Math53: Ordinary Differential Equations
Autumn 2004

Problem Set 7 Solutions

Note: Even if you have done every problem, you are encouraged to look over these solutions, espe-
cially 6.1:2,18 and 6.2:2, where the computations are arranged into tables. In the second part of
6.1:18, the IVP is solved using only the complex form of the general solution.

Section 6.1: 2,18 (22pts)
6.1:2; 8pts: For the initial value problem

Y =v, y(0) =1,

compute the first five iterations of Euler’s method with step size h =0.1. Then solve the initial
value problem ezactly and compare the obtained estimate for y(0.5) with its exact value.

We start with to=0, yo=1 and f(¢t,y)=y.

In the first iteration, we get that t1 =ty + h=0.1, y1 =yo + yoh=1.1.

In the second iteration we get that yo=y1 +y1h=1.21 and ts=%; + h=0.2 and so on.

The first five iterations are given in the following table:

Elt | w f (e, y) =Y f(te, yr)h
0 0.0 1.0000 1.0000 0.1000
1/0.111.1000 1.1000 0.1100
210.21]1.2100 1.2100 0.1210
310.3|1.3310 1.3310 0.1331
4104 |1.4641 1.4641 0.1464
510.5|1.6105 — —

The exact value of the solution y(t)=e at .5 is e'/2~1.6487.

6.1:18; 14pts: For the initial value problem

compute the first five iterations of Fuler’s method with step size h =0.1. Then solve the initial
value problem exactly and compare the obtained estimates for x(0.5) and y(0.5) with their exact
values.

We start with 9 =0, o =1, and yp=—1. We also have that f(¢,z,y)=vy and g(¢,z,y) = —z, so
from here, the iteration proceeds with

Yk+1 = Tk + yrh and Tyl = Yk — Th.



The first five iterations are arranged in the following table:

tr | T Yk f(tr, Tk, yk)h = yrh g(tg, Tp, yp)h = —x1h
0.0 | 1.0000 | —1.0000 —0.1000 —0.1000

0.1 { 0.9000 | —1.1000 —0.1100 —0.0900

0.2 { 0.7900 | —1.1900 —0.1190 —0.0790

0.3 10.6710 | —1.2690 —0.1269 —0.0671

0.4 ] 0.5441 | —1.3361 —0.1336 —0.0544

0.5 10.4105 | —1.3905 — —

In order to solve this problem exactly, we re-write the IVP as

y = <_01 é) y, y(0)= <_11>

The characteristic polynomial for this equation is A>4+1=0. Its roots are A1, Ao ==+i. We first find
an eigenvector for Aq:

(0—2' 1 ><01>_<0> —ici +c2=0 i :>V_<1>
-1 0-i/\e 0 —c1 —icy =0 S TG
1 _
The complex conjugate of vy, vo = —z’)’ must then be an eigenvector with eigenvalue Ao = A;.
Thus, the general solution to the system of ODEs is
o (1 ; 1
y(t) = CreMlvy 4 Coe*?lvy = el (z) + Che @ <—z> .

Plugging in the initial condition, we obtain
C1+Cr=1 Ci+Co=1 Cp =1
y(0)201<1.)+02<1.>=<1><:> ,1+,2 — 12 = ! 12.
¢ -1 -1 1C1 —iCy = —1 Ci—Cy=1 02:%1
o 14i o (1 1—i (1)  el4e™ (1 elt—e= 1
=g (1) e (1) <95 (1) 55

= cost 1 + (isint)i L) _ ( cost—sint
- -1 1) \—cost—sint /"

The value of the last expression at .5 Radians is y(.5) ~ <_13 ?;;7>

L

Note that in the above IVP we never needed to use the real form of the general solution. We
found the two constants C'; and C for the complex form. With these constants, the corresponding
complex expression automatically reduces to a real one. The key formulas to remember are

el 4 o—if il _ o—if

cosH:T and sin&zT;

0 — cosh + isinb.

they follow from e



Section 6.2:2 (8pts)

For the initial value problem
y =y, y0)=1,

compute the first five iterations of the second-order Runge-Kutta method with step size h=0.1 and
compare the obtained estimate for y(0.5) with its exact value.
We begin with t9p=0, yo=1, and f(¢,y)=y. Thus, the initial slopes are

son=f(0,1)=1 and  so2 = f(to+h,yo+s01h) = f(0.1,1.1) = 1.1.
From here, we iterate using:

sk = f(teYk) = Yk k2 = f(tuth yr+seih) = yk + spah,
Sk,1 + Sk,2

2 h, tk+1 - tk- + h

Yk+1 = Yk +

The first five iterations are presented in the following table:

Sk,1TSk,2
i Yk Sk,1 Sk2 | —5h

0.0 | 1.0000 | 1.0000 | 1.1000 | 0.1050
0.1 | 1.1050 | 1.1050 | 1.2155 | 0.1160
0.2 | 1.2210 | 1.2210 | 1.3431 | 0.1282
0.3 1.3492 | 1.3492 | 1.4842 | 0.1417
0.4 | 1.4909 | 1.4909 | 1.6400 | 0.1565
0.5 |1.6474 — — —

Just as in 6.1:2, the exact value of y(.5) is e1/221.6487. So, the approximation obtained after just
five iterations, 1.6474, is quite good. Compare this with Euler’s method!

Problem F (20pts)

(a; 7Tpts) Suppose y and § are smooth functions on the interval [c,d] and M is a positive number
such that

}y//(t)la

J't)| <M for all t € led.

Show that
ly(d) = 5(d)| < |y(c) —4(c)] + |y (¢) = §'(¢)||d—c| + M|d—c|>.

We will apply FTC to the function
2(t) = y(t) — y(t)

and its derivative to estimate the change in z(¢) from t=c to t=d. We first note

()= [y"(s) = §" ()] < ly" ()| + 15" (s)| < M+ M =2M forall s € c,d],



by our assumption on y and §. On the other hand, by FTC, for all ¢t €|c,d].

t / / ¢ 7 / K "
0 =20+ [ = FOI=EO o| [l <ol 1wl
¢ < [ (e)| + 2M|t—c| = |/ (c)| + 2M (t—c).

Similarly, by FTC,

d
z(d)—z(c)+/ 2 (t)dt =

/Cdz'(t) dt‘ < |2(0)| +/Cd|z’(t)]dt

d
<120 + / (1@ +2M (t—e)) dt = |2(e)| + |#()||d—e| + M|d—c]?,

2(d)] < |2(c)] +

by (1). Since z(t)=y(t)—y(t), we conclude that

y(d) = §(d)| < |y(e) = G(O)] + |y (c) = F(c)|ld—c| + M|d—c]*.

Suppose now that f=f(t,y) is a smooth function and My, My, and My are positive numbers such
that

’f(tvy)‘ SMOa ‘ft(tay)} SMtv ’fy(t,y)’ SMy for all te [avb]a yE (_00700)

Let y=y(t) be the solution to the initial value problem

Y = f(ty), y(a) = yo. (2)
Given a positive integer N, let
h = b—Ta’ to=a, tiy1=ti+h="h-0G+1), s =f(ti,vi), Yi+t1 =y + sih;
&=yt |, Gilt) =i+ silt—t).

Note that

=0, exn=yb) —yn, Gt:))=yi, Tiltis1)=vit1, ) =si, G t)=0.

(b; 6pts) Use the ODE and the assumptions on f to show that
W' (t)] < My + MoM,  and |y (t;) — Gi(t:)| < Mye;.

Since y'(t)=f(t,y(t)), by the chain rule

y"(t) = %f(t,y(t)) = fe(t,y(®) + fy (ty(t) -4 (t) = fe(t, y(1) + fy (£, y(@)) - f(t,y(t))
" (@) < [fety@®)] + | £ y@)] ][ fy & y@)| < My + MoM,,



by our assumptions on f. On the other hand, by the same argument as in the first part of (a),

' () — Gi(ta)| = | £ty y(ts)) — £t wi)| < Myly(ts)—vi| = Mye;.

(c; 3pts) Use part (a) to show that
i1 < € + Myeih + (My+MoM,)h?.
By parts (a) and (b),

€ir1 = |yY(tiv1) — yir1| = |y(tis1) — Gi(tis1)|
< y(t) — Galta)| + [/ (t) — Gi(ta) |[tigr —ta] + (My+MoMy)|tipq — ]
< € + Myeh + (My+MoM,)h?.

(d; 4pts) Conclude that

1—|—Myh)N—1h< M, + MyM,

en < (M Mpar,) LE < Mt 28y (om0 ),
Yy Yy

By part (c),
en < (My+MoMy)h? + (1+Myh)en_1
< (My+MoMy)h? + (1+Myh)(My+MoM,)h* 4+ (1+Myh)?en—2 < .
< (My+MoMy)h? +(1+Myh) (M +MoMy)h*+. . .+ (14+M,h)N = 1(Mt+M0M A2+ (1+Myh)Ne

Since €y =0, it follows that

en < (My+MoMy)R* (1 + (1+Myh) + ...+ (1+Myh)N 1)
(1+M,h)N — (1+M,h)N —1 (3)
(1+Myh) — 1 M,

1
< (My+ MoM,)h? = (M+MoM,)

In order to obtain the final statement, recall that one definition of the number e is

= i (1+1)N - I (1+C)N—C for all
R e N N N) —°¢ o

Furthermore, the sequence (14 ¢/N)¥ is increasing with N, if ¢>0. Since h=(b—a)/N, it follows

from (3) that

en < U N —1)h.

< My + MyM, ((1 i My(b_a)>N B 1>h < M + My M, (eMy(b—a)
y

Yy



