
Math53: Ordinary Differential Equations
Autumn 2004

Problem Set 7 Solutions

Note: Even if you have done every problem, you are encouraged to look over these solutions, espe-
cially 6.1:2,18 and 6.2:2, where the computations are arranged into tables. In the second part of
6.1:18, the IVP is solved using only the complex form of the general solution.

Section 6.1: 2,18 (22pts)

6.1:2; 8pts: For the initial value problem

y′ = y, y(0) = 1,

compute the first five iterations of Euler’s method with step size h = 0.1. Then solve the initial
value problem exactly and compare the obtained estimate for y(0.5) with its exact value.
We start with t0 =0, y0 =1 and f(t, y)=y.
In the first iteration, we get that t1 = t0 + h=0.1, y1 =y0 + y0h=1.1.
In the second iteration we get that y2 =y1 + y1h=1.21 and t2 = t1 + h=0.2 and so on.
The first five iterations are given in the following table:

k tk yk f(tk, yk)=yk f(tk, yk)h
0 0.0 1.0000 1.0000 0.1000
1 0.1 1.1000 1.1000 0.1100
2 0.2 1.2100 1.2100 0.1210
3 0.3 1.3310 1.3310 0.1331
4 0.4 1.4641 1.4641 0.1464
5 0.5 1.6105 − −

The exact value of the solution y(t)=et at .5 is e1/2≈1.6487.

6.1:18; 14pts: For the initial value problem

x′ = y, y′ = −x, x(0) = 1, y(0) = −1,

compute the first five iterations of Euler’s method with step size h = 0.1. Then solve the initial
value problem exactly and compare the obtained estimates for x(0.5) and y(0.5) with their exact
values.
We start with t0 = 0, x0 = 1, and y0 =−1. We also have that f(t, x, y) = y and g(t, x, y) =−x, so
from here, the iteration proceeds with

yk+1 = xk + ykh and xk+1 = yk − xkh.



The first five iterations are arranged in the following table:

tk xk yk f(tk, xk, yk)h = ykh g(tk, xk, yk)h = −xkh

0.0 1.0000 −1.0000 −0.1000 −0.1000
0.1 0.9000 −1.1000 −0.1100 −0.0900
0.2 0.7900 −1.1900 −0.1190 −0.0790
0.3 0.6710 −1.2690 −0.1269 −0.0671
0.4 0.5441 −1.3361 −0.1336 −0.0544
0.5 0.4105 −1.3905 − −

In order to solve this problem exactly, we re-write the IVP as

y′ =
(

0 1
−1 0

)
y, y(0) =

(
1
−1

)
.

The characteristic polynomial for this equation is λ2+1=0. Its roots are λ1, λ2 =±i. We first find
an eigenvector for λ1:(

0− i 1
−1 0− i

) (
c1

c2

)
=

(
0
0

)
⇐⇒

{
−ic1 + c2 = 0
−c1 − ic2 = 0

⇐⇒ c2 = ic1 =⇒ v1 =
(

1
i

)
.

The complex conjugate of v1, v2 =
(

1
−i

)
, must then be an eigenvector with eigenvalue λ2 = λ̄1.

Thus, the general solution to the system of ODEs is

y(t) = C1e
λ1tv1 + C2e

λ2tv2 = C1e
it

(
1
i

)
+ C2e

−it

(
1
−i

)
.

Plugging in the initial condition, we obtain

y(0) = C1

(
1
i

)
+ C2

(
1
−i

)
=

(
1
−1

)
⇐⇒

{
C1 + C2 = 1
iC1 − iC2 = −1

⇐⇒

{
C1 + C2 = 1
C1 − C2 = i

⇐⇒

{
C1 = 1+i

2

C2 = 1−i
2

=⇒ y(t) =
1+i

2
eit

(
1
i

)
+

1−i

2
e−it

(
1
−i

)
=

eit+e−it

2

(
1
−1

)
+

eit−e−it

2
i

(
1
1

)
= cos t

(
1
−1

)
+ (i sin t)i

(
1
1

)
=

(
cos t− sin t
− cos t− sin t

)
.

The value of the last expression at .5 Radians is y(.5) ≈
(

.398
−1.357

)
.

Note that in the above IVP we never needed to use the real form of the general solution. We
found the two constants C1 and C2 for the complex form. With these constants, the corresponding
complex expression automatically reduces to a real one. The key formulas to remember are

cos θ =
eiθ + e−iθ

2
and sin θ =

eiθ − e−iθ

2i
;

they follow from e±iθ = cos θ ± i sin θ.
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Section 6.2:2 (8pts)

For the initial value problem
y′ = y, y(0) = 1,

compute the first five iterations of the second-order Runge-Kutta method with step size h=0.1 and
compare the obtained estimate for y(0.5) with its exact value.
We begin with t0 =0, y0 =1, and f(t, y)=y. Thus, the initial slopes are

s0,1 = f(0, 1) = 1 and s0,2 = f
(
t0+h, y0+s0,1h

)
= f(0.1, 1.1) = 1.1.

From here, we iterate using:

sk,1 = f(tk, yk) = yk, sk,2 = f
(
tk+h, yk+sk,1h

)
= yk + sk,1h,

yk+1 = yk +
sk,1 + sk,2

2
h, tk+1 = tk + h.

The first five iterations are presented in the following table:

tk yk sk,1 sk,2
sk,1+sk,2

2 h

0.0 1.0000 1.0000 1.1000 0.1050
0.1 1.1050 1.1050 1.2155 0.1160
0.2 1.2210 1.2210 1.3431 0.1282
0.3 1.3492 1.3492 1.4842 0.1417
0.4 1.4909 1.4909 1.6400 0.1565
0.5 1.6474 − − −

Just as in 6.1:2, the exact value of y(.5) is e1/2≈1.6487. So, the approximation obtained after just
five iterations, 1.6474, is quite good. Compare this with Euler’s method!

Problem F (20pts)

(a; 7pts) Suppose y and ỹ are smooth functions on the interval [c, d] and M is a positive number
such that ∣∣y′′(t)∣∣, ∣∣ỹ′′(t)∣∣ ≤ M for all t ∈ [c, d].

Show that ∣∣y(d)− ỹ(d)
∣∣ ≤ ∣∣y(c)− ỹ(c)

∣∣ +
∣∣y′(c)− ỹ′(c)

∣∣|d−c|+ M |d−c|2.

We will apply FTC to the function
z(t) = y(t)− ỹ(t)

and its derivative to estimate the change in z(t) from t=c to t=d. We first note

|z′′(s)| =
∣∣y′′(s)− ỹ′′(s)

∣∣ ≤ |y′′(s)|+ |ỹ′′(s)| ≤ M + M = 2M for all s ∈ [c, d],
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by our assumption on y and ỹ. On the other hand, by FTC, for all t∈ [c, d].

z′(t) = z′(c) +
∫ t

c
z′′(s) ds =⇒

∣∣z′(t)∣∣ ≤ ∣∣z′(c)∣∣ +
∣∣∣ ∫ t

c
z′′(s) ds

∣∣∣ ≤ ∣∣z′(c)∣∣ +
∫ t

c
|z′′(s)| ds

≤
∣∣z′(c)∣∣ + 2M |t−c| =

∣∣z′(c)∣∣ + 2M(t−c).
(1)

Similarly, by FTC,

z(d) = z(c) +
∫ d

c
z′(t) dt =⇒

|z(d)| ≤ |z(c)|+
∣∣∣ ∫ d

c
z′(t) dt

∣∣∣ ≤ |z(c)|+
∫ d

c
|z′(t)| dt

≤ |z(c)|+
∫ d

c

(
|z′(c)|+2M(t−c)

)
dt = |z(c)|+ |z′(c)||d−c|+ M |d−c|2,

by (1). Since z(t)=y(t)−ỹ(t), we conclude that∣∣y(d)− ỹ(d)
∣∣ ≤ ∣∣y(c)− ỹ(c)

∣∣ +
∣∣y′(c)− ỹ′(c)

∣∣|d−c|+ M |d−c|2.

Suppose now that f =f(t, y) is a smooth function and M0, Mt, and My are positive numbers such
that ∣∣f(t, y)

∣∣ ≤ M0,
∣∣ft(t, y)

∣∣ ≤ Mt,
∣∣fy(t, y)

∣∣ ≤ My for all t ∈ [a, b], y ∈ (−∞,∞).

Let y=y(t) be the solution to the initial value problem

y′ = f(t, y), y(a) = y0. (2)

Given a positive integer N , let

h =
b−a

N
, t0 = a, ti+1 = ti + h = h · (i+1), si = f(ti, yi), yi+1 = yi + sih;

εi =
∣∣y(ti)− yi

∣∣, ỹi(t) = yi + si(t−ti).

Note that

ε0 = 0, εN = y(b)− yN , ỹi(ti) = yi, ỹi(ti+1) = yi+1, ỹ′i(ti) = si, ỹ′′i (t) = 0.

(b; 6pts) Use the ODE and the assumptions on f to show that

|y′′(t)| ≤ Mt + M0My and
∣∣y′(ti)− ỹ′i(ti)

∣∣ ≤ Myεi.

Since y′(t)=f(t, y(t)), by the chain rule

y′′(t) =
d

dt
f
(
t, y(t)

)
= ft

(
t, y(t)

)
+ fy

(
t, y(t)

)
· y′(t) = ft

(
t, y(t)

)
+ fy

(
t, y(t)

)
· f

(
t, y(t)

)
=⇒

∣∣y′′(t)∣∣ ≤ ∣∣ft(t, y(t))
∣∣ +

∣∣f(t, y(t))
∣∣∣∣fy(t, y(t))

∣∣ ≤ Mt + M0My,
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by our assumptions on f . On the other hand, by the same argument as in the first part of (a),∣∣y′(ti)− ỹ′i(ti)
∣∣ =

∣∣f(ti, y(ti))− f(ti, yi)
∣∣ ≤ My

∣∣y(ti)−yi

∣∣ = Myεi.

(c; 3pts) Use part (a) to show that

εi+1 ≤ εi + Myεih + (Mt+M0My)h2.

By parts (a) and (b),

εi+1 =
∣∣y(ti+1)− yi+1

∣∣ =
∣∣y(ti+1)− ỹi(ti+1)

∣∣
≤

∣∣y(ti)− ỹi(ti)
∣∣ +

∣∣y′(ti)− ỹ′i(ti)
∣∣|ti+1−ti|+ (Mt+M0My)|ti+1−ti|2

≤ εi + Myεih + (Mt+M0My)h2.

(d; 4pts) Conclude that

εN ≤
(
Mt+M0My

)(1 + Myh)N − 1
My

h ≤ Mt + M0My

My

(
eMy(b−a) − 1

)
h.

By part (c),

εN ≤ (Mt+M0My)h2 + (1+Myh)εN−1

≤ (Mt+M0My)h2 + (1+Myh)(Mt+M0My)h2 + (1+Myh)2εN−2 ≤ . . .

≤ (Mt+M0My)h2+(1+Myh)(Mt+M0My)h2+. . .+(1+Myh)N−1(Mt+M0My)h2+(1+Myh)N ε0.

Since ε0 =0, it follows that

εN ≤ (Mt+M0My)h2
(
1 + (1+Myh) + . . . + (1+Myh)N−1

)
≤ (Mt+M0My)h2 (1+Myh)N − 1

(1+Myh)− 1
= (Mt+M0My)

(1+Myh)N − 1
My

h.
(3)

In order to obtain the final statement, recall that one definition of the number e is

e = lim
N−→∞

(
1 +

1
N

)N
=⇒ lim

N−→∞

(
1 +

c

N

)N
= ec for all c.

Furthermore, the sequence (1 + c/N)N is increasing with N , if c>0. Since h=(b−a)/N , it follows
from (3) that

εN ≤ Mt + M0My

My

((
1 +

My(b−a)
N

)N
− 1

)
h ≤ Mt + M0My

My

(
eMy(b−a) − 1

)
h.
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