Math53: Ordinary Differential Equations
Autumn 2004

Problem Set 4 Solutions

Note: Even if you have done every problem, you are encouraged to look over these solutions, especially
5.1:14, 5.4:18,36, and 5.7:22. In 5.1:14 and 5.7:22, complex numbers are used to simplify computations
of integrals. In 5.4:36a, a particular solution is found via the complex approach of Section 4.5, while
the constants are found from the general real solution. In 5.4:18 and 5.4:36b, “fast” partial fractions
are used. In the latter case, they are used along with complex numbers.

Section 5.1: 14,26 (9pts)

5.1:14; 6pts: Compute the Laplace Transform F=F(s) of the function f=esinwt.
We can compute F(s) using two integrations by parts, but the integral becomes far easier if we use
Euler’s formula:

F(s) = / ft)e stdt = / e sinwt e Sdt = / (Im e™") @t g = Im/ ewtela=slt gy
0 0 0 0

= Im/ooe(a—s-i-iw)tdt _ ;e(a—s—m‘w)t =00 _ 1 L 1 . S—CH—ZZw
0 a—s+iw t=0 s—a—iw S—a—iw S—a-+iw
s—a+ 1w —

- (s—a)+w? | G—o7Fe? §=>a

5.1:26; 3pts: Compute the Laplace Transform F=F(s) of the function

0, if0<t<4;
t) = B
f®) {5, if t>4.

By definition of the Laplace Transform,

F(S)z/ f(t)e‘stdt:/ 5e—stdt:_§e—st
0 4

S

t=o00 5 _4s —4s

t=4 S

Section 5.2: 24,32,43 (20pts)
5.2:24; 4pts: Find the Laplace transform Y =L(y) of the solution y to the initial value problem:

y"' +y 42y = cos2t +sin3t y(0) =-1, 3'(0)=1



Take LT of both sides of this ODE and use the initial conditions:
y" 41y +2y = cos 2t +sin 3t = (s2Y(s)—sy(0)—y’(0)) +(sY (s)—

y(0 ))+2Y( ) = L(cos 2t)+ L(sin 3t)
— (s?Y(s)+s—1) + (sY(s)+1) +2Y(s) =
3

3
2+22 Ty

S
5244 + 5249

— (s°+54+2)Y(s) = —s + ——

= |Y(s) =

3
_82+Ss+2 + (s2+4)(32+s+2) + (s249)(s2+s+2)

5.2:32; 4pts: Find the Laplace transform Y (t) of y(t)=t> cos 2t

S " 52 —s(2s)Y’
{L(t*cost)}(s) = —{L(tcost)}(s) = {Lcost}(s) = (—) = <E;2%4)(22)>

5244
B 4-—s2 B (—25)(s2+4)% — (4—5%)2(52+4)2s [ 9s%_o4s
- (52 +4)2 B (s2 +4)4 | (s24+4)3

5.2:43 The gamma function is defined by:
o
INa) = / e~ ldt, a>0.
0

(a; 2pts) Prove that T'(1)=1.

oo T
(1) :/ et ldt= lim [ efdt= lim —e 7t =~ lim (T -1)=1
0 T—00 J T—s 00 T—s00
(b; 5pts) Prove that I'(aw + 1) =aI'(«). If n is a positive integer, show that I'(n+1)=
0 T T T
Fla+1) = / e "%t = lim e t¥dt = lim [— e_tto‘|0 + a/ e "t dt]
0 T—s00 0 T—00 0

T 00
= lim |- e IT + a/ e_tta_ldt] =0+ a/ e 't ldt = al'(a)
0 0

T—s00
If n is integer, using the relation I'(a+1)=al'(«) n times and I'(1)=1, we get:
F'n+1l)=n-T'(n) =n(n-1)-I'n—1)=---=n(n—-1)...(2)(1) - T'(1) = n!
(c; 5pts) Show that

£y () = Tty

If n is a positive integer, use this result to show that L(t")(s) = n!/s" 1.
Using the substitution u=st, we get:

o _ Oooz—st _ Ooua_udu_ 1 oo_u a+1)—1 _P(a+1)
{Et}(s)—/o o0 dt—/o (1) __@/0 evufer-igy - Lot D)

If « is a positive integer n, we get:




Section 5.3: 2,30 (10pts)

5.3:2; 3pts: Find the inverse Laplace Transform of the function Y (s) = 3—253

2 2 2 1 2
= = — - - . )= -2 (3/5)t:
55 5s-3 5 s-@m YW=

by the fifth row in Table 1 on p250.

Y(s)

_2,.3t/5
56

5.3:30; Tpts: Find the inverse Laplace Transform of the function

752 + 20s + 53
(s—1)(s2+2s+5)

Y(s) =

Since the quadratic factor does not factor, we first need to find A, B, and C' such that

752 + 20s + 53 A Bs+C

(s—1)(s2+2s+5) s—1 * §24+2s5+5
_ A(s+2s+5) + (Bs+C)(s—1) _ (A+B)s*+ (24—B+C)s + (5A-C)
N (s—1)(s2+2s+5) N (s—1)(s2+2s+5) '

Thus, we need to solve the system of equations

A+B =7 A+B=17 A+B =7 A=10
2A-B+C=20 — TA—-—B =173 = 8A =80 = B=-3
5A—-C =53 5A —-C =53 5A—-C =53 C=-3

It follows that

752 + 20s + 53 10 —3s5s—3 1 s+1
Y(s) = = + =10 —
(s—1)(s2+2s+5) s—1 s24+2s+5 s—1  “(s+1)2+22
= y(t) = 10e! — 3e~t cos 2t

by the fifth and seventh rows of Table 1 on p250.

Section 5.4: 18,36 (28pts)
5.4:18; 12pts: Use the Laplace transform to solve the second-order initial value problem
y' —y -2y =1t y(0)=0, y(0)=-1

Let {Ly}(s) = Y (s). Taking LT of both sides and using Table 1 on p250 we get:

y'—y =2y =t = (s°Y(s)—sy(0)~y/(0)) — (sY(5)~y(0)) —2Y(s) =

2 1 2
Goap LT Yis) = T D)(=2) " D) (s—2)"

— (s2—5-2)Y(s) =



We need to find the partial fraction decompositions for the last two fractions. One way to do so is by
using the method explained in class, which is far simpler than the standard method:

(3+1)1(8—2) 1 —1—2) (siQ B sil) - %(% B ﬁ) —

2 2 1,1 1y 2 1 2 1 1,1 1
(s+1)(s—2)* ~ (s—2)3 '5(5_2 a s+1) T3 (s—2)f 3 (s—2)2° 3(5—2 a s+1)
2 1 2 1 2 1 1/ 1 1
T3 -2t 9 (=27 9 (5-2) He s+1)
2 1 2 1 2 1 2 1,71 1
BN P L R ey R A e et R e Rere
Combining the two decompositions, we obtain
e o2 L2 1 a1 1 %9 1
3 (s—2)* 9 (s—2)3 27 (s—2)2 81 s—2 81 s+1

_ 29—t 292t | 2.2t 1422t | 1432t
= |y(t) = e 1€ + o5-te gt7e® + gt’e

For the standard approach, we would write

-1 A n B  (A+B)s+(A-2B)
(s+1)(s—2) s+1 s—-2  (s+1)(s—2)
1 1
= A+B=0,A-2B=-1 = A:§’B:_§
For the second fraction, we have:
2 A B C D E

GADGe—27 s+1 s—2 G2 622 T -2"

— 2=A(s—2*+B(s+1)(s—23+C(s+1)(s -2+ D(s +1)(s —2) + E(s + 1).
Multiplying these out and equating the coefficients of s¥, we get a system of five linear equations in

five unknowns. Solve this system and proceed as in the final step of the first approach.

5.4:36 Solve the initial value problem
y'+y=—-2sint, y(0)=-1, ¢ (0)=1.

in two ways: first by solving the associated homogeneous equation, and second by using the Laplace
transform. Compare the two solutions.

(a; 7pts) The characteristic polynomial is 72+1 = 0; its roots are +i. Thus, the general solution to
the associated homogeneous equation is

yn = Aje + Age™™ = Oy cost + Oy sint.

To find a particular solution y,(t) for y”+y=—2sint, find a particular solution z,(t) for z""42z=—2e"

and take y,=1Im z,. Since e’ solves the homogeneous equation, we try z,(t)= Ate':

zp(t) = Ate't = Zp = Aite’ + Ae™, zp = —Ate" +2iAe" = (—Ate" +2iAe") + Ate” = —2¢"
= A=1i = z,(t) =ite" =it(cost+isint) = —tsint + it cost.
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Thus, yp(t)=Im(zy(t))=tcost, and the general solution to y”+y=—2sint is
y(t) = yn(t) + yp(t) = Cicost + Cysint + tcost.

Using the initial conditions, we obtain

y(0)=Cr =1, y/(t) =Co+l=1 = Ci=-1, Ch=0 = |y(t) = —cost + tcost

(b; 9pts) Let {Ly}(s)=Y(s). Then,

y'+y=—2sint = (s’Y(s)=sy(0)—y/(0) +Y(s) = —%

—s+1 2 _ s ( s )’
241 (s241)2 5241 s24+1
= Y = —L(cost) + L(tcost) = ‘y(t) = —cost —I-tcost‘

= Y(s) =

The tricky part here is to see what to do with 2/(s?+1)2. One approach is to use known LTs to
produce more LTs that look like 1/(s?41)2. So, take the first derivative of 1/(s241) and of s/(s2+1).
These derivatives, multiplied by —1, are the LTs of ¢sint and ¢ cost. We find that

(3 )/_ 1 s-2s 1 (s?+1)—1 1 L2
241/ s241 (s2+1)2 0 s2+1 (s241)2 241 (s2+1)?

Another approach is to use complex partial fractions, in either of the two ways described in 5.4:18:

1 1 1 1 1 1 1
2+1 i (—i) (s—z’ B s—l—z’) - Z(E B s—+z)
1 1\2/ 1 1y2 1/ 1 1 1 1,1 1
(s2+1)2 (Z) (E‘gTz) :_Z((s—i)Q * (3+z’)2> _Z'(_Q)E<E_s—+z’>

-1 1 )__1 it —it 1w —a
= L ((32+1)2 = 4(te +te )+4z’(6 e ™)

L t-2 t-i-l 2¢ sint 1t t-l—l int
= —— .t-2cos + 27 SInt = ——=1COoS — S
1 ;s 2 2™

i
Yet another way is to use the main relationship between the convolution and the Laplace Transform:

L_l(ﬁ> B [’_1(82:-1 . ﬁ) B £_1<32:-1> *6_1(32:-1> = (sint) » (sin).

Section 5.5: 20 (5pts)

Compute the inverse Laplace transform f=f(t) of the function F(s) = e %/(s?>+4).

{L(H(t—a)f(t—a))}(s) = e **{Lf}(s), L(sinbt)=

- _—
s2+0b

(i €® 1 s )0, it 0<t<1
f(t)_{ﬁ <32+4)}(t)_2 H(t = 1)sin2(¢ 1)_{%sin2(t—1), ift>1.




Section 5.6: 1,8 (20pts)
5.6:1 (a; 4pts) Compute the Laplace transform L(6,)=F; of the function

55(t) = € (Hp(t) — Hyeelh)).

By definition of the Laplace Transform,

o0 pe 1 e P — e~ (Pte)s s
Fy(s) = / (5;(t)e_8t dt = / etoemstdt = —e_St‘erE = = |1z Zeps
0 p

—€S €S

(b; 4pts) Compute lim. o F(s).
Using I’Hopital’s rule, i.e. differentiating the top and bottom of the above fraction with respect to e,
we obtain

1— e € . €S
Eli_r)nonE(S) = lim — ¢7P = lim > i e P = = L(dp)

e—0 €S e—0

5.6:8 (a; 5pts) Use the Laplace Transform to find the solution yo=yo(t) to the initial value problem

y" = 24, y(0) = ¢/'(0) = 0.

Sketch the solution curve for this IVP.
Taking the Laplace Transform of both sides and then the Inverse Laplace Transform, we obtain

2, if t>0;

1

2 / 2

Y —sy(0) —¢y'(0) =2 — sY =2 — Y(s=2-— — t) =
y(0) —y'(0) (s) yo(t) {07 if <0,

g2

by Table 1 on p250. Note that the Inverse Laplace Transform of any function is zero for negative

values of . We conclude that ‘ yo(t)=2t - H(t) ‘ The corresponding solution curve is shown below.

Y Y
Yo .

Sketch the solution curve for this IVP.
Taking the Laplace Transform of both sides, with the help of 5.6:1a, and then the Inverse Laplace



Transform, we obtain

1— —€S
PV —sy(0) —y/(0) = 2——— — Vg =
€S

1 2 e

3 e 83
1 ) 2t —e, ift>e

= y(t) = €t2 - EH(t—e) (t—e)? =< 2, if0<t<e

0, if <0,

a N

by Table 1 on p250 and Proposition 5.6 on p. 250. Thus, y§(t) — yo(t) as e—0 for all ¢, i.e. y§ — o
as e — 0 pointwise.

Section 5.7: 14,22,28 (30pts)

5.7:14; 12pts: Let f(t)=e3 and g(t)=t%. Compute f x g using the definition of convolution. Then
find Laplace transforms F=Lf, G=Lg, and L(f * g), and check that L(f x g)=F - G holds.

fxg(t) = /Otf(t)g(t—u) du = /Ote?’“(t—u)2du = 1(e:)’“(if—u)z‘g - /Ote3“(—2(t—u))du)

3
1 2 [t 1 2 t
= —gtz + g/o U (t—u)du = —gtz + §<e3u(t—u) é - /0 63“(—1)du)
1, 2 2 2 .
=2t — 4=
30 "9t T o Tt -
2 2 2 2 2 1 2

{L(f = 9)}(s) :_@_@_%4_27(8—3) = G35 =3 9"
by Table 1 on p250.

5.7:22; 10pts: Use the formula for LT of convolution to find the inverse Laplace transform of the

function
1

Y(s)=—————
() (s+1)(s2+4)
Using the third and fifth rows of Table 1 on p.250, we get that:

1 1 2

Y = - — . — =
) =5 71 14

%L‘(e_t) - L(sin 2t) =

t t
LHY) = 1(e_t) * (sin2t) = 1/ e~ = sin 2u du = 1e_t Im/ eU2)ugy,
2 2 Jo 2 0

= le—t Im<;6(1+2i)“\g) _ le‘t Im<1—2i(e(1+2z‘)t _ 1)>
2 142i 2 5

—t
= 61—0 (et sin 2t — 2e’ cos 2t — 2) =

et — %cos 2t + % sin 2¢

1
5

5.7:28; 8pts: Find the solution to the initial value problem

y' +5y +4y =g(t), y(0)=1, y(0)=0



where g is a piecewise continuous function.
First, compute the impulse response function e(t) satisfying:

e" +5e +4e=145(t), e(0)=0, €(0)=0.

Its Laplace transform FE(s) is given by:

B L L 1 _1( 1 1>
- P(s)  s2+45s4+4  (s+1)(s+4) 3\s+1 s+4
1 1 4
= e(t):§(e_t—e_4t) = e’(t):—ge_t—kge_‘”.

The solution y(t) to the initial value problem is then:

y(t) = {exgh(t) + y(0)e'(t) + (y'(0) + 5y(0))e(t) = /0 e(u)g(t—u) du + €'(t) + 5e(t)

1/t 4 1
= g/0 (e_“—e_4“)g(t—u) du + ge_t — ge_4t.

Problem C; 10pts

(a; 4pts) If g is a piecewise continuous function on the real line, show that the operators given by

Tgf:/_oog(t)f(t) dt, feCXR), and T,f= —/Oog(t)f’(t) dt  f e CF(R),

—0o0

are well-defined distributions.

We first need to check that for every compactly supported function f both integrals are finite real
numbers. Since f is compactly supported, there exist a and b such that f(¢)=0 for all t <a and for
all t>b. Thus,

oo

oo b b
1,7 = [ o= [ g0 md 15~ [ gor@a=- [ g0
Since the functions g(t) f(t) and g(t) f'(t) are piecewise continuous on [a, b, the two integrals are finite.
We also need to check the linearity property:

(o)

Tf8)= [ o®(ah(o-+5h) i

—00

o / T WA (0 de+ 8 / " g falt) dt = oTy(f2) + BT, (f2):

— 00
o0

T!(afy+B2)= / o(t) (i (0)+BL2(8)) dt

—00

-~ a / OTHOL / TG F(E) dt = oTI(f2) + BT f2).



(b; 6pts) Use integration by parts to show that if g is a continuous function with a piecewise continuous
first derivative and H is the Heaviside function, then

T,f =Tyf and Tyf=Tsf for all f e C(R).

Since f is compactly supported, there exist a and b such that f(¢) =0 for all ¢ <a and for all ¢ >b.
Thus,

- [dwsoa)

t=a

1=~ [~ sr0a=— [sor0a=—(1000)

- b b
— —(0-g(b) — 0 g()) + / § (1) f (1) dt = / §(0)f () dt = Ty,

as claimed. In order to prove the second identity, we assume that b>0. Since H(t)=0 for t <0 and
H(t)=1 for t>1,

[e'e) b
Thf == [ HOFOd =~ [ FOd=~(0) = 10) = 10 =T,

Problem D (18pts)

(a; 14pts) Use the integrating-factor approach to second-order linear ODEs to find a solution y,=1y,(t)
to

y' +py +qu =T, =), (1)

in the form y, = G f for some function G=G(t).
If A\; and Ay are the two roots of the quadratic equation A\?>+pA+¢=0, the ODE (1) is equivalent to

(e()\l—)\g)t(e—)\lty)l)’ — e—)\gt(yl/ +py/ + qy) — €_>\2tf.
Integrating both sides of this identity from 0, we obtain
t ¢
et (o= hityy — / e MUf(u)du = (e Mly) = €(A2_/\1)t/ e M2 f(u) du.
0 0
Integrating from 0 once more gives

t v t pv
e Mly(t) = / e(>‘2_)‘1)”/ e MU f(u)dudy = yp(t) = e)‘lt// eo‘?_)‘l)”e_)‘?“f(u) du dv.
0 0 0Jo

The last double integral is taken over all (u,v) such that 0<u<wv <t. Thus, interchanging the order
of integration, we obtain

t rv
yp(t) = eM?t // eQe=A)ve=dau £y duy do
00

¢t t t
= M? // e Ave=hou £ )y dy du = e)‘lt/ e 2" f(u) </ eP2Aa)v dv) du.
0Ju 0 U

9

(2)



Our next step is to evaluate the inner integral in (2), but there are two cases. First, if A\j = Ag,

yp(t) = Mt /Ote—Mf(u)( /:m)) du = /OteAl(t_“)(t—U)f(U)du it A=A (3)

If Ay #)\g, (2) gives

t ()\2—)\1)13 _ ()\2—)\1)%
wlt) =t [ eup)f <
0 )\2 - )‘l (4)
t e}\Q(t—U) _ e)\l(t—u) ¢
= u) du, if A Ag.
/0 I f(u) 17 A2
If A1, Ao =a—+1ib are complex, the fraction above involves complex numbers, but

6)\1t _ 6)\2t e(a+ib)t _ e(a—ib)t at eibt _ e—ibt eat sin bt 5
A =X (a+ib) — (a—ib) ‘ 26 b (5)

Combining (2)-(5), we conclude that a particular solution y, to the ODE (1) is given by

teMt, if A\j =Xg or p? = 4q;
yp =G * [, where G(t) = %, if A\; # Ao are real, or p® > 4g¢;
@, if A1, \a=a=+ib are complex, or p? < 4q.

(b; 4pts) Compare your expression for y, with that for ys in Theorem 7.16, on p293.
By Theorems 6.10 and 7.16, a particular solution to the ODE (1) is given by

1
= h =L YE), E(s)=—5——.
m=exf,  where e=L7E), B(s)= g
Thus, we need to determine the inverse Laplace transform of E. If A\; = Ao,
1 1
E(s) = = — e=LYE)=teM, if A\ =)o, 6
(s) Zipstq  (5— )2 (E) 1 2 (6)
by the last row of Table 1, on p250. On the other hand, if Aj# As,
1 1 1 1
E(s) = - ( — )
$“+ps—+q )\1 )\2 S )\1 S )\2
1 it Aot et — gt ")
— — 1wty 2 7 if A Ao,
(s) AL — Ay (e ) AL — A 7 A

Comparing (6) and (7) with (3) and (4), we conclude that the expression for y, obtained in part (a)
is exactly the same as the expression for ys in Theorem 7.16:

Yp =1Ys = €% [, where e(t) = G(t)

Remark: In part (a), instead of changing the order of integration, one could observe that the double
integral is
(f % M) x Mt = fx (M2 5 M),

Thus, G =e*?! x eM?. The above equality uses the fact that (fxg)xh = f x (gxh); its proof involves
changing the order of integration in a double integral.
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