Math53: Ordinary Differential Equations Autumn 2004

Problem Set 6 Solutions

Note: Even if you have done every problem, you are encouraged to look over these solutions, especially $9.2: 38,40$ and $9.8: 6$. In the first two problems, phase-plane portraits are discussed in detail. In 9.8:6, complex numbers are used to greatly simplify the computation.

Section 9.2: 38,40,44 (25pts)

9.2:38; 10pts: Find the general solution to the system of linear ODEs

$$
\mathbf{y}^{\prime}=\left(\begin{array}{cc}
-3 & 1 \\
-1 & -1
\end{array}\right) \mathbf{y}, \quad \mathbf{y}=\mathbf{y}(t)
$$

Sketch the phase-plane portrait of solution curves.
The characteristic polynomial for this system is

$$
\lambda^{2}-(-3-1) \lambda+((-3) \cdot(-1)-1 \cdot(-1))=\lambda^{2}+4 \lambda+4=(\lambda+2)^{2}
$$

Thus, there is only one eigenvalue, $\lambda=-2$. We next find an eigenvector \mathbf{v}_{1} for $\lambda=-2$:

$$
\left(\begin{array}{cc}
-3-\lambda & 1 \\
-1 & -1-\lambda
\end{array}\right)\binom{c_{1}}{c_{2}}=\binom{0}{0} \Longleftrightarrow\left\{\begin{array}{l}
-c_{1}+c_{2}=0 \\
-c_{1}+c_{2}=0
\end{array} \quad \Longleftrightarrow c_{1}=c_{2} \Longrightarrow \mathbf{v}_{1}=\binom{1}{1} .\right.
$$

We now pick a simple vector \mathbf{v}_{2}, express $A \mathbf{v}_{2}-\lambda \mathbf{v}_{2}$ in terms of \mathbf{v}_{1}, and then compute $e^{t A} \mathbf{v}_{2}$:

$$
\begin{gathered}
\mathbf{v}_{2}=\binom{1}{0} \quad \Longrightarrow \quad A \mathbf{v}_{2}-\lambda \mathbf{v}_{2}=\binom{-3}{-1}-\binom{-2}{0}=(-1) \cdot \mathbf{v}_{1} \\
\Longrightarrow \quad t A \mathbf{v}_{2}=(-t) \mathbf{v}_{1}+(-2 t) \mathbf{v}_{2} \quad \Longrightarrow \quad e^{t A} \mathbf{v}_{2}=-t e^{-2 t} \mathbf{v}_{1}+e^{-2 t} \mathbf{v}_{2} .
\end{gathered}
$$

The general solution to the ODE is thus given by

$$
\mathbf{y}(t)=C_{1} e^{-2 t} \mathbf{v}_{1}+C_{2}\left(-t e^{-2 t} \mathbf{v}_{1}+e^{-2 t} \mathbf{v}_{2}\right)=e^{-2 t\binom{C_{1}+C_{2}-C_{2} t}{C_{1}-C_{2} t}}
$$

A phase-plane sketch is the first plot in Figure 1. The origin is a degenerate nodal sink. Each solution curve descends to the origin as $t \longrightarrow \infty$, and its slope approaches 1 as $t \longrightarrow \pm \infty$. In order to see which way the solution curves move on the two sides of the line $\mathbb{R} \mathbf{v}_{1}$, we need to determine whether $C_{2}>0$ or $C_{2}<0$ on each of the two sides of this line. The line itself corresponds to $C_{2}=0$. We know that if $C_{2}>0$, the point $\mathbf{y}(t)$ corresponding to C_{1} and t will lie either to the left or to the right of the line, with left or right being the same for all C_{1} and t. Thus, we can test this using $C_{1}=0$ and $t=0$. In this case, $\mathbf{y}(t)=(1,0)$ lies to the right of the line. Thus, C_{2} is positive to the right of the line. By looking at $\mathbf{y}(t)$, we see that if $C_{2}>0$, the x - and y-coordinates of $\mathbf{y}(t)$ become

Figure 1: Phase-Plane Plots for Problems 9.2:38 and 9.2:40
very large and positive as $t \longrightarrow-\infty$, and become negative as $t \longrightarrow \infty$. Thus, the solution curves on the right of the line $\mathbb{R} \mathbf{v}_{1}$ rise up in the direction of $+\mathbf{v}_{1}$ as $t \longrightarrow-\infty$ and approach the origin from below left as $t \longrightarrow \infty$. The picture on the left side of the line $\mathbb{R} \mathbf{v}_{1}$ is just a reflection about the origin.
9.2:40; 10pts: Find the general solution to the system of linear ODEs

$$
\mathbf{y}^{\prime}=\left(\begin{array}{cc}
-2 & -1 \\
4 & 2
\end{array}\right) \mathbf{y}, \quad \mathbf{y}=\mathbf{y}(t) .
$$

Sketch the phase-plane portrait of solution curves.
The characteristic polynomial for this system is

$$
\lambda^{2}-(-2+2) \lambda+((-2) \cdot 2-(-1) \cdot 4)=\lambda^{2} .
$$

Thus, there is only one eigenvalue, $\lambda=0$. We next find an eigenvector \mathbf{v}_{1} for $\lambda=0$:

$$
\left(\begin{array}{cc}
-2-\lambda & -1 \\
4 & 2-\lambda
\end{array}\right)\binom{c_{1}}{c_{2}}=\binom{0}{0} \Longleftrightarrow\left\{\begin{array}{l}
-2 c_{1}-c_{2}=0 \\
4 c_{1}+2 c_{2}=0
\end{array} \quad \Longleftrightarrow c_{2}=-2 c_{1} \Longrightarrow \mathbf{v}_{1}=\binom{1}{-2}\right.
$$

We now pick a simple vector \mathbf{v}_{2}, express $A \mathbf{v}_{2}-\lambda \mathbf{v}_{2}$ in terms of \mathbf{v}_{1}, and then compute $e^{t A} \mathbf{v}_{2}$:

$$
\begin{aligned}
& \mathbf{v}_{2}=\binom{1}{0} \quad \Longrightarrow \quad A \mathbf{v}_{2}-\lambda \mathbf{v}_{2}=\binom{-2}{4}-\binom{0}{0}=(-2) \cdot \mathbf{v}_{1} \\
& \Longrightarrow \quad t A \mathbf{v}_{2}=(-2 t) \mathbf{v}_{1}+(0 t) \mathbf{v}_{2} \quad \Longrightarrow \quad e^{t A} \mathbf{v}_{2}=(-2 t) e^{-0 t} \mathbf{v}_{1}+e^{-0 t} \mathbf{v}_{2} .
\end{aligned}
$$

The general solution to the ODE is thus given by

$$
\mathbf{y}(t)=C_{1} e^{-0 t} \mathbf{v}_{1}+C_{2}\left(-2 t e^{-0 t} \mathbf{v}_{1}+e^{-0 t} \mathbf{v}_{2}\right)=\binom{C_{1}+C_{2}-2 C_{2} t}{-2 C_{1}+4 C_{2} t}
$$

A phase-plane sketch is the second plot in Figure 1. Note that if $C_{2}=0$, the corresponding solution $\mathbf{y}(t)=\left(C_{1}-2 C_{1}\right)^{t}$ is a constant function, i.e. every point on the line $y=-2 x$ is an equilibrium point. If $C_{2} \neq 0$, the solution $\mathbf{y}(t)$ traces the line of slope -2 through the point $\left(C_{2} 0\right)^{t}$. In order to tell whether it moves up or down along the line, we need to determine whether $C_{2}>0$ or $C_{2}<0$
on each of the two sides of the line $y=-2 x$. The line itself corresponds to $C_{2}=0$, with the values of C_{1} corresponding to the points on the line. We know that if $C_{2}>0$, the point $\mathbf{y}(t)$ corresponding to C_{1} and t will lie either to the left or to the right of the line $y=-2 x$, with left or right being the same for all C_{1} and t. Thus, we can test this using $C_{1}=0$ and $t=0$. In this case, $\mathbf{y}(t)=(1,0)$ lies to the right of the line. Thus, C_{2} is positive to the right of the line. Since the y-coordinate increases with t for $C_{2}>0$, solutions to the right of the line $y=-2 x$ move up. Similarly, solutions to the left of this line move down. The origin is an unstable equilibrium, and so is every point on the line.
9.2:44; 5pts: Find the solution to the initial value problem

$$
\mathbf{y}^{\prime}=\left(\begin{array}{cc}
-3 & 1 \\
-1 & -1
\end{array}\right) \mathbf{y}, \quad \mathbf{y}(0)=\binom{0}{-3} .
$$

By 9.2:38, it remains to find C_{1} and C_{2} such that

$$
\mathbf{y}(0)=\binom{C_{1}+C_{2}}{C_{1}}=\binom{0}{-3} \Longleftrightarrow\left\{\begin{array} { l }
{ C _ { 1 } + C _ { 2 } = 0 } \\
{ C _ { 1 } = - 3 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
C_{1}=-3 \\
C_{2}=3
\end{array}\right.\right.
$$

Thus, the solution to the IVP is $\quad \mathbf{y}(t)=-3 e^{-2 t}\binom{t}{1+t}$

Section 9.4: 14 (12pts)

Solve the initial value problem

$$
\mathbf{y}^{\prime}=\left(\begin{array}{ccc}
-3 & 0 & -1 \\
3 & 2 & 3 \\
2 & 0 & 0
\end{array}\right) \mathbf{y}, \quad \mathbf{y}(0)=\left(\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right) .
$$

The characteristic polynomial $p(\lambda)$ for the matrix is:

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\operatorname{det}\left(\begin{array}{ccc}
-3-\lambda & 0 & -1 \\
3 & 2-\lambda & 3 \\
2 & 0 & -\lambda
\end{array}\right)=(2-\lambda) \operatorname{det}\left(\begin{array}{cc}
-3-\lambda & -1 \\
2 & -\lambda
\end{array}\right) \\
& =-(\lambda-2)\left(\lambda^{2}+3 \lambda+2\right)=-(\lambda-2)(\lambda+1)(\lambda+2) .
\end{aligned}
$$

The eigenvalues are $\lambda_{1}=-2, \lambda_{2}=-1, \lambda_{3}=2$. For each of these, we find an eigenvector:

$$
\begin{aligned}
\lambda_{1}=-2: & \left(\begin{array}{ccc}
-3-\lambda_{1} & 0 & -1 \\
3 & 2-\lambda_{1} & 3 \\
2 & 0 & -\lambda_{1}
\end{array}\right)\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \Longleftrightarrow\left\{\begin{array}{l}
-c_{1}-c_{3}=0 \\
3 c_{1}+4 c_{2}+3 c_{3}=0 \\
2 c_{1}+2 c_{3}=0
\end{array}\right. \\
& \Longleftrightarrow\left\{\begin{array}{l}
c_{3}=-c_{1} \\
c_{2}=0
\end{array} \Longrightarrow \mathbf{v}_{1}=\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)\right.
\end{aligned}
$$

$$
\left.\begin{array}{rl}
\lambda_{2}=-1: & \left(\begin{array}{ccc}
-3-\lambda_{2} & 0 & -1 \\
3 & 2-\lambda_{2} & 3 \\
2 & 0 & -\lambda_{2}
\end{array}\right)\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
& \Longleftrightarrow\left\{\begin{array}{l}
c_{3}=-2 c_{1} \\
c_{2}=c_{1}
\end{array} \Longrightarrow \mathbf{v}_{2}=\left(\begin{array}{l}
-2 c_{1}-c_{3}=0 \\
3 c_{1}+3 c_{2}+3 c_{3}=0 \\
2 c_{1}+c_{3}=0
\end{array}\right.\right. \\
-2
\end{array}\right) \quad \begin{aligned}
& \lambda_{3}=2: \\
& \\
&
\end{aligned}
$$

Thus, the general solution is:

$$
\mathbf{y}(t)=C_{1} e^{\lambda_{1} t} \mathbf{v}_{1}+C_{2} e^{\lambda_{2} t} \mathbf{v}_{2}+C_{3} e^{\lambda_{3} t} \mathbf{v}_{3}=C_{1} e^{-2 t}\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)+C_{2} e^{-t}\left(\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right)+C_{3} e^{2 t}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) .
$$

From the initial condition, we obtain

$$
\begin{aligned}
\mathbf{y}(0)=C_{1}\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)+C_{2}\left(\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right)+C_{3}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right) & \Longleftrightarrow\left\{\begin{array}{l}
C_{1}+C_{2}=1 \\
C_{2}+C_{3}=-1 \\
-C_{1}-2 C_{2}=2
\end{array}\right. \\
& \Longleftrightarrow\left\{\begin{array} { l }
{ C _ { 1 } = 1 - C _ { 2 } } \\
{ C _ { 3 } = - 1 - C _ { 2 } } \\
{ - 1 - C _ { 2 } = 2 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
C_{2}=-3 \\
C_{1}=4 \\
C_{3}=2
\end{array}\right.\right.
\end{aligned}
$$

Plugging these constants into the general solution, we get

$$
\mathbf{y}(t)=4 e^{-2 t}\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)-3 e^{-t}\left(\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right)+2 e^{2 t}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{c}
4 e^{-2 t}-3 e^{-t} \\
-3 e^{-t}+2 e^{2 t} \\
-4 e^{-2 t}+6 e^{-t}
\end{array}\right)
$$

Section 9.6: 7,9; 10pts

9.6:7; 4pts Determine whether the origin is an unstable, stable, or asymptotically stable equilibrium for the system

$$
\mathbf{y}^{\prime}=\left(\begin{array}{ll}
1 & -4 \\
1 & -3
\end{array}\right) \mathbf{y}, \quad \mathbf{y}=\mathbf{y}(t)
$$

Sketch the phase-plane portrait of solution curves.
The characteristic polynomial for this system is

$$
\lambda^{2}-(1+(-3)) \lambda+(1 \cdot(-3)-(-4) \cdot 1)=\lambda^{2}+2 \lambda+1=(\lambda+1)^{2} .
$$

Thus, the matrix has only one eigenvalue $\lambda=\lambda_{1}=-1$. Since this eigenvalue is negative and it is the only eigenvalue, the origin is an asymptotically stable point. It is a degenerate sink. The phase-plane portrait is similar to that in the first sketch of Figure 1, except the half-lines have slope .5 , instead of 1 .
9.6:9; $\mathbf{6 p t s}$ Determine whether the origin is an unstable, stable, or asymptotically stable equilibrium for the system

$$
\mathbf{y}^{\prime}=\left(\begin{array}{lll}
-3 & -4 & 2 \\
-2 & -7 & 4 \\
-3 & -8 & 4
\end{array}\right) \mathbf{y}, \quad \mathbf{y}=\mathbf{y}(t)
$$

The characteristic polynomial for this system is

$$
\operatorname{det}\left(\begin{array}{ccc}
-3-\lambda & -4 & 2 \\
-2 & -7-\lambda & 4 \\
-3 & -8 & 4-\lambda
\end{array}\right)=-\left(\lambda^{3}+6 \lambda^{2}+11 \lambda+6\right)=-(\lambda+1)(\lambda+2)(\lambda+3) .
$$

All three eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}=-1,-2,-3$ are negative. Thus, the origin is a nodal sink and an asymptotically stable equilibrium point.

Section 9.7: 17 (4pts)

Find the general solution of the equation $y^{(4)}+36 y=13 y^{\prime \prime}$.
The characteristic polynomial for $y^{(4)}-13 y^{\prime \prime}+36 y=0$ is:

$$
\lambda^{4}-13 \lambda^{2}+36=\left(\lambda^{2}-4\right)\left(\lambda^{2}-9\right)=(\lambda+2)(\lambda-2)(\lambda+3)(\lambda-3) .
$$

It has four distinct roots: $\pm 2, \pm 3$. Thus, the general solution is:

$$
y(t)=C_{1} e^{-3 t}+C_{2} e^{-2 t}+C_{3} e^{2 t}+C_{4} e^{3 t}
$$

Section 9.8: 6,18,29 (29pts)

9.8:6; 15pts: Find the general solution of the system $\mathbf{y}^{\prime}=A \mathbf{y}+\mathbf{f}$, where

$$
A=\left(\begin{array}{cc}
4 & 2 \\
-1 & 2
\end{array}\right) \quad \text { and } \quad \mathbf{f}=\binom{t}{e^{3 t}} .
$$

The characteristic polynomial for A is

$$
\operatorname{det}(A-\lambda I)=\lambda^{2}-(\operatorname{tr} A) \lambda+\operatorname{det} A=\lambda^{2}-6 \lambda+10
$$

The eigenvalues of A are the roots of this polynomial: $\lambda_{1}, \lambda_{2}=3 \pm i$. We next find an eigenvector for λ_{1} :

$$
\begin{aligned}
\left(\begin{array}{cc}
4-\lambda_{1} & 2 \\
-1 & 2-\lambda_{1}
\end{array}\right)\binom{c_{1}}{c_{2}}=\binom{0}{0} & \Longleftrightarrow\left\{\begin{array}{l}
(1-i) c_{1}+2 c_{2}=0 \\
-c_{1}-(1+i) c_{2}=0
\end{array}\right. \\
\Longleftrightarrow c_{1}=-(1+i) c_{2} & \Longleftrightarrow \mathbf{v}_{1}=\binom{1+i}{-1}
\end{aligned}
$$

The complex conjugate of \mathbf{v}_{1}, i.e. $\mathbf{v}_{2}=\binom{1-i}{-1}$, is an eigenvector for $\lambda_{2}=\bar{\lambda}_{1}$. Thus, the general solution to the homogeneous system $\mathbf{y}^{\prime}=A \mathbf{y}$ is

$$
\begin{align*}
\mathbf{y}_{h}(t) & =C_{1} e^{\lambda_{1} t} \mathbf{v}_{1}+C_{2} e^{\lambda_{2} t} \mathbf{v}_{2}=C_{1} e^{(3+i) t}\binom{1+i}{-1}+C_{2} e^{(3-i) t}\binom{1-i}{-1} \tag{1}\\
& =\left(A_{1} \cos t+A_{2} \sin t\right) e^{3 t}\binom{1}{-1}+\left(A_{2} \cos t-A_{1} \sin t\right) e^{3 t}\binom{1}{0} .
\end{align*}
$$

The next step is to find a particular solution \mathbf{y}_{p} to the inhomogeneous system, using

$$
\mathbf{y}_{p}(t)=Y(t) \int_{0}^{t} Y(s)^{-1} \mathbf{f}(s) d s
$$

where $Y(t)=\left(\mathbf{y}_{1}(t) \mathbf{y}_{2}(t)\right)$ is a fundamental matrix and $\left\{\mathbf{y}_{1}(t), \mathbf{y}_{2}(t)\right\}$ is a fundamental set of solutions for the homogeneous system. We can use either complex or real solutions:

$$
Y(t)=e^{3 t}\left(\begin{array}{cc}
(1+i) e^{i t} & (1-i) e^{-i t} \tag{2}\\
-e^{i t} & -e^{-i t}
\end{array}\right) \quad \text { or } \quad Y(t)=e^{3 t}\left(\begin{array}{cc}
\cos t-\sin t & \cos t+\sin t \\
-\cos t & -\sin t
\end{array}\right)
$$

In the first case, the fundamental solutions \mathbf{y}_{1} and \mathbf{y}_{2} of the homogeneous system correspond to the ($C_{1}=1, C_{2}=0$) and ($C_{1}=0, C_{2}=1$) cases of (eq1). In the second case, they correspond to the ($A_{1}=1, A_{2}=0$) and ($A_{1}=0, A_{2}=1$) cases of (eq1). As (eq2) might suggest, it is easier to use the complex solutions. In the complex case:

$$
Y(t)^{-1}=e^{-3 t} \cdot \frac{1}{-2 i}\left(\begin{array}{cc}
-e^{-i t} & -(1-i) e^{-i t} \\
e^{i t} & (1+i) e^{i t}
\end{array}\right) \quad \Longrightarrow \quad Y^{-1}(s) \mathbf{f}(s)=\frac{i}{2}\binom{-s e^{-(3+i) s}-(1-i) e^{-i s}}{s e^{-(3-i) s}+(1+i) e^{i s}} .
$$

We next compute

$$
\begin{aligned}
\int_{0}^{t}(1+i) e^{i s} d s & =\left.\frac{1+i}{i} e^{i s}\right|_{s=0} ^{s=t}=(1-i)\left(e^{i t}-1\right) \Longrightarrow \int_{0}^{t}(1-i) e^{-i s} d s=(1+i)\left(e^{-i t}-1\right) \\
\int s e^{-(3+i) s} d s & =\frac{1}{-(3+i)}\left(s e^{-(3+i) s}-\int e^{-(3+i) s} d s\right)=-\frac{3-i}{10} s e^{-(3+i) s}-\frac{4-3 i}{50} e^{-(3+i) s} \\
& \Longrightarrow \int_{0}^{t} s e^{-(3+i) s} d s=-\frac{3-i}{10} t e^{-(3+i) t}-\frac{4-3 i}{50}\left(e^{-(3+i) t}-1\right) \\
& \Longrightarrow \int_{0}^{t} s e^{-(3-i) s} d s=-\frac{3+i}{10} t e^{-(3-i) t}+\frac{4+3 i}{50}\left(e^{-(3-i) t}-1\right)
\end{aligned}
$$

Putting everything together, we obtain

$$
\begin{aligned}
\mathbf{y}_{p}(t) & =Y(t) \int_{0}^{t} Y(s)^{-1} \mathbf{f}(s) d s \\
& =e^{3 t}\left(\begin{array}{cc}
(1+i) e^{i t} & (1-i) e^{-i t} \\
-e^{i t} & -e^{-i t}
\end{array}\right) \cdot \frac{i}{2}\binom{\frac{3-i}{10} t e^{-(3+i) t}+\frac{4-3 i}{50} e^{-(3+i) t}-(1+i) e^{-i t}}{-\frac{3+i}{10} t e^{-(3-i) t}-\frac{4+3 i}{50} e^{-(3-i) t}+(1-i) e^{i t}}+Y(t) \mathbf{v} \\
& =\frac{i e^{3 t}}{2}\binom{\frac{2 i}{5} t e^{-3 t}+\frac{i}{25} e^{-3 t}-4 i}{\frac{2}{5} t e^{-3 t}+\frac{3 i}{25} e^{-3 t}+2 i}+Y(t) \mathbf{v}=-\frac{1}{50}\binom{10 t+1-100 e^{3 t}}{5 t+3+50 e^{3 t}}+Y(t) \mathbf{v},
\end{aligned}
$$

for some $\mathbf{v} \in \mathbb{C}$. Since $Y(t) \mathbf{v}$ is a solution of the homogeneous system, the last expression is still a solution of the inhomogeneous system even if we drop the last term. Thus, the general solution of the inhomogeneous system is

$$
\begin{aligned}
\mathbf{y}(t) & =\mathbf{y}_{h}(t)+\mathbf{y}_{p}(t) \\
& =\left(A_{1} \cos t+A_{2} \sin t\right) e^{3 t}\binom{1}{-1}+\left(A_{2} \cos t-A_{1} \sin t\right) e^{3 t}\binom{1}{0}-\frac{1}{50}\binom{10 t+1-100 e^{3 t}}{5 t+3+50 e^{3 t}}
\end{aligned}
$$

Another way of finding \mathbf{y}_{p} is to use the method of undetermined coefficients. In this case, this would be mean finding a_{1}, b_{1}, c_{1} and a_{2}, b_{2}, c_{2}, such that

$$
\mathbf{y}_{p}^{\prime}=A \mathbf{y}_{p}+\mathbf{f} \quad \text { for } \quad \mathbf{y}_{p}(t)=\binom{a_{1} e^{3 t}+b_{1} t+c_{1}}{a_{2} e^{3 t}+b_{2} t+c_{2}}
$$

9.8:18; 10pts: Solve the initial value problem

$$
\mathbf{y}^{\prime}=\left(\begin{array}{cc}
-7 & -3 \\
6 & 2
\end{array}\right) \mathbf{y}, \quad \mathbf{y}(0)=\binom{1}{0} .
$$

The characteristic polynomial for A is

$$
\lambda^{2}+(\operatorname{tr} A) \lambda+\operatorname{det} A=\lambda^{2}+5 \lambda+4=(\lambda+1)(\lambda+4) .
$$

The eigenvalues of A are the roots of this polynomial: $\lambda_{1}, \lambda_{2}=-1,-4$. We next find the corresponding eigenvectors:

$$
\begin{aligned}
\lambda_{1}=-1: \quad\left(\begin{array}{cc}
-7-\lambda_{1} & -3 \\
6 & 2-\lambda_{1}
\end{array}\right)\binom{c_{1}}{c_{2}} & =\binom{0}{0}
\end{aligned} \Longleftrightarrow \not \Longleftrightarrow\left\{\begin{array}{l}
-6 c_{1}-3 c_{2}=0 \\
6 c_{1}+3 c_{2}=0
\end{array}\right\}
$$

Thus, a fundamental matrix for this system is

$$
\begin{aligned}
& Y(t)=\left(e^{\lambda_{1} t} \mathbf{v}_{1} e^{\lambda_{2} t} \mathbf{v}_{2}\right)=\left(\begin{array}{cc}
e^{-t} & e^{-4 t} \\
-2 e^{-t} & -e^{-4 t}
\end{array}\right) \Longrightarrow Y(0)=\left(\begin{array}{cc}
1 & 1 \\
-2 & -1
\end{array}\right) \Longrightarrow Y(0)^{-1}=\left(\begin{array}{cc}
-1 & -1 \\
2 & 1
\end{array}\right) \\
& \Longrightarrow e^{t A}=Y(t) Y(0)^{-1}=\left(\begin{array}{cc}
e^{-t} & e^{-4 t} \\
-2 e^{-t} & -e^{-4 t}
\end{array}\right)\left(\begin{array}{cc}
-1 & -1 \\
2 & 1
\end{array}\right)=\left(\begin{array}{cc}
2 e^{-4 t}-e^{-t} & e^{-4 t}-e^{-t} \\
2 e^{-t}-2 e^{-4 t} & 2 e^{-t}-e^{-4 t}
\end{array}\right)
\end{aligned}
$$

Finally,

$$
\mathbf{y}(t)=e^{t A} \mathbf{y}(0)=\left(\begin{array}{cc}
2 e^{-4 t}-e^{-t} & e^{-4 t}-e^{-t} \\
2 e^{-t}-2 e^{-4 t} & 2 e^{-t}-e^{-4 t}
\end{array}\right)\binom{1}{0}=\binom{2 e^{-4 t}-e^{-t}}{2 e^{-t}-2 e^{-4 t}}
$$

9.8:29; 4pts: Show that if A is an $n \times n$ matrix, the function

$$
\mathbf{y}(t)=e^{t A} \mathbf{y}_{0}+\int_{0}^{t} e^{(t-s) A} \mathbf{f}(s) d s
$$

solves the initial value problem $\mathbf{y}^{\prime}=A \mathbf{y}+\mathbf{f}, \mathbf{y}(0)=\mathbf{y}_{0}$.
We first check that the initial condition is satisfied:

$$
\mathbf{y}(0)=e^{0 A}\left(\mathbf{y}_{0}+\int_{0}^{0} e^{-s} \mathbf{f}(s) d s\right)=I \mathbf{y}_{0}=\mathbf{y}_{0}
$$

as required. We next use the product rule to check that the ODE is satisfied

$$
\begin{gathered}
\mathbf{y}(t)=e^{t A}\left(\mathbf{y}_{0}+\int_{0}^{t} e^{-s A} \mathbf{f}(s) d s\right) \\
\Longrightarrow \mathbf{y}^{\prime}(t)=A e^{t A}\left(\mathbf{y}_{0}+\int_{0}^{t} e^{-s A} \mathbf{f}(s) d s\right)+e^{t A}\left(e^{-t A} \mathbf{f}(t)\right)=A \mathbf{y}(t)+\mathbf{f}(t)
\end{gathered}
$$

Problem E (20pts)

(a; 2pts) Find simple conditions on smooth functions $P=P(t), Q=Q(t)$, and $a=a(t)$ that are equivalent to

$$
\begin{equation*}
\left(Q\left(y^{\prime}+a y\right)\right)^{\prime}=P\left(y^{\prime \prime}+p y^{\prime}+q y\right), \quad p=p(t), q=q(t) \tag{3}
\end{equation*}
$$

for every smooth function $y=y(t)$.
Expand LHS and compare with RHS:

$$
\begin{gathered}
\left(Q\left(y^{\prime}+a y\right)\right)^{\prime}=Q y^{\prime \prime}+\left(Q^{\prime}+Q a\right) y^{\prime}+(Q a)^{\prime} y=P y^{\prime \prime}+P p y^{\prime}+P q y \quad \Longrightarrow \\
P=Q, \quad Q^{\prime}+Q a=p P, \quad(Q a)^{\prime}=q P \quad \Longleftrightarrow \quad P=Q, \quad P^{\prime}+P a=p P, \quad(P a)^{\prime}=q P
\end{gathered}
$$

(b; 8pts) Find an integrating factor for the second-order ODE (eq3) with constant p and q. Use it to find $R_{1}=R_{1}(t)$ and $R_{2}=R_{2}(t)$ such that

$$
\left(R_{2}\left(R_{1} y\right)^{\prime}\right)^{\prime}=P\left(y^{\prime \prime}+p y^{\prime}+q y\right), \quad p, q=\text { const } .
$$

By (a), we need to find a nonzero solution to the system

$$
\binom{P}{(P a)}^{\prime}=\left(\begin{array}{cc}
p & -1 \tag{4}\\
q & 0
\end{array}\right)\binom{P}{(P a)} \quad P=P(t), a=a(t)
$$

The characteristic polynomial for the constant-coefficient matrix in (eq4) is $\lambda^{2}-p \lambda+q=0$. Let $\tilde{\lambda}_{1}$ and $\tilde{\lambda}_{2}$ be the two roots of this quadratic equation. Note that $\lambda_{1}=-\tilde{\lambda}_{1}$ and $\lambda_{2}=-\tilde{\lambda}_{2}$ must then be the roots of $\lambda^{2}+p \lambda+q=0$, i.e. the characteristic polynomial for the second-order ODE. The reason is that

$$
\lambda_{1}+\lambda_{2}=-\left(\tilde{\lambda}_{1}+\tilde{\lambda}_{2}\right)=-p \quad \text { and } \quad \lambda_{1} \cdot \lambda_{2}=\left(-\tilde{\lambda}_{1}\right) \cdot\left(-\tilde{\lambda}_{2}\right)=\tilde{\lambda}_{1} \cdot \tilde{\lambda}_{2}=q .
$$

We next find an eigenvector for the eigenvalue $\tilde{\lambda}_{2}$:

$$
\begin{aligned}
\left(\begin{array}{cc}
p-\tilde{\lambda}_{2} & -1 \\
q & -\tilde{\lambda}_{2}
\end{array}\right)\binom{c_{1}}{c_{2}} & =\binom{0}{0} \Longrightarrow\left\{\begin{array}{l}
\tilde{\lambda}_{1} c_{1}-c_{2}=0 \\
q c_{1}-\tilde{\lambda}_{2} c_{2}=0
\end{array} \Longrightarrow\binom{c_{1}}{c_{2}}=\binom{1}{\tilde{\lambda}_{1}}\right. \\
& \Longrightarrow\binom{P}{(P a)}=e^{\tilde{\lambda}_{2} t}\binom{1}{\tilde{\lambda}_{1}}=\binom{e^{-\lambda_{2} t}}{-\lambda_{1} e^{-\lambda_{2} t}}
\end{aligned}
$$

Thus, we can take $P(t)=e^{-\lambda_{2} t}, \quad a(t)=-\lambda_{1} \quad$ By the above,

$$
\begin{equation*}
e^{-\lambda_{2} t}\left(y^{\prime \prime}+p y^{\prime}+q y\right)=\left(e^{-\lambda_{2} t}\left(y^{\prime}-\lambda_{1} y\right)\right)^{\prime}=\left(e^{-\lambda_{2} t} e^{\lambda_{1} t}\left(e^{-\lambda_{1} t} y\right)^{\prime}\right)^{\prime}=\left(e^{\left(\lambda_{1}-\lambda_{2}\right) t}\left(e^{-\lambda_{1} t} y\right)^{\prime}\right)^{\prime}, \tag{5}
\end{equation*}
$$

where λ_{1} and λ_{2} are the roots of the characteristic polynomial associated to the ODE (eq3). The middle equality above is obtained from our knowledge of an integrating factor for a first-order ODE, especially one with a constant coefficient. The equality of the first and last terms in (eq5) recovers the formula used in the integrating-factor approach to solving any linear second-order ODE with constant coefficients.
(c; 10pts) If $p, q, r=\mathrm{const}$, find functions $P=P(t) \neq 0, R_{1}=R_{1}(t), R_{2}=R_{2}(t)$, and $R_{3}=R_{3}(t)$, such that

$$
\left(R_{3}\left(R_{2}\left(R_{1} y\right)^{\prime}\right)^{\prime}\right)^{\prime}=P\left(y^{\prime \prime \prime}+p y^{\prime \prime}+q y^{\prime}+r y\right)
$$

for all smooth function $y=y(t)$.
We first find functions $P=P(t), Q=Q(t), a=a(t)$, and $b=b(t)$, such that

$$
\begin{gathered}
P\left(y^{\prime \prime \prime}+p y^{\prime \prime}+q y^{\prime}+r y\right)=\left(Q\left(y^{\prime \prime}+a y^{\prime}+b y\right)\right)^{\prime}=Q y^{\prime \prime \prime}+\left(Q^{\prime}+Q a\right) y^{\prime \prime}+\left((Q a)^{\prime}+Q b\right) y^{\prime}+(Q b)^{\prime} y \\
\Longleftrightarrow \quad P=Q, \quad P^{\prime}+P a=p P, \quad(P a)^{\prime}+(P b)=q P, \quad(P b)^{\prime}=r P .
\end{gathered}
$$

Thus, we need a nonzero solution to the ODE

$$
\left(\begin{array}{c}
P \tag{6}\\
(P a) \\
(P b)
\end{array}\right)^{\prime}=\left(\begin{array}{ccc}
p & -1 & 0 \\
q & 0 & -1 \\
r & 0 & 0
\end{array}\right)\left(\begin{array}{c}
P \\
(P a) \\
(P b)
\end{array}\right) \quad \quad P=P(t), a=a(t), b=b(t) .
$$

The characteristic polynomial for this equation is

$$
\left.\begin{array}{rl}
\operatorname{det}\left(\left(\begin{array}{ccc}
p & -1 & 0 \\
q & 0 & -1 \\
r & 0 & 0
\end{array}\right)\right. & -\lambda I)
\end{array}\right)=\operatorname{det}\left(\begin{array}{ccc}
p-\lambda & -1 & 0 \\
q & -\lambda & -1 \\
r & 0 & -\lambda
\end{array}\right) .
$$

Let $\tilde{\lambda}_{1}, \tilde{\lambda}_{2}$, and $\tilde{\lambda}_{3}$ be the roots of this cubic polynomial. Note that $\lambda_{1}=-\tilde{\lambda}_{1}, \lambda_{2}=-\tilde{\lambda}_{2}$, and $\lambda_{3}=-\tilde{\lambda}_{3}$ must then be the roots of

$$
\lambda^{3}+p \lambda^{2}+q \lambda+r=0,
$$

i.e. the characteristic polynomial for the third-order ODE $y^{\prime \prime \prime}+p y^{\prime \prime}+q y^{\prime}+r y=f$, since

$$
\begin{gathered}
\lambda_{1}+\lambda_{2}+\lambda_{3}=-\left(\tilde{\lambda}_{1}+\tilde{\lambda}_{2}+\tilde{\lambda}_{3}\right)=-p, \quad \lambda_{1} \lambda_{2} \lambda_{3}=\left(-\tilde{\lambda}_{1}\right)\left(-\tilde{\lambda}_{2}\right)\left(-\tilde{\lambda}_{3}\right)=-\tilde{\lambda}_{1} \tilde{\lambda}_{2} \tilde{\lambda}_{3}=-r, \\
\quad \text { and } \quad \lambda_{1} \lambda_{2}+\lambda_{1} \lambda_{3}+\lambda_{2} \lambda_{3}=\left(-\tilde{\lambda}_{1}\right)\left(-\tilde{\lambda}_{2}\right)+\left(-\tilde{\lambda}_{1}\right)\left(-\tilde{\lambda}_{3}\right)+\left(-\tilde{\lambda}_{2}\right)\left(-\tilde{\lambda}_{3}\right)=q .
\end{gathered}
$$

We next find an eigenvector for the eigenvalue $\tilde{\lambda}_{3}$ of the matrix in (eq6):

$$
\begin{aligned}
\left(\begin{array}{ccc}
p-\tilde{\lambda}_{3} & -1 & 0 \\
q & -\tilde{\lambda}_{3} & -1 \\
r & 0 & -\tilde{\lambda}_{3}
\end{array}\right)\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) & \Longrightarrow\left\{\begin{array}{l}
\left(\tilde{\lambda}_{1}+\tilde{\lambda}_{2}\right) c_{1}-c_{2}=0 \\
q c_{1}-\tilde{\lambda}_{3} c_{2}-c_{3}=0 \\
r c_{1}-\tilde{\lambda}_{3} c_{3}=0
\end{array} \Longrightarrow\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)=\left(\begin{array}{c}
1 \\
\tilde{\lambda}_{1}+\tilde{\lambda}_{2} \\
\tilde{\lambda}_{1} \tilde{\lambda}_{2}
\end{array}\right)\right. \\
& \Longrightarrow\left(\begin{array}{c}
P \\
(P a) \\
(P b)
\end{array}\right)=e^{\tilde{\lambda}_{3} t}\left(\begin{array}{c}
1 \\
\tilde{\lambda}_{1}+\tilde{\lambda}_{2} \\
\tilde{\lambda}_{1} \tilde{\lambda}_{2}
\end{array}\right)=\left(\begin{array}{c}
e^{-\lambda_{3} t} \\
-\left(\lambda_{1}+\lambda_{2}\right) e^{-\lambda_{3} t} \\
\lambda_{1} \lambda_{2} e^{-\lambda_{3} t}
\end{array}\right)
\end{aligned}
$$

Thus, we can take $P(t)=e^{-\lambda_{3} t}, a(t)=-\left(\lambda_{1}+\lambda_{2}\right)$, and $b(t)=\lambda_{1} \lambda_{2}$. By the above,

$$
\begin{align*}
e^{-\lambda_{3} t}\left(y^{\prime \prime \prime}+p y^{\prime \prime}+q y^{\prime}+r y\right) & =\left(e^{-\lambda_{3} t}\left(y^{\prime \prime}-\left(\lambda_{1}+\lambda_{2}\right) y^{\prime}+\lambda_{1} \lambda_{2} y\right)\right)^{\prime} \\
& =\left(e^{-\lambda_{3} t} e^{\lambda_{2} t}\left(e^{\left(\lambda_{1}-\lambda_{2}\right) t}\left(e^{-\lambda_{1} t} y\right)^{\prime}\right)^{\prime}\right)^{\prime} \tag{7}\\
& =\left(e^{\left(\lambda_{2}-\lambda_{3}\right) t}\left(e^{\left(\lambda_{1}-\lambda_{2}\right) t}\left(e^{-\lambda_{1} t} y\right)^{\prime}\right)^{\prime}\right)^{\prime}
\end{align*}
$$

where λ_{1}, λ_{2}, and λ_{3} are the roots of the characteristic polynomial associated to the ODE

$$
y^{\prime \prime \prime}+p y^{\prime \prime}+q y^{\prime}+r y=f .
$$

The middle equality in (eq7) is obtained from (eq5). The equality of the first and last terms in (eq7) can be used to solve any linear third-order ODE with constant coefficients.

Can you guess and prove the analogue of (eq7) for linear ODEs with constant coefficients of any order?

