
Math53: Ordinary Differential Equations
Autumn 2004

Solutions to Problem Set 3

Note: Even if you have done every problem, you are encouraged to look over these solutions, espe-
cially 4.5:26 and 4.6:13. In the first problem, complex numbers are used to simplify computations.
In the second problem, the variation of parameters method itself is applied, instead of the final
formulas given in the book.

Section 4.1, Problems 12,14 (15pts)

4.1:12; 5pts: Show that y1(t) = e−t cos 2t and y2(t) = e−t sin 2t form a fundamental set of solu-
tions for

y′′ + 2y′ + 5y = 0.

Find a solution satisfying y(0)=−1 and y′(0)=0.
The functions y1(t) and y2(t) are linearly independent, since tan 2t=y2(t)/y1(t) is not a constant
function. Thus, in order to prove the first statement, we only need to check that y1(t) and y2(t)
solve the ODE:

y′1(t) = e−t
(
− 2 sin 2t− cos 2t

)
=⇒ y′′1(t) = e−t

(
− 4 cos 2t + 2 sin 2t + 2 sin 2t + cos 2t

)
= e−t

(
4 sin 2t− 3 cos 2t

)
;

y′2(t) = e−t
(
2 cos 2t− sin 2t

)
=⇒ y′′2(t) = e−t

(
− 4 sin 2t− 2 cos 2t− 2 cos 2t + sin 2t

)
= −e−t

(
4 cos 2t + 3 sin 2t

)
.

Plugging these expressions into the ODE, we obtain

y′′1 + 2y′1 + 5y1 = e−t
(
4 sin 2t− 3 cos 2t− 4 sin 2t− 2 cos 2t + 5 cos 2t

)
= 0;

y′′2 + 2y′2 + 5y2 = e−t
(
− 4 cos 2t− 3 sin 2t + 4 cos 2t− 2 sin 2t + 5 sin 2t

)
= 0,

as needed. Thus, y=C1y1+C2y2 is the general solution of the ODE. For the initial-value problem,
we need to find C1 and C2 such that y(0)=−1 and y′(0)=0. Using the above expressions for y′1
and y′2, we find that

y(0) = C1 = −1 and y′(0) = −C1 + 2C2 = 0.

Thus, C2 =−1/2, and the solution to the initial value problem is y(t) = −e−t cos 2t− 1
2e−t sin 2t

4.1:14 (a; 2pts) Show that y1(t)= t2 is a solution of

t2y′′ + ty′ − 4y = 0. (1)

We need to plug in y1 into (1). Since y′1 =2t and y′′1 =2,

t2y′′1 + ty′1 − 4y1 = t2 · 2 + t · 2t− 4 · t2 = 0,



as needed.
(b; 8pts) Let y2(t)=v(t)y1(t)=v(t)t2. Show that y2 is a solution of (1) if and only if v satisfies

5v′ + tv′′ = 0. (2)

Solve this equation for v and describe the general solution of (1).
We need to plug in y2 into (1):

y′2(t) = t2v′(t) + 2tv(t) =⇒ y′′2(t) = t2v′′(t) + 2tv′(t) + 2tv′(t) + 2v(t) = t2v′′ + 4tv′ + 2v

=⇒ 0 = t2y′′2 + ty′2 − 4y2 =
(
t4v′′ + 4t3v′ + 2t2v

)
+

(
t3v′ + 2t2v

)
− 4t2v = t4v′′ + 5t3v′.

Dividing the last expression by t3, we obtain (2). In order to solve (2), we first divide this equation
by t and then multiply by the integrating factor e

∫
(5/t)dt = |t|5, or just by t5:

v′′ + 5t−1v′ = 0 =⇒ t5v′′ + 5t4v′ = 0 =⇒ (t5v′)′ = 0 =⇒ t5v′(t) = C1

=⇒ v′(t) = C1t
−5 =⇒ v(t) = −C1

4
t−4 + C2.

Since we need to find a single non-constant solution of (2), we can take

v(t) = t−4 and y2(t) = v(t)y1(t) = t−4t2 = t−2.

The general solution of (1) is thus given by y(t) = C1t
2 + C2t

−2

Section 4.2, Problems 4 (3pts)

Use the substitution v=y′ to write the second-order ODE

y′′ + 2y′ + 2y = sin 2πt

as a system of two first-order equations.
Since v = y′,

v′ = y′′ = −2y′ − 2y + sin 2πt = −2v − 2y + sin 2πt.

Thus, the above second-order ODE is equivalent to the system{
y′ = v

v′ = −2v − 2y + sin 2πt.

Section 4.5, Problems 2,6,16,18,26,30,32,42 (70pts)

4.5:2; 4pts: Using an exponential forcing term, find a particular solution of the equation

y′′ + 6y′ + 8y = −3e−t.

We look for a solution of the form yp(t) = Ae−t. After plugging in

yp(t) = Ae−t, y′p(t) = −Ae−t, y′′p(t) = Ae−t,
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into the equation, we obtain

Ae−t − 6Ae−t + 8Ae−t = −3e−t =⇒ 3Ae−t =−3e−t =⇒ A = −1.

Thus, a solution of the ODE is y(t) = −e−t

4.5:6; 6pts: Use the form y = a cos ωt + b sinωt to find a particular solution of the equation

y′′ + 9y = sin 2t.

Let yp(t) = a cos 2t + b sin 2t. After plugging in

yp(t) = a cos 2t + b sin 2t, y′p(t) = −2a sin 2t + 2b cos 2t, y′′p(t) = −4a cos 2t− 4b sin 2t,

into the equation, we obtain

− 4a cos 2t− 4b sin 2t + 9a cos 2t + 9b sin 2t = sin 2t

=⇒ 5a cos 2t + 5b sin 2t = sin 2t =⇒ a = 0, b =
1
5

A particular solution is y(t) = 1
5 sin 2t

4.5:16; 8pts: Find a particular solution of the equation

y′′ + 5y′ + 6y = 4− t2

The forcing term is a quadratic polynomial, so we look for a particular solution of the form

yp(t) = at2 + bt + c =⇒ y′p(t) = 2at + b =⇒ y′′p(t) = 2a.

The equation becomes:

y′′ + 5y′ + 6y = 4− t2 =⇒ 2a + 5(2at + b) + 6(at2 + bt + c) = 4− t2

=⇒ 6at2 + (10a + 6b)t + (2a + 5b + 6c) = −t2 + 4.

Thus, a, b, c must satisfy:

6a = −1, 10a + 6b = 0, 2a + 5b + 6c = 4 =⇒ a = −1
6
, b =

5
18

, c =
53
108

.

So, a particular solution is yp(t) = −1
6 t2 + 5

18 t + 53
108

4.5:18; 10pts: For the equation
y′′ + 3y′ + 2y = 3e−4t,

first solve the associated homogeneous equation, then find a particular solution. Using Theorem 5.2,
form the general solution, and then find the solution satisfying the initial conditions y(0) = 1,
y′(0)=0.
The characteristic polynomial for the homogeneous equation y′′ + 3y′ + 2 = 0 is

λ2 + 3λ + 2 = (λ + 1)(λ + 2).
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Its zeros are λ1 = −1 and λ2 = −2. Thus, the homogeneous solution is

yh(t)=C1e
−t + C2e

−2t.

The trial solution is yp =Ae−4t; then

y′p = −4Ae−4t and y′′p = 16Ae−4t.

Substituting into the inhomogeneous ODE, we get

16Ae−4t + 3(−4Ae−4t) + 2Ae−4t = 3e−4t =⇒ 6A = 3 =⇒ A =
1
2

Thus, a particular solution is yp(t)= 1
2e−4t. By Theorem 5.2, the general solution is

y = C1e
−t + C2e

−2t + 1
2e−4t

The given initial conditions imply:

y(0) = C1 + C2 +
1
2

= 1, y′(0) = −C1 − 2C2 − 2 = 0 =⇒ C1 =3, C2 = −5/2.

So, the solution to the initial value problem is y = 3e−t − 5
2e−2t + 1

2e−4t

4.5:26; 10pts: In the equation y′′+4y=4 cos 2t, the forcing term is also a solution of the associated
homogeneous equation. Use this to find a particular solution.
Our strategy is to look at the equation z′′+4z =e2it, of which the given equation is the real part.
The characteristic equation for the homogeneous equation z′′+4z = 0 is λ2+4 = 0. Its roots are
±2i. So, the homogeneous solution is:

zh = C1e
2it + C2e

−2it.

The forcing term of z′′+4z=4e2it is also a solution of the homogeneous equation. Thus, we try to
find a particular solution of the form zp =Ate2it:

zp = Ate2it =⇒ z′p = Ae2it(1 + 2it) =⇒ z′′p = 4Ae2it(i− t).

After substituting these into z′′ + 4z = 4e2it, we get:

4Ae2it(i− t) + 4Ate2it = 4e2it =⇒ 4iA = 4 =⇒ A =
1
i

= −i

=⇒ zp = −ite2it = −it(cos 2t + i sin 2t) = t sin 2t− it cos 2t.

Its real part is a particular solution we are looking for: yp = Re(zp) = t sin 2t

4.5:30; 8pts: If yf (t) and yg(t) are solutions of

y′′ + py′ + qy = f(t) and y′′ + py′ + qy = g(t),

respectively, show that z(t) = αyf (t) + βyg(t) is a solution of

y′′ + py′ + qy = αf(t) + βg(t),
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where α and β are any real numbers.
We are given that:

y′′f + py′f + qyf = f(t) and y′′g + py′g + qyg = g(t).

We plug in z(t) into y′′+py′+qy=αf(t)+βg(t) and use these two properties of yf and yg:

z′′ + pz′ + qz = (αyf + βyg)′′ + p(αyf + βyg)′ + q(αyf + βyg)
= (αy′′f + βy′′g ) + p(αy′f + βy′g) + q(αyf + βyg)

= α(y′′f + py′f + qyf ) + β(y′′g + py′g + qyg)

= αf(t) + βg(t).

Thus, z(t)=αyf (t)+βyg(t) is a solution of y′′+py′+qy=αf(t)+βg(t).

4.5:32; 12pts: Use the previous exercise to find a particular solution of the equation

y′′ − y = t− e−t.

The forcing term is the linear combination t−e−t = 1 · t + (−1)e−t. We first find a particular
solution yp1 of y′′−y = t, and then a particular solution yp2 of y′′−y = −e−t. By the previous
exercise, yp1−yp2 will be a particular solution to our equation. To find yp1 , substitute y=at+b into

y′′ − y = t =⇒ − at− b = t =⇒ a = −1, b = 0 =⇒ yp1(t) = −t.

To find yp2 , note that the characteristic equation for the homogeneous equation y′′−y=0 is λ2−1=0.
Its roots are λ1 = −1 and λ2 =1, giving the homogeneous solution

yh = C1e
−t + C2e

t.

It follows that the forcing term e−t is a solution of the homogeneous equation. So we try to find
yp2 of the form yp2(t)=Ate−t:

yp2 = Ate−t =⇒ y′p2
= Ae−t(1− t) =⇒ y′′p2

= Ae−t(t− 2).

The equation now becomes:

e−t = y′′p2
− yp2 = Ae−t(t− 2)−Ate−t =⇒ − 2A = 1 =⇒ A = −1

2
=⇒ yp2(t) = −1

2
te−t.

So a particular solution of y′′−y= t−e−t is yp = yp1−yp2 = −t + 1
2 te−t

4.5:42; 12pts: Find a particular solution of the equation y′′ + 5y′ + 4y = te−t.
The characteristic polynomial for the corresponding homogeneous equation y′′+5y′+4=0 is

λ2 + 5λ + 4 = (λ + 1)(λ + 4).

Its roots are λ1 = −1 and λ2 = −4. Thus, the homogeneous solution is

yh = C1e
−4t + C2e

−t.
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In particular, e−t is a solution to the homogeneous equation. Thus, we modify the hint in Exer-
cise 39, and look for a particular solution of the form yp = t(at+b)e−t:

yp(t) = t(at + b)e−t =⇒ y′p(t)=(−at2 + (2a− b)t + b)e−t

=⇒ y′′p(t) = (at2 + (−4a+b)t + (2a−2b))e−t

Substituting, we get:

te−t = y′′ + 5y′ + 4y = (6at + (2a + 3b))e−t =⇒ 6a = 1, 2a + 3b = 0 =⇒ a =
1
6
, b = −1

9
.

Thus, a solution of y′′+5y′+4y= te−t is yp = 1
6 t2e−t − 1

9 te−t

Section 4.6, Problem 13 (12pts)

Verify that y1(t)= t and y2(t)= t−3 are solutions to the homogeneous equation

t2y′′ + 3ty′ − 3y = 0.

Use variation of parameters to find the general solution to

t2y′′ + 3ty′ − 3y = t−1.

For the first part, plug in y1(t)= t and y2(t)= t−3 into the homogeneous equation:

y1 = t, y′1 =1, y′′1 =0 =⇒ t2y′′1 + 3ty′1 − 3y1 = t2 · 0 + 3t · 1− 3 · t = 0;

y1 = t−3, y′1 = −3t−4, y′′1 =12t−5 =⇒ t2y′′2 +3ty′2−3y2 = t2 · (12t−5) + 3t · (−3t−4)− 3t−3 = 0,

as needed. We look for a solution to the inhomogeneous equation of the form

yp = v1y1 + v2y2 = tv1 + t−3v2 =⇒ y′p = (tv′1 + t−3v′2) + v1 − 3t−4v2.

We set the expression in the parenthesis to zero. Thus,

y′p = v1 − 3t−4v2 =⇒ y′′p = v′1 + 12t−5v2 − 3t−4v′2 =⇒ t2y′′p +3ty′p−3yp = t2v′1 − 3t−2v′2 = t−1.

Since we also assumed that tv′1+t−3v′2 =0, we need to solve the system{
v′1 + t−4v′2 = 0
v′1 − 3t−4v′2 = t−3

=⇒ v′1 =
1
4
t−3, v′2 = −1

4
t =⇒ v1 = −1

8
t−2, v2 = −1

8
t2.

Note that we are looking for only one pair of (v1, v2). We conclude that

yp = v1y1 + v2y2 = −1
8
t−2 · t− 1

8
t2 · t−3 = −1

4
t−1

is a (particular) solution of the inhomogeneous ODE, while the general solution is

y(t) = C1t + C2t
−3 − 1

4 t−1
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