Math53: Ordinary Differential Equations Autumn 2004

Problem Set 7 Solutions

Note: Even if you have done every problem, you are encouraged to look over these solutions, especially $6.1: 2,18$ and $6.2: 2$, where the computations are arranged into tables. In the second part of $6.1: 18$, the IVP is solved using only the complex form of the general solution.

Section 6.1: 2,18 (22pts)

6.1:2; 8pts: For the initial value problem

$$
y^{\prime}=y, \quad y(0)=1
$$

compute the first five iterations of Euler's method with step size $h=0.1$. Then solve the initial value problem exactly and compare the obtained estimate for $y(0.5)$ with its exact value.
We start with $t_{0}=0, y_{0}=1$ and $f(t, y)=y$.
In the first iteration, we get that $t_{1}=t_{0}+h=0.1, y_{1}=y_{0}+y_{0} h=1$.1.
In the second iteration we get that $y_{2}=y_{1}+y_{1} h=1.21$ and $t_{2}=t_{1}+h=0.2$ and so on. The first five iterations are given in the following table:

k	t_{k}	y_{k}	$f\left(t_{k}, y_{k}\right)=y_{k}$	$f\left(t_{k}, y_{k}\right) h$
0	0.0	1.0000	1.0000	0.1000
1	0.1	1.1000	1.1000	0.1100
2	0.2	1.2100	1.2100	0.1210
3	0.3	1.3310	1.3310	0.1331
4	0.4	1.4641	1.4641	0.1464
5	0.5	1.6105	-	-

The exact value of the solution $y(t)=e^{t}$ at .5 is $e^{1 / 2} \approx 1.6487$.
6.1:18; 14pts: For the initial value problem

$$
x^{\prime}=y, \quad y^{\prime}=-x, \quad x(0)=1, \quad y(0)=-1
$$

compute the first five iterations of Euler's method with step size $h=0.1$. Then solve the initial value problem exactly and compare the obtained estimates for $x(0.5)$ and $y(0.5)$ with their exact values.
We start with $t_{0}=0, x_{0}=1$, and $y_{0}=-1$. We also have that $f(t, x, y)=y$ and $g(t, x, y)=-x$, so from here, the iteration proceeds with

$$
y_{k+1}=x_{k}+y_{k} h \quad \text { and } \quad x_{k+1}=y_{k}-x_{k} h
$$

The first five iterations are arranged in the following table:

t_{k}	x_{k}	y_{k}	$f\left(t_{k}, x_{k}, y_{k}\right) h=y_{k} h$	$g\left(t_{k}, x_{k}, y_{k}\right) h=-x_{k} h$
0.0	1.0000	-1.0000	-0.1000	-0.1000
0.1	0.9000	-1.1000	-0.1100	-0.0900
0.2	0.7900	-1.1900	-0.1190	-0.0790
0.3	0.6710	-1.2690	-0.1269	-0.0671
0.4	0.5441	-1.3361	-0.1336	-0.0544
0.5	0.4105	-1.3905	-	-

In order to solve this problem exactly, we re-write the IVP as

$$
\mathbf{y}^{\prime}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \mathbf{y}, \quad \mathbf{y}(0)=\binom{1}{-1}
$$

The characteristic polynomial for this equation is $\lambda^{2}+1=0$. Its roots are $\lambda_{1}, \lambda_{2}= \pm i$. We first find an eigenvector for λ_{1} :

$$
\left(\begin{array}{cc}
0-i & 1 \\
-1 & 0-i
\end{array}\right)\binom{c_{1}}{c_{2}}=\binom{0}{0} \Longleftrightarrow\left\{\begin{array}{l}
-i c_{1}+c_{2}=0 \\
-c_{1}-i c_{2}=0
\end{array} \Longleftrightarrow c_{2}=i c_{1} \Longrightarrow \mathbf{v}_{1}=\binom{1}{i}\right.
$$

The complex conjugate of $\mathbf{v}_{1}, \mathbf{v}_{2}=\binom{1}{-i}$, must then be an eigenvector with eigenvalue $\lambda_{2}=\bar{\lambda}_{1}$. Thus, the general solution to the system of ODEs is

$$
\mathbf{y}(t)=C_{1} e^{\lambda_{1} t} \mathbf{v}_{1}+C_{2} e^{\lambda_{2} t} \mathbf{v}_{2}=C_{1} e^{i t}\binom{1}{i}+C_{2} e^{-i t}\binom{1}{-i}
$$

Plugging in the initial condition, we obtain

$$
\begin{gathered}
\mathbf{y}(0)=C_{1}\binom{1}{i}+C_{2}\binom{1}{-i}=\binom{1}{-1} \Longleftrightarrow\left\{\begin{array} { l }
{ C _ { 1 } + C _ { 2 } = 1 } \\
{ i C _ { 1 } - i C _ { 2 } = - 1 }
\end{array} \Longleftrightarrow \left\{\begin{array} { l }
{ C _ { 1 } + C _ { 2 } = 1 } \\
{ C _ { 1 } - C _ { 2 } = i }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
C_{1}=\frac{1+i}{2} \\
C_{2}=\frac{1-i}{2}
\end{array}\right.\right.\right. \\
\Longrightarrow \mathbf{y}(t)
\end{gathered}=\frac{1+i}{2} e^{i t}\binom{1}{i}+\frac{1-i}{2} e^{-i t}\binom{1}{-i}=\frac{e^{i t}+e^{-i t}}{2}\binom{1}{-1}+\frac{e^{i t}-e^{-i t}}{2} i\binom{1}{1} .
$$

The value of the last expression at .5 Radians is $\mathbf{y}(.5) \approx\binom{.398}{-1.357}$.
Note that in the above IVP we never needed to use the real form of the general solution. We found the two constants C_{1} and C_{2} for the complex form. With these constants, the corresponding complex expression automatically reduces to a real one. The key formulas to remember are

$$
\cos \theta=\frac{e^{i \theta}+e^{-i \theta}}{2} \quad \text { and } \quad \sin \theta=\frac{e^{i \theta}-e^{-i \theta}}{2 i}
$$

they follow from $e^{ \pm i \theta}=\cos \theta \pm i \sin \theta$.

Section 6.2:2 (8pts)

For the initial value problem

$$
y^{\prime}=y, \quad y(0)=1
$$

compute the first five iterations of the second-order Runge-Kutta method with step size $h=0.1$ and compare the obtained estimate for $y(0.5)$ with its exact value.
We begin with $t_{0}=0, y_{0}=1$, and $f(t, y)=y$. Thus, the initial slopes are

$$
s_{0,1}=f(0,1)=1 \quad \text { and } \quad s_{0,2}=f\left(t_{0}+h, y_{0}+s_{0,1} h\right)=f(0.1,1.1)=1.1
$$

From here, we iterate using:

$$
\begin{aligned}
s_{k, 1}=f\left(t_{k}, y_{k}\right) & =y_{k}, \quad s_{k, 2}=f\left(t_{k}+h, y_{k}+s_{k, 1} h\right)=y_{k}+s_{k, 1} h, \\
y_{k+1} & =y_{k}+\frac{s_{k, 1}+s_{k, 2}}{2} h, \quad t_{k+1}=t_{k}+h
\end{aligned}
$$

The first five iterations are presented in the following table:

t_{k}	y_{k}	$s_{k, 1}$	$s_{k, 2}$	$\frac{s_{k, 1}+s_{k, 2}}{2} h$
0.0	1.0000	1.0000	1.1000	0.1050
0.1	1.1050	1.1050	1.2155	0.1160
0.2	1.2210	1.2210	1.3431	0.1282
0.3	1.3492	1.3492	1.4842	0.1417
0.4	1.4909	1.4909	1.6400	0.1565
0.5	1.6474	-	-	-

Just as in $6.1: 2$, the exact value of $y(.5)$ is $e^{1 / 2} \approx 1.6487$. So, the approximation obtained after just five iterations, 1.6474 , is quite good. Compare this with Euler's method!

Problem F (20pts)

(a; 7pts) Suppose y and \tilde{y} are smooth functions on the interval $[c, d]$ and M is a positive number such that

$$
\left|y^{\prime \prime}(t)\right|,\left|\tilde{y}^{\prime \prime}(t)\right| \leq M \quad \text { for all } \quad t \in[c, d]
$$

Show that

$$
|y(d)-\tilde{y}(d)| \leq|y(c)-\tilde{y}(c)|+\left|y^{\prime}(c)-\tilde{y}^{\prime}(c)\right||d-c|+M|d-c|^{2}
$$

We will apply FTC to the function

$$
z(t)=y(t)-\tilde{y}(t)
$$

and its derivative to estimate the change in $z(t)$ from $t=c$ to $t=d$. We first note

$$
\left|z^{\prime \prime}(s)\right|=\left|y^{\prime \prime}(s)-\tilde{y}^{\prime \prime}(s)\right| \leq\left|y^{\prime \prime}(s)\right|+\left|\tilde{y}^{\prime \prime}(s)\right| \leq M+M=2 M \quad \text { for all } \quad s \in[c, d]
$$

by our assumption on y and \tilde{y}. On the other hand, by FTC, for all $t \in[c, d]$.

$$
z^{\prime}(t)=z^{\prime}(c)+\int_{c}^{t} z^{\prime \prime}(s) d s \Longrightarrow \begin{align*}
\left|z^{\prime}(t)\right| & \leq\left|z^{\prime}(c)\right|+\left|\int_{c}^{t} z^{\prime \prime}(s) d s\right| \leq\left|z^{\prime}(c)\right|+\int_{c}^{t}\left|z^{\prime \prime}(s)\right| d s \tag{1}\\
& \leq\left|z^{\prime}(c)\right|+2 M|t-c|=\left|z^{\prime}(c)\right|+2 M(t-c) .
\end{align*}
$$

Similarly, by FTC,

$$
\begin{gathered}
z(d)=z(c)+\int_{c}^{d} z^{\prime}(t) d t \quad \Longrightarrow \\
|z(d)| \leq|z(c)|+\left|\int_{c}^{d} z^{\prime}(t) d t\right| \leq|z(c)|+\int_{c}^{d}\left|z^{\prime}(t)\right| d t \\
\leq|z(c)|+\int_{c}^{d}\left(\left|z^{\prime}(c)\right|+2 M(t-c)\right) d t=|z(c)|+\left|z^{\prime}(c)\right||d-c|+M|d-c|^{2}
\end{gathered}
$$

by (1). Since $z(t)=y(t)-\tilde{y}(t)$, we conclude that

$$
|y(d)-\tilde{y}(d)| \leq|y(c)-\tilde{y}(c)|+\left|y^{\prime}(c)-\tilde{y}^{\prime}(c)\right||d-c|+M|d-c|^{2} .
$$

Suppose now that $f=f(t, y)$ is a smooth function and M_{0}, M_{t}, and M_{y} are positive numbers such that

$$
|f(t, y)| \leq M_{0}, \quad\left|f_{t}(t, y)\right| \leq M_{t}, \quad\left|f_{y}(t, y)\right| \leq M_{y} \quad \text { for all } \quad t \in[a, b], y \in(-\infty, \infty)
$$

Let $y=y(t)$ be the solution to the initial value problem

$$
\begin{equation*}
y^{\prime}=f(t, y), \quad y(a)=y_{0} . \tag{2}
\end{equation*}
$$

Given a positive integer N, let

$$
\begin{gathered}
h=\frac{b-a}{N}, \quad t_{0}=a, \quad t_{i+1}=t_{i}+h=h \cdot(i+1), \quad s_{i}=f\left(t_{i}, y_{i}\right), \quad y_{i+1}=y_{i}+s_{i} h ; \\
\epsilon_{i}=\left|y\left(t_{i}\right)-y_{i}\right|, \quad \tilde{y}_{i}(t)=y_{i}+s_{i}\left(t-t_{i}\right) .
\end{gathered}
$$

Note that

$$
\epsilon_{0}=0, \quad \epsilon_{N}=y(b)-y_{N}, \quad \tilde{y}_{i}\left(t_{i}\right)=y_{i}, \quad \tilde{y}_{i}\left(t_{i+1}\right)=y_{i+1}, \quad \tilde{y}_{i}^{\prime}\left(t_{i}\right)=s_{i}, \quad \tilde{y}_{i}^{\prime \prime}(t)=0
$$

(b; 6pts) Use the ODE and the assumptions on f to show that

$$
\left|y^{\prime \prime}(t)\right| \leq M_{t}+M_{0} M_{y} \quad \text { and } \quad\left|y^{\prime}\left(t_{i}\right)-\tilde{y}_{i}^{\prime}\left(t_{i}\right)\right| \leq M_{y} \epsilon_{i} .
$$

Since $y^{\prime}(t)=f(t, y(t))$, by the chain rule

$$
\begin{aligned}
y^{\prime \prime}(t)= & \frac{d}{d t} f(t, y(t))=f_{t}(t, y(t))+f_{y}(t, y(t)) \cdot y^{\prime}(t)=f_{t}(t, y(t))+f_{y}(t, y(t)) \cdot f(t, y(t)) \\
& \Longrightarrow \quad\left|y^{\prime \prime}(t)\right| \leq\left|f_{t}(t, y(t))\right|+|f(t, y(t))|\left|f_{y}(t, y(t))\right| \leq M_{t}+M_{0} M_{y},
\end{aligned}
$$

by our assumptions on f. On the other hand, by the same argument as in the first part of (a),

$$
\left|y^{\prime}\left(t_{i}\right)-\tilde{y}_{i}^{\prime}\left(t_{i}\right)\right|=\left|f\left(t_{i}, y\left(t_{i}\right)\right)-f\left(t_{i}, y_{i}\right)\right| \leq M_{y}\left|y\left(t_{i}\right)-y_{i}\right|=M_{y} \epsilon_{i}
$$

(c; 3pts) Use part (a) to show that

$$
\epsilon_{i+1} \leq \epsilon_{i}+M_{y} \epsilon_{i} h+\left(M_{t}+M_{0} M_{y}\right) h^{2}
$$

By parts (a) and (b),

$$
\begin{aligned}
\epsilon_{i+1}=\left|y\left(t_{i+1}\right)-y_{i+1}\right| & =\left|y\left(t_{i+1}\right)-\tilde{y}_{i}\left(t_{i+1}\right)\right| \\
& \leq\left|y\left(t_{i}\right)-\tilde{y}_{i}\left(t_{i}\right)\right|+\left|y^{\prime}\left(t_{i}\right)-\tilde{y}_{i}^{\prime}\left(t_{i}\right)\right|\left|t_{i+1}-t_{i}\right|+\left(M_{t}+M_{0} M_{y}\right)\left|t_{i+1}-t_{i}\right|^{2} \\
& \leq \epsilon_{i}+M_{y} \epsilon_{i} h+\left(M_{t}+M_{0} M_{y}\right) h^{2}
\end{aligned}
$$

(d; 4pts) Conclude that

$$
\epsilon_{N} \leq\left(M_{t}+M_{0} M_{y}\right) \frac{\left(1+M_{y} h\right)^{N}-1}{M_{y}} h \leq \frac{M_{t}+M_{0} M_{y}}{M_{y}}\left(e^{M_{y}(b-a)}-1\right) h .
$$

By part (c),

$$
\begin{aligned}
\epsilon_{N} & \leq\left(M_{t}+M_{0} M_{y}\right) h^{2}+\left(1+M_{y} h\right) \epsilon_{N-1} \\
& \leq\left(M_{t}+M_{0} M_{y}\right) h^{2}+\left(1+M_{y} h\right)\left(M_{t}+M_{0} M_{y}\right) h^{2}+\left(1+M_{y} h\right)^{2} \epsilon_{N-2} \leq \ldots \\
& \leq\left(M_{t}+M_{0} M_{y}\right) h^{2}+\left(1+M_{y} h\right)\left(M_{t}+M_{0} M_{y}\right) h^{2}+\ldots+\left(1+M_{y} h\right)^{N-1}\left(M_{t}+M_{0} M_{y}\right) h^{2}+\left(1+M_{y} h\right)^{N} \epsilon_{0}
\end{aligned}
$$

Since $\epsilon_{0}=0$, it follows that

$$
\begin{align*}
\epsilon_{N} & \leq\left(M_{t}+M_{0} M_{y}\right) h^{2}\left(1+\left(1+M_{y} h\right)+\ldots+\left(1+M_{y} h\right)^{N-1}\right) \\
& \leq\left(M_{t}+M_{0} M_{y}\right) h^{2} \frac{\left(1+M_{y} h\right)^{N}-1}{\left(1+M_{y} h\right)-1}=\left(M_{t}+M_{0} M_{y}\right) \frac{\left(1+M_{y} h\right)^{N}-1}{M_{y}} h \tag{3}
\end{align*}
$$

In order to obtain the final statement, recall that one definition of the number e is

$$
e=\lim _{N \longrightarrow \infty}\left(1+\frac{1}{N}\right)^{N} \quad \Longrightarrow \quad \lim _{N \longrightarrow \infty}\left(1+\frac{c}{N}\right)^{N}=e^{c} \quad \text { for all } \quad c
$$

Furthermore, the sequence $(1+c / N)^{N}$ is increasing with N, if $c>0$. Since $h=(b-a) / N$, it follows from (3) that

$$
\epsilon_{N} \leq \frac{M_{t}+M_{0} M_{y}}{M_{y}}\left(\left(1+\frac{M_{y}(b-a)}{N}\right)^{N}-1\right) h \leq \frac{M_{t}+M_{0} M_{y}}{M_{y}}\left(e^{M_{y}(b-a)}-1\right) h
$$

