
Math53: Ordinary Differential Equations
Autumn 2004

Problem Set 6 Solutions

Note: Even if you have done every problem, you are encouraged to look over these solutions, espe-
cially 9.2:38,40 and 9.8:6. In the first two problems, phase-plane portraits are discussed in detail.
In 9.8:6, complex numbers are used to greatly simplify the computation.

Section 9.2: 38,40,44 (25pts)

9.2:38; 10pts: Find the general solution to the system of linear ODEs

y′ =

(

−3 1
−1 −1

)

y, y = y(t).

Sketch the phase-plane portrait of solution curves.
The characteristic polynomial for this system is

λ2 − (−3−1)λ +
(

(−3) · (−1) − 1 · (−1)
)

= λ2 + 4λ + 4 = (λ + 2)2.

Thus, there is only one eigenvalue, λ=−2. We next find an eigenvector v1 for λ=−2:

(

−3 − λ 1
−1 −1 − λ

)(

c1

c2

)

=

(

0
0

)

⇐⇒

{

−c1 + c2 = 0

−c1 + c2 = 0
⇐⇒ c1 = c2 =⇒ v1 =

(

1
1

)

.

We now pick a simple vector v2, express Av2−λv2 in terms of v1, and then compute etAv2:

v2 =

(

1
0

)

=⇒ Av2 − λv2 =

(

−3
−1

)

−

(

−2
0

)

= (−1) · v1

=⇒ tAv2 = (−t)v1 + (−2t)v2 =⇒ etAv2 = −te−2tv1 + e−2tv2.

The general solution to the ODE is thus given by

y(t) = C1e
−2tv1 + C2

(

− te−2tv1 + e−2tv2

)

= e−2t

(

C1+C2−C2t

C1 − C2t

)

A phase-plane sketch is the first plot in Figure 1. The origin is a degenerate nodal sink. Each
solution curve descends to the origin as t−→∞, and its slope approaches 1 as t−→±∞. In order
to see which way the solution curves move on the two sides of the line Rv1, we need to determine
whether C2 >0 or C2 <0 on each of the two sides of this line. The line itself corresponds to C2 =0.
We know that if C2 >0, the point y(t) corresponding to C1 and t will lie either to the left or to the
right of the line, with left or right being the same for all C1 and t. Thus, we can test this using
C1 =0 and t=0. In this case, y(t)=(1, 0) lies to the right of the line. Thus, C2 is positive to the
right of the line. By looking at y(t), we see that if C2 >0, the x- and y-coordinates of y(t) become
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Figure 1: Phase-Plane Plots for Problems 9.2:38 and 9.2:40

very large and positive as t−→−∞, and become negative as t−→∞. Thus, the solution curves on
the right of the line Rv1 rise up in the direction of +v1 as t−→−∞ and approach the origin from
below left as t−→∞. The picture on the left side of the line Rv1 is just a reflection about the origin.

9.2:40; 10pts: Find the general solution to the system of linear ODEs

y′ =

(

−2 −1
4 2

)

y, y = y(t).

Sketch the phase-plane portrait of solution curves.
The characteristic polynomial for this system is

λ2 − (−2+2)λ +
(

(−2) · 2 − (−1) · 4
)

= λ2.

Thus, there is only one eigenvalue, λ=0. We next find an eigenvector v1 for λ=0:

(

−2 − λ −1
4 2 − λ

)(

c1

c2

)

=

(

0
0

)

⇐⇒

{

−2c1 − c2 = 0

4c1 + 2c2 = 0
⇐⇒ c2 = −2c1 =⇒ v1 =

(

1
−2

)

.

We now pick a simple vector v2, express Av2−λv2 in terms of v1, and then compute etAv2:

v2 =

(

1
0

)

=⇒ Av2 − λv2 =

(

−2
4

)

−

(

0
0

)

= (−2) · v1

=⇒ tAv2 = (−2t)v1 + (0t)v2 =⇒ etAv2 = (−2t)e−0tv1 + e−0tv2.

The general solution to the ODE is thus given by

y(t) = C1e
−0tv1 + C2

(

− 2te−0tv1 + e−0tv2

)

=

(

C1+C2−2C2t

−2C1 + 4C2t

)

A phase-plane sketch is the second plot in Figure 1. Note that if C2 =0, the corresponding solution
y(t) = (C1 − 2C1)

t is a constant function, i.e. every point on the line y =−2x is an equilibrium
point. If C2 6=0, the solution y(t) traces the line of slope −2 through the point (C2 0)t. In order
to tell whether it moves up or down along the line, we need to determine whether C2 >0 or C2 <0
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on each of the two sides of the line y=−2x. The line itself corresponds to C2 =0, with the values
of C1 corresponding to the points on the line. We know that if C2 >0, the point y(t) corresponding
to C1 and t will lie either to the left or to the right of the line y=−2x, with left or right being the
same for all C1 and t. Thus, we can test this using C1 =0 and t=0. In this case, y(t)=(1, 0) lies to
the right of the line. Thus, C2 is positive to the right of the line. Since the y-coordinate increases
with t for C2 >0, solutions to the right of the line y=−2x move up. Similarly, solutions to the left
of this line move down. The origin is an unstable equilibrium, and so is every point on the line.

9.2:44; 5pts: Find the solution to the initial value problem

y′ =

(

−3 1
−1 −1

)

y, y(0) =

(

0
−3

)

.

By 9.2:38, it remains to find C1 and C2 such that

y(0) =

(

C1+C2

C1

)

=

(

0
−3

)

⇐⇒

{

C1 + C2 = 0

C1 = −3
⇐⇒

{

C1 = −3

C2 = 3

Thus, the solution to the IVP is y(t) = −3e−2t

(

t

1+t

)

Section 9.4: 14 (12pts)

Solve the initial value problem

y′ =





−3 0 −1
3 2 3
2 0 0



y, y(0) =





1
−1
2



 .

The characteristic polynomial p(λ) for the matrix is:

det(A−λI) = det





−3 −λ 0 −1
3 2−λ 3
2 0 −λ



 = (2−λ)det

(

−3 − λ −1
2 −λ

)

= −(λ − 2)(λ2 + 3λ + 2) = −(λ − 2)(λ + 1)(λ + 2).

The eigenvalues are λ1 =−2, λ2 =−1, λ3 =2. For each of these, we find an eigenvector:

λ1 = −2 :





−3 −λ1 0 −1
3 2−λ1 3
2 0 −λ1









c1

c2

c3



 =





0
0
0



 ⇐⇒











−c1 − c3 = 0

3c1 + 4c2 + 3c3 = 0

2c1 + 2c3 = 0

⇐⇒

{

c3 = −c1

c2 = 0
=⇒ v1 =





1
0
−1




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λ2 = −1 :





−3 −λ2 0 −1
3 2−λ2 3
2 0 −λ2









c1

c2

c3



 =





0
0
0



 ⇐⇒











−2c1 − c3 = 0

3c1 + 3c2 + 3c3 = 0

2c1 + c3 = 0

⇐⇒

{

c3 = −2c1

c2 = c1

=⇒ v2 =





1
1
−2





λ3 = 2 :





−3 −λ3 0 −1
3 2−λ3 3
2 0 −λ3









c1

c2

c3



 =





0
0
0



 ⇐⇒











−5c1 − c3 = 0

3c1 + 3c3 = 0

2c1 − 2c3 = 0

⇐⇒

{

c1 = 0

c3 = 0
=⇒ v3 =





0
1
0





Thus, the general solution is:

y(t) = C1e
λ1tv1 + C2e

λ2tv2 + C3e
λ3tv3 = C1e

−2t





1
0
−1



 + C2e
−t





1
1
−2



 + C3e
2t





0
1
0



 .

From the initial condition, we obtain

y(0) = C1





1
0
−1



 + C2





1
1
−2



 + C3





0
1
0



 =





1
−1
2



 ⇐⇒











C1 + C2 = 1

C2 + C3 = −1

−C1 − 2C2 = 2

⇐⇒











C1 = 1 − C2

C3 = −1 − C2

−1 − C2 = 2

⇐⇒











C2 = −3

C1 = 4

C3 = 2

Plugging these constants into the general solution, we get

y(t) = 4e−2t





1
0
−1



 − 3e−t





1
1
−2



 + 2e2t





0
1
0



 =





4e−2t − 3e−t

−3e−t + 2e2t

−4e−2t + 6e−t





Section 9.6: 7,9; 10pts

9.6:7; 4pts Determine whether the origin is an unstable, stable, or asymptotically stable equilibrium
for the system

y′ =

(

1 −4
1 −3

)

y, y = y(t).
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Sketch the phase-plane portrait of solution curves.
The characteristic polynomial for this system is

λ2 − (1+ (−3))λ +
(

1 · (−3) − (−4) · 1
)

= λ2 + 2λ + 1 = (λ + 1)2.

Thus, the matrix has only one eigenvalue λ = λ1 =−1. Since this eigenvalue is negative and it is
the only eigenvalue, the origin is an asymptotically stable point. It is a degenerate sink. The
phase-plane portrait is similar to that in the first sketch of Figure 1, except the half-lines have
slope .5, instead of 1.

9.6:9; 6pts Determine whether the origin is an unstable, stable, or asymptotically stable equilibrium
for the system

y′ =





−3 −4 2
−2 −7 4
−3 −8 4



y, y = y(t).

The characteristic polynomial for this system is

det





−3 − λ −4 2
−2 −7 − λ 4
−3 −8 4 − λ



 = −
(

λ3 + 6λ2 + 11λ + 6) = −(λ + 1)(λ + 2)(λ + 3).

All three eigenvalues λ1, λ2, λ3 = −1,−2,−3 are negative. Thus, the origin is a nodal sink and an
asymptotically stable equilibrium point.

Section 9.7: 17 (4pts)

Find the general solution of the equation y(4) + 36y=13y′′.
The characteristic polynomial for y(4) − 13y′′ + 36y = 0 is:

λ4 − 13λ2 + 36 = (λ2 − 4)(λ2 − 9) = (λ + 2)(λ − 2)(λ + 3)(λ − 3).

It has four distinct roots: ±2, ±3. Thus, the general solution is:

y(t)=C1e
−3t + C2e

−2t + C3e
2t + C4e

3t

Section 9.8: 6,18,29 (29pts)

9.8:6; 15pts: Find the general solution of the system y′=Ay + f , where

A =

(

4 2
−1 2

)

and f =

(

t

e3t

)

.

The characteristic polynomial for A is

det(A−λI) = λ2 − (tr A)λ + detA = λ2 − 6λ + 10.
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The eigenvalues of A are the roots of this polynomial: λ1, λ2 =3±i. We next find an eigenvector
for λ1:

(

4−λ1 2
−1 2−λ1

)(

c1

c2

)

=

(

0
0

)

⇐⇒

{

(1−i)c1 + 2c2 = 0

−c1 − (1+i)c2 = 0

⇐⇒ c1 = −(1+i)c2 =⇒ v1 =

(

1 + i

−1

)

.

The complex conjugate of v1, i.e. v2 =

(

1−i

−1

)

, is an eigenvector for λ2 = λ̄1. Thus, the general

solution to the homogeneous system y′=Ay is

yh(t) = C1e
λ1tv1 + C2e

λ2tv2 = C1e
(3+i)t

(

1+i

−1

)

+ C2e
(3−i)t

(

1−i

−1

)

= (A1 cos t+A2 sin t)e3t

(

1
−1

)

+ (A2 cos t−A1 sin t)e3t

(

1
0

)

.

(1)

The next step is to find a particular solution yp to the inhomogeneous system, using

yp(t) = Y (t)

∫ t

0
Y (s)−1f(s) ds,

where Y (t) = (y1(t) y2(t)) is a fundamental matrix and {y1(t),y2(t)} is a fundamental set of
solutions for the homogeneous system. We can use either complex or real solutions:

Y (t) = e3t

(

(1+i)eit (1−i)e−it

−eit −e−it

)

or Y (t) = e3t

(

cos t−sin t cos t+sin t

− cos t − sin t

)

. (2)

In the first case, the fundamental solutions y1 and y2 of the homogeneous system correspond to
the (C1 =1, C2 = 0) and (C1 =0, C2 = 1) cases of (eq1). In the second case, they correspond to the
(A1 =1, A2 = 0) and (A1 =0, A2 = 1) cases of (eq1). As (eq2) might suggest, it is easier to use the
complex solutions. In the complex case:

Y (t)−1 = e−3t ·
1

−2i

(

−e−it −(1−i)e−it

eit (1+i)eit

)

=⇒ Y −1(s)f(s) =
i

2

(

−se−(3+i)s − (1−i)e−is

se−(3−i)s + (1+i)eis

)

.

We next compute

∫ t

0
(1+i)eisds =

1+i

i
eis

∣

∣

s=t

s=0
= (1−i)

(

eit−1
)

=⇒

∫ t

0
(1−i)e−isds = (1+i)

(

e−it−1
)

;

∫

se−(3+i)sds =
1

−(3+i)

(

se−(3+i)s −

∫

e−(3+i)sds
)

= −
3−i

10
se−(3+i)s −

4 − 3i

50
e−(3+i)s

=⇒

∫ t

0
se−(3+i)sds = −

3−i

10
te−(3+i)t −

4 − 3i

50

(

e−(3+i)t−1
)

=⇒

∫ t

0
se−(3−i)sds = −

3+i

10
te−(3−i)t +

4 + 3i

50

(

e−(3−i)t−1
)

.
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Putting everything together, we obtain

yp(t) = Y (t)

∫ t

0
Y (s)−1f(s) ds

= e3t

(

(1+i)eit (1−i)e−it

−eit −e−it

)

·
i

2

(

3−i
10 te−(3+i)t + 4−3i

50 e−(3+i)t − (1+i)e−it

−3+i
10 te−(3−i)t − 4+3i

50 e−(3−i)t + (1−i)eit

)

+ Y (t)v

=
ie3t

2

(

2i
5 te−3t + i

25e−3t − 4i
i
5te−3t + 3i

25e−3t + 2i

)

+ Y (t)v = −
1

50

(

10t + 1 − 100e3t

5t + 3 + 50e3t

)

+ Y (t)v,

for some v∈C. Since Y (t)v is a solution of the homogeneous system, the last expression is still a
solution of the inhomogeneous system even if we drop the last term. Thus, the general solution of
the inhomogeneous system is

y(t) = yh(t) + yp(t)

= (A1 cos t+A2 sin t)e3t

(

1
−1

)

+ (A2 cos t−A1 sin t)e3t

(

1
0

)

− 1
50

(

10t + 1 − 100e3t

5t + 3 + 50e3t

)

Another way of finding yp is to use the method of undetermined coefficients. In this case, this
would be mean finding a1, b1, c1 and a2, b2, c2, such that

y′

p = Ayp + f for yp(t) =

(

a1e
3t + b1t + c1

a2e
3t + b2t + c2

)

.

9.8:18; 10pts: Solve the initial value problem

y′=

(

−7 −3
6 2

)

y, y(0) =

(

1
0

)

.

The characteristic polynomial for A is

λ2 + (tr A)λ + detA = λ2 + 5λ + 4 = (λ + 1)(λ + 4).

The eigenvalues of A are the roots of this polynomial: λ1, λ2 = −1,−4. We next find the corre-
sponding eigenvectors:

λ1 = −1 :

(

−7 − λ1 −3
6 2−λ1

)(

c1

c2

)

=

(

0
0

)

⇐⇒

{

−6c1 − 3c2 = 0

6c1 + 3c2 = 0

⇐⇒ c2 = −2c1 =⇒ v1 =

(

1
−2

)

.

λ2 = −4 :

(

−7 − λ2 −3
6 2−λ2

)(

c1

c2

)

=

(

0
0

)

⇐⇒

{

−3c1 − 3c2 = 0

6c1 + 6c2 = 0

⇐⇒ c2 = −c1 =⇒ v2 =

(

1
−1

)

.
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Thus, a fundamental matrix for this system is

Y (t) =
(

eλ1tv1 eλ2tv2

)

=

(

e−t e−4t

−2e−t −e−4t

)

=⇒ Y (0) =

(

1 1
−2 −1

)

=⇒ Y (0)−1 =

(

−1 −1
2 1

)

=⇒ etA = Y (t)Y (0)−1 =

(

e−t e−4t

−2e−t −e−4t

)(

−1 −1
2 1

)

=

(

2e−4t−e−t e−4t−e−t

2e−t−2e−4t 2e−t−e−4t

)

Finally,

y(t) = etAy(0) =

(

2e−4t−e−t e−4t−e−t

2e−t−2e−4t 2e−t−e−4t

)(

1
0

)

=

(

2e−4t−e−t

2e−t−2e−4t

)

9.8:29; 4pts: Show that if A is an n×n matrix, the function

y(t) = etAy0 +

∫ t

0
e(t−s)Af(s) ds

solves the initial value problem y′=Ay + f , y(0)=y0.
We first check that the initial condition is satisfied:

y(0) = e0A

(

y0 +

∫ 0

0
e−sf(s)ds

)

= Iy0 = y0,

as required. We next use the product rule to check that the ODE is satisfied

y(t) = etA

(

y0 +

∫ t

0
e−sAf(s)ds

)

=⇒ y′(t) = AetA

(

y0 +

∫ t

0
e−sAf(s)ds

)

+ etA
(

e−tAf(t)
)

= Ay(t) + f(t).

Problem E (20pts)

(a; 2pts) Find simple conditions on smooth functions P = P (t), Q = Q(t), and a = a(t) that are
equivalent to

(

Q(y′+ay)
)

′

= P (y′′ + py′ + qy), p = p(t), q = q(t), (3)

for every smooth function y=y(t).
Expand LHS and compare with RHS:

(

Q(y′+ay)
)

′

= Qy′′ + (Q′+Qa)y′ + (Qa)′y = Py′′ + Ppy′ + Pqy =⇒

P = Q, Q′ + Qa = pP, (Qa)′ = qP ⇐⇒ P = Q, P ′ + Pa = pP, (Pa)′ = qP

(b; 8pts) Find an integrating factor for the second-order ODE (eq3) with constant p and q. Use it
to find R1 =R1(t) and R2 =R2(t) such that

(

R2(R1y)′
)

′

= P (y′′ + py′ + qy), p, q = const.
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By (a), we need to find a nonzero solution to the system
(

P

(Pa)

)

′

=

(

p −1
q 0

)(

P

(Pa)

)

P =P (t), a=a(t). (4)

The characteristic polynomial for the constant-coefficient matrix in (eq4) is λ2−pλ+q=0. Let λ̃1

and λ̃2 be the two roots of this quadratic equation. Note that λ1 =−λ̃1 and λ2 =−λ̃2 must then be
the roots of λ2+pλ+q=0, i.e. the characteristic polynomial for the second-order ODE. The reason
is that

λ1 + λ2 = −(λ̃1+λ̃2) = −p and λ1 · λ2 = (−λ̃1) · (−λ̃2) = λ̃1 · λ̃2 = q.

We next find an eigenvector for the eigenvalue λ̃2:

(

p−λ̃2 −1

q −λ̃2

)(

c1

c2

)

=

(

0
0

)

=⇒

{

λ̃1c1 − c2 = 0

qc1 − λ̃2c2 = 0
=⇒

(

c1

c2

)

=

(

1

λ̃1

)

=⇒

(

P

(Pa)

)

= eλ̃2t

(

1

λ̃1

)

=

(

e−λ2t

−λ1e
−λ2t

)

Thus, we can take P (t) = e−λ2t, a(t) = −λ1 By the above,

e−λ2t(y′′+py′+qy) =
(

e−λ2t(y′−λ1y)
)

′

=
(

e−λ2teλ1t(e−λ1ty)′
)

′

=
(

e(λ1−λ2)t(e−λ1ty)′
)

′

, (5)

where λ1 and λ2 are the roots of the characteristic polynomial associated to the ODE (eq3). The
middle equality above is obtained from our knowledge of an integrating factor for a first-order ODE,
especially one with a constant coefficient. The equality of the first and last terms in (eq5) recovers
the formula used in the integrating-factor approach to solving any linear second-order ODE with
constant coefficients.

(c; 10pts) If p, q, r = const, find functions P = P (t) 6= 0, R1 = R1(t), R2 = R2(t), and R3 = R3(t),
such that

(

R3

(

R2(R1y)′
)

′
)

′

= P (y′′′ + py′′ + qy′ + ry)

for all smooth function y=y(t).
We first find functions P =P (t), Q=Q(t), a=a(t), and b=b(t), such that

P (y′′′+py′′+qy′+ry) =
(

Q(y′′+ay′+by)
)

′

= Qy′′′ + (Q′+Qa)y′′ +
(

(Qa)′+Qb
)

y′ + (Qb)′y

⇐⇒ P = Q, P ′+Pa = pP, (Pa)′+(Pb) = qP, (Pb)′ = rP.

Thus, we need a nonzero solution to the ODE




P

(Pa)
(Pb)





′

=





p −1 0
q 0 −1
r 0 0









P

(Pa)
(Pb)



 P =P (t), a=a(t), b=b(t). (6)

The characteristic polynomial for this equation is

det









p −1 0
q 0 −1
r 0 0



 − λI



 = det





p−λ −1 0
q −λ −1
r 0 −λ





= (p−λ)(−λ)(−λ) + r(−1)(−1) − (−λ)q(−1) = −(λ3 − pλ2 + qλ − r).
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Let λ̃1, λ̃2, and λ̃3 be the roots of this cubic polynomial. Note that λ1 = −λ̃1, λ2 = −λ̃2, and
λ3 =−λ̃3 must then be the roots of

λ3 + pλ2 + qλ + r = 0,

i.e. the characteristic polynomial for the third-order ODE y′′′+py′′+qy′+ry=f , since

λ1+λ2+λ3 = −(λ̃1+λ̃2+λ̃3) = −p, λ1λ2λ3 = (−λ̃1)(−λ̃2)(−λ̃3) = −λ̃1λ̃2λ̃3 = −r,

and λ1λ2+λ1λ3+λ2λ3 = (−λ̃1)(−λ̃2)+(−λ̃1)(−λ̃3)+(−λ̃2)(−λ̃3) = q.

We next find an eigenvector for the eigenvalue λ̃3 of the matrix in (eq6):





p−λ̃3 −1 0

q −λ̃3 −1

r 0 −λ̃3









c1

c2

c3



 =





0
0
0



 =⇒











(λ̃1+λ̃2)c1 − c2 = 0

qc1 − λ̃3c2 − c3 = 0

rc1 − λ̃3c3 = 0

=⇒





c1

c2

c3



 =





1

λ̃1+λ̃2

λ̃1λ̃2





=⇒





P

(Pa)
(Pb)



 = eλ̃3t





1

λ̃1+λ̃2

λ̃1λ̃2



 =





e−λ3t

−(λ1+λ2)e
−λ3t

λ1λ2e
−λ3t





Thus, we can take P (t)=e−λ3t, a(t) = −(λ1+λ2), and b(t) = λ1λ2. By the above,

e−λ3t(y′′′+py′′+qy′+ry) =
(

e−λ3t(y′′−(λ1+λ2)y
′+λ1λ2y)

)

′

=
(

e−λ3teλ2t
(

e(λ1−λ2)t(e−λ1ty)′
)

′
)

′

=
(

e(λ2−λ3)t
(

e(λ1−λ2)t(e−λ1ty)′
)

′
)

′

,

(7)

where λ1, λ2, and λ3 are the roots of the characteristic polynomial associated to the ODE

y′′′ + py′′ + qy′ + ry = f.

The middle equality in (eq7) is obtained from (eq5). The equality of the first and last terms in (eq7)
can be used to solve any linear third-order ODE with constant coefficients.

Can you guess and prove the analogue of (eq7) for linear ODEs with constant coefficients of any
order?
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