. the flow is
upward, as indicated on the sketch. From this we see that in the region outside of the circle and
below the line, the flow is up and to the left, and we indicate this with (−,+) on the first sketch
and arrows in the second sketch in Figure 2. Every time we cross, the x-nullcline, the x-sign will
change; every time we cross the y-nullcline, the y-sign will change. In this way, we label every
region in plane cut out by the nullclines with a pair (±,±) to indicate the flow direction and show
it with arrows on the second sketch. We can also get all the signs by looking at the two equations
in the system.

(iii; 3pts) The next step is to draw the pair of the incoming solution curves and the pair of the
outgoing solution curves for the saddle point (−1/

√
2,−1/

√
2). Based on the second sketch in

Figure 2, the incoming solutions must approach from below, and very slightly from the left, and
from above, and very slightly from the right, of the saddle point. Using the the second sketch
in Figure 2, we can trace these solution curves backwards. The lower curve, traced backwards,
descends and goes to the left. The upper curve, traced backwards, at first rises, then swings to
the left and continues to rise. Eventually, it must cross the line y = x, because the x-component
grows much faster than the y-component. Once it crosses the line y = x, the curve will descend.
On the other hand, the outgoing solution curves must leave to the right, and very slightly below,
and to the left, and very slightly above. The latter curve heads toward the sink at (1/

√
2, 1/

√
2)

and spirals down toward it. The other outgoing curve will always be heading down and to the left.
It will never cross the line y=x. These four distinguished solution curves are shown in the second
sketch of Figure 2.

(iv; 3pts) Finally, we use the flow directions to sketch more solution curves and show the possible
behavior in various regions of the plane; see Figure 3. Every solution curve, other than the two
outgoing solution curves for the saddle point, rises from below the line y=x. The ones that begin
between the two incoming solution curves for the saddle point end up going to the sink. The ones
that begin to the ”right” of the ”upper” incoming solution pass over the unit circle and then head
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Figure 3: Phase-Plane Portrait for Problem 10.3:16

left and downward, above the line y=x. The ones that begin to the ”left” of the ”lower” incoming
solution rise below the unit circle to the line y=x and then descend to the left above it. The slopes
of all solution curves that go off to infinity, either as t−→∞ or t−→−∞, approach zero, i.e. the
curves flatten, because the square terms in the expression for x′ dominate the linear terms in the
expression for y′. However, none of them is asymptotic to any horizontal line, and in fact every
solution curve going off to infinity ends up below every up horizontal line. All solution curves cross
the line y=x horizontally and the circle x2+y2 =1 vertically, it they cross at all.

Note: Before drawing solution curves away from the equilibrium points, we should normally check
that there are no limit cycles or oriented polygons. In this case, this can be seen from the flow di-
rections. Any cycle would have to circle the point (1/

√
2, 1/

√
2), leaving the unit circle somewhere

on the shorter arc between (1, 0) and (1/
√

2, 1/
√

2). If we start at any point on this arc, other
than the endpoints, go up vertically to the line y = x, then horizontally to the left to the circle,
then vertically down to the line y = x, and then back horizontally to the right to the unit circle,
we’ll end up at a point which is strictly closer to (1/

√
2, 1/

√
2) than the one we started with. If

we start at (1, 0), we’ll end up back at (1, 0). In either case, solution curves move strictly closer
to (1/

√
2, 1/

√
2) than the vertical and horizontal path described. For example, after leaving the

unit circle somewhere between (1, 0) and (1/
√

2, 1/
√

2), a solution curve does not move straight,
but instead swings to the left at least a little bit. Thus, no matter where on the arc between (1, 0)
and (1/

√
2, 1/

√
2) a solution curve leaves the unit circle, it will end up closer to the sink after

spinning around the sink. It follows that the system has no cycles.

Section 10.4: 2,6 (15pts)

10.4:2; 7pts: Use the polar coordinates transformation to find the limit cycles for the system:

{

x′ = −y + x
(
√

x2+y2 − 3
)

y′ = x + y
(
√

x2+y2 − 3
)
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Figure 4: Sketches for Problems 10.4:2 and 10.5:6

Determine the stability type of the limit cycles and sketch the phase-plane portrait.
By 10.1:19a, the derivatives of the coordinates r and θ are given by

rr′ = xx′ + yy′ = x
(

−y+x(
√

x2+y2−3)
)

+ y
(

x+y(
√

x2+y2−3)
)

= (x2+y2)(r−3) = r2(r−3);

r2θ′ = xy′ − yx′ = x
(

x+y(
√

x2+y2−3)
)

− y
(

−y+x(
√

x2+y2−3)
)

= x2+y2 = r2.

Thus, we obtain

{

x′ = −y + x
(
√

x2+y2 − 3
)

y′ = x + y
(
√

x2+y2 − 3
) ⇐⇒

{

r′ = r(r − 3)

θ′ = 1

By the first equation, r = 3 is the only limit cycle for the system, as the equilibrium point r = 0
for the first equation is an equilibrium point for the entire system. If 0 < r(t) < 3, i.e. the point
(r(t), θ(t)) is inside of the cycle, r′(t)<0. Thus, all solution curves inside of the cycle move toward
the origin and away from the cycle. Similarly, if r(t)> 3, i.e. the point (r(t), θ(t)) is outside of the
cycle, r′(t)> 0. Thus, all solution curves outside of the cycle move away from it. Since points on
both sides of the cycle move away from it, r = 3 is a repelling cycle for the system. In order to
draw the phase-plane portrait, as in the first sketch of Figure 4, we observe that all solution spin
counterclockwise, since θ′>0.

10.4:6; 8pts: Use the polar coordinates transformation to find the limit cycles for the system:

{

x′ = −y + x(x2+y2) sin
(

π/
√

x2+y2)

y′ = x + y(x2+y2) sin
(

π/
√

x2+y2)

Determine the stability type of the limit cycles.
Similarly to 10.4:2,

rr′ = xx′ + yy′ = x
(

−y+x(x2+y2) sin(π/
√

x2+y2)
)

+ y
(

x+y(x2+y2) sin(π/
√

x2+y2)
)

= (x2+y2)r2 sin(π/r) = r4 sin(π/r);

r2θ′ = xy′ − yx′ = x
(

x+y(x2+y2) sin(π/
√

x2+y2)
)

− y
(

−y+x(x2+y2) sin(π/
√

x2+y2)
)

= x2+y2 = r2.
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Thus, we obtain
{

x′ = −y + x(x2+y2) sin
(

π/
√

x2+y2)

y′ = x + y(x2+y2) sin
(

π/
√

x2+y2)
⇐⇒

{

r′ = r3 sin(π/r)

θ′ = 1

Since the last two equations are separate, the limit cycles are the circles of radius r>0 such that

r′ = r3 sin(π/r) = 0 ⇐⇒ π/r = πn, n ∈ N ⇐⇒ r = 1/n, n ∈ N.

The limit cycle r=1/n is attracting if points on both sides of the cycle move toward the cycle, i.e. if
sin(π/r)< 0 for all r slightly larger than 1/n and sin(π/r)> 0 for all r slightly smaller than 1/n.
Since

sin(π/r) > 0 if 2kπ < π/r < (2k+1)π ⇐⇒ 1/(2k+1) < r < 1/2k and

sin(π/r) < 0 if (2k+1)π < π/r < (2k+2)π ⇐⇒ 1/(2k+2) < r < 1/(2k+1),

the limit cycle r=1/n is attracting if 1/n=1/2k, i.e. if n is even. Similarly, the limit cycle r=1/n
is repelling if points on both sides of the cycle move away from the cycle, i.e. if sin(π/r) > 0 for
all r slightly larger than 1/n and sin(π/r) < 0 for all r slightly smaller than 1/n. By the above,
this happens precisely when n is odd.

Section 10.5:6 (8pts)

Find a conserved quantity for the system
{

y′ = v

v′ = −2y + y3

Verify directly that the quantity you find is actually conserved along the trajectories. Sketch the
phase-plane portrait.
Writing y′ = dy/dt and v′ = dv/dt and dividing the second equation by the first, we obtain

dv

dy
=

−2y + y3

v
⇐⇒ vdv = (−2y+y3)dy ⇐⇒ v2 = −2y2 +

1

2
y4 + C.

Thus, a conserved quantity is E(y, v) = v2+2y2 − 1
2y4. If (y, v) = (y(t), v(t)) is a solution of the

system,
d

dt
E

(

y(t), v(t)
)

= 2vv′ + 4yy′ − 1

2
4y3y′ = 2v(−2y + y3) + 4yv − 2y3v = 0,

as expected. In order to sketch the phase-plane portrait, we first find the equilibrium points:
{

y′ = 0

v′ = 0
⇐⇒

{

v = 0

−2y + y3 = 0

Thus, the equilibrium points are (0, 0) and (±
√

2, 0). Normally we would next try to determine
the type of each equilibrium point. However, in this case we already know that solution curves for
the system lie on the level curves

v2 + 2y2 − 1

2
y4 = C,
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for various constants C. In order to sketch the level curves, we solve for v and complete the square:

v = ± 1√
2

√

(y2−2)2+A, where A = 2C − 4.

The level curves are symmetric about the x- and y-axes. Thus, we will concentrate on the first
quadrant. If A=0, v = |y2−2|/

√
2. The graph of this function drops from (0,

√
2) to (

√
2, 0) and

then rises as a parabola. The second sketch in Figure 4 shows this graph along with its reflections.
If A>0, v = v(y) is defined for all y and reaches its minimum, in the absolute value, at y =±

√
2.

The positive branch lies strictly above v= |y2−2|/
√

2, as shown in the sketch. If A<0, v=v(y) is
only defined for y such that (y2−2)2+A≥0. If A∈(−4, 0), this gives us closed curves inside of the
region contained by the graphs of v =±|y2−2|/

√
2, as well curves rising and descending from the

y-axis to the sides of the graphs of v=±|y2−2|/
√

2. If A<−4, we get only side curves. Since each
level curve with A 6= 0 contains no equilibrium points, every component of it must be a solution
curve and thus is smooth. It remains to determine the flow directions. Since y′=v, the flow moves
right if v > 0, i.e. above the y-axis, and left if v < 0, i.e. below the y-axis. From the conserved
quantity E and the sketch, we find that the origin is a center; this fact cannot be obtained from
the jacobian.

Section 10.6:10 (8pts)

Find the equilibrium points and a potential function U =U(y) for the system
{

y′ = v

v′ = y2 − 9y

Sketch the graph of U and the phase-plane portrait for the system.
Writing y′ = dy/dt and v′ = dv/dt and dividing the second equation by the first, we obtain

dv

dy
=

y2 − 9y

v
⇐⇒ vdv = (y2−9y)dy ⇐⇒ 1

2
v2 =

1

3
y3 − 9

2
y2 + C.

Thus, a conserved quantity for the system is

E(y, v) =
1

2
v2 + U(y), where U(y) = −1

3
y3 +

9

2
y2.
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We next find the equilibrium points:

{

y′ = 0

v′ = 0
⇐⇒

{

v = 0

y2 − 9y = 0

Thus, the equilibrium points are (0, 0) and (9, 0). As in 10.5:6, we do not need to find their type.
In order to sketch the level curves of E and thus solution curves for the system, we can again solve
for v in terms y:

v(y) =

√

2

3
y3 − 9y2 + A, where A = 2C.

The function 2
3y3−9y2, which is twice the negative of U(y), reaches a local maximum at y = 0

and a local minimum at y=9. The corresponding critical values are 0 and −243. The level curve
corresponding to A = 243 contains an oriented polygon, with one vertex. The components of all
other level curves correspond to solution curves. Just as in 10.5:6, the flow direction is to the right
in the upper-half plane and to the left in the lower half-plane.

Problem G (24pts)

(a; 3pts) Sketch the graph, in the (y, f(y))-plane, of the function

f(y) = (y+3)3(y−1)2(y−3).

Find the equilibrium solutions of and sketch the phase line, i.e. the y-line, for the one-dimensional
autonomous ODE:

y′ = (y+3)3(y−1)2(y−3).

Determine whether each equilibrium point is stable or unstable.
The graph of f is shown in the first sketch of Figure 6. The y-intercepts are −3, 1, and 3. Thus,
the equilibrium, or constant, solutions of the ODE are y = −3, y = 1, and y = 3. They are indi-
cated with dots on the phase line for the ODE; see the middle sketch in Figure 6. If y = y(t) is
a solution of the ODE, y(t) increases to the closest equilibrium solution above if f(y) = y′(t) is
positive and decreases to the closest equilibrium solution below if f(y) = y′(t) is negative. This
information is encoded by arrows on the phase-line. If yi is an equilibrium point for the ODE, it
is asymptotically stable if solution curves on both sides of yi approach yi, i.e. the arrows on both
sides point toward yi. It is unstable if solutions on one of the two sides move away, i.e. if one of the
two arrows points away from yi. Thus, y=−3 is an asymptotically stable equilibrium point, while
y=1 and y=3 are unstable equilibrium points. The ty-plane sketch of solution curves, i.e. graphs
of solutions of the ODE, is shown in the last plot of Figure 6.

For (b)-(d), suppose that yi is an equilibrium point for the system of ODEs

y′ = f(y), y = y(t), (1)

and V is a smooth function defined near yi such that V (yi)=0.

(b; 4pts) If V (x)>0 and ~∇V |x · f(x)≤0 for all x 6=yi near yi, show that yi is stable.
We need to show that solution curves that start sufficiently close to yi stay arbitrary close to yi.

11
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f(y)

−3
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−3

1

3

y = −3

y = 1

y = 3

t

y

Figure 6: Plots for ODE y′ = f(y) = (y + 3)3(y − 1)2(y − 3)

More precisely, for any ε > 0, we need to find δ > 0 such that if y = y(t) is a solution of (1) and
|y(0)−yi|< δ, then |y(t)−yi|< ε for all t≥ 0; see Figure 1 on p512. It is sufficient to find such
a δ = δ(ε) for very small values of ε > 0. Thus, we assume that ε > 0 is such that V (x) > 0 and
~∇V |x · f(x)≤0 for all x 6=yi with |x−yi|≤ε. Thus, we can choose mε >0 such that V (x)>mε for
all x with |x−yi|=ε. Since V (0)=0, we can also choose δ∈(0, ε) such that V (x)<mε for all x with
|x−yi|≤δ. Now suppose that y=y(t) is a solution of (1) and |y(0)−yi|<δ; then V (y(0))<mε. If
|y(t)−yi|>ε for some t> 0, then |y(s)−yi|= ε for some s> 0, since |y(0)−yi|<ε. On the other
hand, by the multivariable chain rule and our assumptions on V :

d

dt
V (y(t)) = ~∇V |y(t) · y′(t) = ~∇V |y(t) · f(y(t)) ≤ 0 if |y(t)−yi| ≤ ε.

Thus, if s>0 is the smallest value of s such that |y(s)−yi|=ε

mε < V (y(s)) ≤ V (y(0)) < mε.

In other words, mε <mε, which is a contradiction. Thus, |y(t)−yi|<ε for all t, as needed.

(c; 3pts) If V (x) > 0 and ~∇V |x · f(x) < 0 for all x 6= yi near yi, show that yi is asymptotically
stable.
We need to show that solution curves that start sufficiently close to yi approach yi as t −→∞.
More precisely, we need to find δ>0 with the following property. If y=y(t) is a solution of (1) and
|y(0)−yi|<δ, then limt−→∞ y(t)=yi. We first pick ε>0 such that V (x)>0 and ~∇V |x · f(x)<0 for
all x 6=yi with |x−yi|≤ ε. Similarly to (b) above, we can then choose mε >0 such that V (x)>mε

for all x with |x−yi|=ε and δ∈(0, ε) such that V (x)<mε for all x with |x−yi|≤δ. Now suppose
that y=y(t) is a solution of (1), different from y(t)=yi, and |y(0)−yi|<δ. By the multivariable
chain rule and our assumptions on V :

d

dt
V (y(t)) = ~∇V |y(t) · y′(t) = ~∇V |y(t) · f(y(t)) < 0 if |y(t)−yi| ≤ ε.

Since by the same argument as in (b) above |y(t)−yi|<ε for all t>0, it follows that

d

dt
V (y(t)) < 0 for all t > 0.

Since V (y(t))≥0 for t≥0 by our assumptions on V , we conclude that

~∇V |y(t) · f(y(t)) =
d

dt
V (y(t)) −→ 0 as t −→ ∞.
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Since ~∇V |x · f(x) 6=0 for all x 6=yi with |x−yi|≤ε, it follows that y(t)−→yi as t−→∞.

(d; 4pts) If ~∇V |x · f(x)> 0 for all x 6=yi near yi and there exists a sequence xk −→yi such that
V (xk)>0 for all k, show that yi is unstable.
We need to show that yi is not a stable equilibrium, i.e. the stability condition of (b) is not satisfied.
In other words, we need to find ε > 0 with the following property. For every δ > 0, there exists a
solution y=y(t) of (1) such that |y(0)−yi|<δ and |y(t)−yi|>ε for some t>0. Let ε>0 be such
that ~∇V |x · f(x)>0 for all x 6=yi with |x−yi|≤ε. We can then choose Mε >0 such that V (x)<Mε

for all x with |x−yi|≤ ε. If δ∈ (0, ε), by our assumptions we can choose x0 such that |x0−yi|<δ
and V (x0)>0. Let y=y(t) be the solution of (1) such that y(0)=x0. By the multivariable chain
rule and our assumptions on V :

d

dt
V (y(t)) = ~∇V |y(t) · y′(t) = ~∇V |y(t) · f(y(t)) > 0 if |y(t)−yi| ≤ ε.

Thus, if |y(t)−yi|≤ε for all t>0, V (t)<Mε for all t>0 and

~∇V |y(t) · f(y(t)) =
d

dt
V (y(t)) −→ 0 as t −→ ∞.

Since ~∇V |x · f(x) 6= 0 for all x 6= yi with |x−yi| ≤ ε, we conclude that y(t) −→ yi as t −→ ∞.
However, this is impossible, since

V (yi) = 0 < V (x0) = V (y(0)) < V (y(t)) for all t > 0.

(e; 5pts) Find an appropriate function V = V (y) for each of the three equilibrium points of the
ODE in (a).
Since y=−3 is asymptotically stable, we are looking for a smooth function V =V (y) such that

V (−3) = 0, V (y) > 0 and V ′(y)·f(y) = V ′(y)·(y+3)3(y−1)2(y−3) < 0 for all y 6=3 close to −3.

The simplest function that satisfies the first two conditions is V (y)= (y+3)2. It also satisfies the
third condition. By (c), the existence of such a function V confirms that y=−3 is an asymptotically
stable equilibrium point. Since y = 1 is unstable, we next would like to find a smooth function
V =V (y) such that

V (1) = 0, V ′(y) · f(y) = V ′(y) · (y+3)3(y−1)2(y−3) > 0 for all y 6=1 close to 1,

and V (xk) > 0 for a sequence xk −→ 1. The simplest functions that satisfy the first and the last
conditions are y−1 and 1−y. Since f(y) < 0 for all y 6= 1 near 1, the function V (y) = 1−y also
satisfies the middle condition. By (d), the existence of such a function V confirms that y=1 is an
unstable equilibrium point. Finally, y = 3 is unstable, and we expect to be able to find a smooth
function V =V (y) such that

V (3) = 0, V ′(y) · f(y) = V ′(y) · (y+3)3(y−1)2(y−3) > 0 for all y 6=3 close to 3,

and V (xk)> 0 for a sequence xk −→ 3. Similarly to the above, the simplest functions that satisfy
the first and the last conditions are y−3 and 3−y. However, the derivatives of these functions do
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not change sign at 3, while f(y) does. Thus, neither one can satisfy the middle condition above.
The next simplest function that satisfies the first and the last conditions is V (y) = (y−3)2. It
satisfies the middle condition as well. By (d), the existence of such a function V confirms that
y=3 is an unstable equilibrium point.

(f; 5pts) Determine whether the origin is an asymptotically stable, stable, or unstable equilibrium
for the following systems of ODEs:

{

x′ = −y + x3

y′ = x + y3
and

{

x′ = −y − x3

y′ = x − y3

Based on Note 1 in the statement of the problem and the similarity in the systems, we expect
that the origin is a stable, perhaps even asymptotically stable, equilibrium point for one of the two
systems, but not the other. We will know that one of the two systems is stable if we can find a
smooth function V =V (x, y) such that V (0, 0)=0, and

V (x, y) > 0 and ~∇V |(x,y) · f(x, y) > 0 for all (x, y) 6=(0, 0) near (0, 0),

where f = f(x, y) is the vector field corresponding either to the first or the second system, i.e.

f = f1(x, y) =
(

− y + x3, x + y3
)

or f = f2(x, y) =
(

− y − x3, x − y3
)

.

The simplest function that satisfies the first conditions is V (x, y)=x2+y2. For this function,

~∇V |(x,y) = (2x, 2y) =⇒
~∇V |(x,y) · f1(x, y) = 2x(−y + x3) + 2y(x + y3) = 2(x4+y4) > 0;

~∇V |(x,y) · f2(x, y) = 2x(−y − x3) + 2y(x − y3) = −2(x4+y4) < 0.

Thus, the origin is an asymptotically stable equilibrium point for the second system by (c) and is
an unstable equilibrium point for the first system by (d).

Remarks: The conditions (b) and (c) on stability are if and only if conditions. In other words, a
function V with the required properties must exist if the given equilibrium point yi is stable or
asymptotically stable. In the one-dimensional case such a function can be obtained just by looking
at the graph of f near each equilibrium point. On the other hand, in two and more dimensions,
i.e. when these two criteria are actually useful for determining stability, such functions V may be
much harder to find. Furthermore, (d) is not a necessary conditions for instability. Can you find
a one-dimensional example such that yi is unstable, but V =V (y) as in (d) does not exist?

14


