Math53: Ordinary Differential Equations Autumn 2004

Solutions to Problem Set 3

Note: Even if you have done every problem, you are encouraged to look over these solutions, especially $4.5: 26$ and $4.6: 13$. In the first problem, complex numbers are used to simplify computations. In the second problem, the variation of parameters method itself is applied, instead of the final formulas given in the book.

Section 4.1, Problems 12,14 (15pts)

4.1:12; 5pts: Show that $y_{1}(t)=e^{-t} \cos 2 t$ and $y_{2}(t)=e^{-t} \sin 2 t$ form a fundamental set of solutions for

$$
y^{\prime \prime}+2 y^{\prime}+5 y=0
$$

Find a solution satisfying $y(0)=-1$ and $y^{\prime}(0)=0$.
The functions $y_{1}(t)$ and $y_{2}(t)$ are linearly independent, since $\tan 2 t=y_{2}(t) / y_{1}(t)$ is not a constant function. Thus, in order to prove the first statement, we only need to check that $y_{1}(t)$ and $y_{2}(t)$ solve the ODE:

$$
\begin{aligned}
y_{1}^{\prime}(t)=e^{-t}(-2 \sin 2 t-\cos 2 t) \quad \Longrightarrow \quad y_{1}^{\prime \prime}(t) & =e^{-t}(-4 \cos 2 t+2 \sin 2 t+2 \sin 2 t+\cos 2 t) \\
& =e^{-t}(4 \sin 2 t-3 \cos 2 t) \\
y_{2}^{\prime}(t)=e^{-t}(2 \cos 2 t-\sin 2 t) \quad \Longrightarrow \quad y_{2}^{\prime \prime}(t) & =e^{-t}(-4 \sin 2 t-2 \cos 2 t-2 \cos 2 t+\sin 2 t) \\
& =-e^{-t}(4 \cos 2 t+3 \sin 2 t)
\end{aligned}
$$

Plugging these expressions into the ODE, we obtain

$$
\begin{aligned}
& y_{1}^{\prime \prime}+2 y_{1}^{\prime}+5 y_{1}=e^{-t}(4 \sin 2 t-3 \cos 2 t-4 \sin 2 t-2 \cos 2 t+5 \cos 2 t)=0 \\
& y_{2}^{\prime \prime}+2 y_{2}^{\prime}+5 y_{2}=e^{-t}(-4 \cos 2 t-3 \sin 2 t+4 \cos 2 t-2 \sin 2 t+5 \sin 2 t)=0
\end{aligned}
$$

as needed. Thus, $y=C_{1} y_{1}+C_{2} y_{2}$ is the general solution of the ODE. For the initial-value problem, we need to find C_{1} and C_{2} such that $y(0)=-1$ and $y^{\prime}(0)=0$. Using the above expressions for y_{1}^{\prime} and y_{2}^{\prime}, we find that

$$
y(0)=C_{1}=-1 \quad \text { and } \quad y^{\prime}(0)=-C_{1}+2 C_{2}=0
$$

Thus, $C_{2}=-1 / 2$, and the solution to the initial value problem is $y(t)=-e^{-t} \cos 2 t-\frac{1}{2} e^{-t} \sin 2 t$
4.1:14 (a; 2pts) Show that $y_{1}(t)=t^{2}$ is a solution of

$$
\begin{equation*}
t^{2} y^{\prime \prime}+t y^{\prime}-4 y=0 \tag{1}
\end{equation*}
$$

We need to plug in y_{1} into (1). Since $y_{1}^{\prime}=2 t$ and $y_{1}^{\prime \prime}=2$,

$$
t^{2} y_{1}^{\prime \prime}+t y_{1}^{\prime}-4 y_{1}=t^{2} \cdot 2+t \cdot 2 t-4 \cdot t^{2}=0
$$

as needed.
(b; 8pts) Let $y_{2}(t)=v(t) y_{1}(t)=v(t) t^{2}$. Show that y_{2} is a solution of (1) if and only if v satisfies

$$
\begin{equation*}
5 v^{\prime}+t v^{\prime \prime}=0 \tag{2}
\end{equation*}
$$

Solve this equation for v and describe the general solution of (1).
We need to plug in y_{2} into (1):

$$
\begin{aligned}
& y_{2}^{\prime}(t)=t^{2} v^{\prime}(t)+2 t v(t) \Longrightarrow y_{2}^{\prime \prime}(t)=t^{2} v^{\prime \prime}(t)+2 t v^{\prime}(t)+2 t v^{\prime}(t)+2 v(t)=t^{2} v^{\prime \prime}+4 t v^{\prime}+2 v \\
& \Longrightarrow \quad 0=t^{2} y_{2}^{\prime \prime}+t y_{2}^{\prime}-4 y_{2}=\left(t^{4} v^{\prime \prime}+4 t^{3} v^{\prime}+2 t^{2} v\right)+\left(t^{3} v^{\prime}+2 t^{2} v\right)-4 t^{2} v=t^{4} v^{\prime \prime}+5 t^{3} v^{\prime}
\end{aligned}
$$

Dividing the last expression by t^{3}, we obtain (2). In order to solve (2), we first divide this equation by t and then multiply by the integrating factor $e^{\int(5 / t) d t}=|t|^{5}$, or just by t^{5} :

$$
\begin{aligned}
v^{\prime \prime}+5 t^{-1} v^{\prime}=0 & \Longrightarrow t^{5} v^{\prime \prime}+5 t^{4} v^{\prime}=0 \\
& \left.\Longrightarrow v^{\prime}(t)=C_{1} t^{-5} \Longrightarrow t^{5} v^{\prime}\right)^{\prime}=0 \quad \Longrightarrow \quad t^{5} v^{\prime}(t)=C_{1} \\
& \Longrightarrow v(t)=-\frac{C_{1}}{4} t^{-4}+C_{2} .
\end{aligned}
$$

Since we need to find a single non-constant solution of (2), we can take

$$
v(t)=t^{-4} \quad \text { and } \quad y_{2}(t)=v(t) y_{1}(t)=t^{-4} t^{2}=t^{-2}
$$

The general solution of (1) is thus given by $y(t)=C_{1} t^{2}+C_{2} t^{-2}$

Section 4.2, Problems 4 (3pts)

Use the substitution $v=y^{\prime}$ to write the second-order $O D E$

$$
y^{\prime \prime}+2 y^{\prime}+2 y=\sin 2 \pi t
$$

as a system of two first-order equations.
Since $v=y^{\prime}$,

$$
v^{\prime}=y^{\prime \prime}=-2 y^{\prime}-2 y+\sin 2 \pi t=-2 v-2 y+\sin 2 \pi t
$$

Thus, the above second-order ODE is equivalent to the system

$$
\left\{\begin{aligned}
y^{\prime} & =v \\
v^{\prime} & =-2 v-2 y+\sin 2 \pi t
\end{aligned}\right.
$$

Section 4.5, Problems 2,6,16,18,26,30,32,42 (70pts)

4.5:2; 4pts: Using an exponential forcing term, find a particular solution of the equation

$$
y^{\prime \prime}+6 y^{\prime}+8 y=-3 e^{-t}
$$

We look for a solution of the form $y_{p}(t)=A e^{-t}$. After plugging in

$$
y_{p}(t)=A e^{-t}, \quad y_{p}^{\prime}(t)=-A e^{-t}, \quad y_{p}^{\prime \prime}(t)=A e^{-t}
$$

into the equation, we obtain

$$
A e^{-t}-6 A e^{-t}+8 A e^{-t}=-3 e^{-t} \Longrightarrow 3 A e^{-t}=-3 e^{-t} \Longrightarrow A=-1
$$

Thus, a solution of the ODE is $\quad y(t)=-e^{-t}$
4.5:6; 6pts: Use the form $y=a \cos \omega t+b \sin \omega t$ to find a particular solution of the equation

$$
y^{\prime \prime}+9 y=\sin 2 t
$$

Let $y_{p}(t)=a \cos 2 t+b \sin 2 t$. After plugging in

$$
y_{p}(t)=a \cos 2 t+b \sin 2 t, \quad y_{p}^{\prime}(t)=-2 a \sin 2 t+2 b \cos 2 t, \quad y_{p}^{\prime \prime}(t)=-4 a \cos 2 t-4 b \sin 2 t
$$

into the equation, we obtain

$$
\begin{aligned}
&-4 a \cos 2 t-4 b \sin 2 t+9 a \cos 2 t+9 b \sin 2 t=\sin 2 t \\
& \Longrightarrow \quad 5 a \cos 2 t+5 b \sin 2 t=\sin 2 t \quad \Longrightarrow \quad a=0, b=\frac{1}{5}
\end{aligned}
$$

A particular solution is $\quad y(t)=\frac{1}{5} \sin 2 t$
4.5:16; 8pts: Find a particular solution of the equation

$$
y^{\prime \prime}+5 y^{\prime}+6 y=4-t^{2}
$$

The forcing term is a quadratic polynomial, so we look for a particular solution of the form

$$
y_{p}(t)=a t^{2}+b t+c \quad \Longrightarrow \quad y_{p}^{\prime}(t)=2 a t+b \quad \Longrightarrow \quad y_{p}^{\prime \prime}(t)=2 a
$$

The equation becomes:

$$
\begin{aligned}
y^{\prime \prime}+5 y^{\prime}+6 y=4-t^{2} & \Longrightarrow 2 a+5(2 a t+b)+6\left(a t^{2}+b t+c\right)=4-t^{2} \\
& \Longrightarrow 6 a t^{2}+(10 a+6 b) t+(2 a+5 b+6 c)=-t^{2}+4
\end{aligned}
$$

Thus, a, b, c must satisfy:

$$
6 a=-1, \quad 10 a+6 b=0, \quad 2 a+5 b+6 c=4 \quad \Longrightarrow \quad a=-\frac{1}{6}, \quad b=\frac{5}{18}, c=\frac{53}{108}
$$

So, a particular solution is $\quad y_{p}(t)=-\frac{1}{6} t^{2}+\frac{5}{18} t+\frac{53}{108}$
4.5:18; 10pts: For the equation

$$
y^{\prime \prime}+3 y^{\prime}+2 y=3 e^{-4 t}
$$

first solve the associated homogeneous equation, then find a particular solution. Using Theorem 5.2, form the general solution, and then find the solution satisfying the initial conditions $y(0)=1$, $y^{\prime}(0)=0$.
The characteristic polynomial for the homogeneous equation $y^{\prime \prime}+3 y^{\prime}+2=0$ is

$$
\lambda^{2}+3 \lambda+2=(\lambda+1)(\lambda+2)
$$

Its zeros are $\lambda_{1}=-1$ and $\lambda_{2}=-2$. Thus, the homogeneous solution is

$$
y_{h}(t)=C_{1} e^{-t}+C_{2} e^{-2 t} .
$$

The trial solution is $y_{p}=A e^{-4 t}$; then

$$
y_{p}^{\prime}=-4 A e^{-4 t} \quad \text { and } \quad y_{p}^{\prime \prime}=16 A e^{-4 t}
$$

Substituting into the inhomogeneous ODE, we get

$$
16 A e^{-4 t}+3\left(-4 A e^{-4 t}\right)+2 A e^{-4 t}=3 e^{-4 t} \quad \Longrightarrow \quad 6 A=3 \quad \Longrightarrow \quad A=\frac{1}{2}
$$

Thus, a particular solution is $y_{p}(t)=\frac{1}{2} e^{-4 t}$. By Theorem 5.2, the general solution is

$$
y=C_{1} e^{-t}+C_{2} e^{-2 t}+\frac{1}{2} e^{-4 t}
$$

The given initial conditions imply:

$$
y(0)=C_{1}+C_{2}+\frac{1}{2}=1, \quad y^{\prime}(0)=-C_{1}-2 C_{2}-2=0 \quad \Longrightarrow \quad C_{1}=3, C_{2}=-5 / 2
$$

So, the solution to the initial value problem is

$$
y=3 e^{-t}-\frac{5}{2} e^{-2 t}+\frac{1}{2} e^{-4 t}
$$

4.5:26; 10pts: In the equation $y^{\prime \prime}+4 y=4 \cos 2 t$, the forcing term is also a solution of the associated homogeneous equation. Use this to find a particular solution.
Our strategy is to look at the equation $z^{\prime \prime}+4 z=e^{2 i t}$, of which the given equation is the real part. The characteristic equation for the homogeneous equation $z^{\prime \prime}+4 z=0$ is $\lambda^{2}+4=0$. Its roots are $\pm 2 i$. So, the homogeneous solution is:

$$
z_{h}=C_{1} e^{2 i t}+C_{2} e^{-2 i t}
$$

The forcing term of $z^{\prime \prime}+4 z=4 e^{2 i t}$ is also a solution of the homogeneous equation. Thus, we try to find a particular solution of the form $z_{p}=A t e^{2 i t}$:

$$
z_{p}=A t e^{2 i t} \quad \Longrightarrow \quad z_{p}^{\prime}=A e^{2 i t}(1+2 i t) \quad \Longrightarrow \quad z_{p}^{\prime \prime}=4 A e^{2 i t}(i-t)
$$

After substituting these into $z^{\prime \prime}+4 z=4 e^{2 i t}$, we get:

$$
\begin{gathered}
4 A e^{2 i t}(i-t)+4 A t e^{2 i t}=4 e^{2 i t} \quad \Longrightarrow \quad 4 i A=4 \quad \Longrightarrow \quad A=\frac{1}{i}=-i \\
\Longrightarrow \quad z_{p}=-i t e^{2 i t}=-i t(\cos 2 t+i \sin 2 t)=t \sin 2 t-i t \cos 2 t
\end{gathered}
$$

Its real part is a particular solution we are looking for: $\quad y_{p}=\operatorname{Re}\left(z_{p}\right)=t \sin 2 t$
4.5:30; 8pts: If $y_{f}(t)$ and $y_{g}(t)$ are solutions of

$$
y^{\prime \prime}+p y^{\prime}+q y=f(t) \quad \text { and } \quad y^{\prime \prime}+p y^{\prime}+q y=g(t)
$$

respectively, show that $z(t)=\alpha y_{f}(t)+\beta y_{g}(t)$ is a solution of

$$
y^{\prime \prime}+p y^{\prime}+q y=\alpha f(t)+\beta g(t)
$$

where α and β are any real numbers.
We are given that:

$$
y_{f}^{\prime \prime}+p y_{f}^{\prime}+q y_{f}=f(t) \quad \text { and } \quad y_{g}^{\prime \prime}+p y_{g}^{\prime}+q y_{g}=g(t) .
$$

We plug in $z(t)$ into $y^{\prime \prime}+p y^{\prime}+q y=\alpha f(t)+\beta g(t)$ and use these two properties of y_{f} and y_{g} :

$$
\begin{aligned}
z^{\prime \prime}+p z^{\prime}+q z & =\left(\alpha y_{f}+\beta y_{g}\right)^{\prime \prime}+p\left(\alpha y_{f}+\beta y_{g}\right)^{\prime}+q\left(\alpha y_{f}+\beta y_{g}\right) \\
& =\left(\alpha y_{f}^{\prime \prime}+\beta y_{g}^{\prime \prime}\right)+p\left(\alpha y_{f}^{\prime}+\beta y_{g}^{\prime}\right)+q\left(\alpha y_{f}+\beta y_{g}\right) \\
& =\alpha\left(y_{f}^{\prime \prime}+p y_{f}^{\prime}+q y_{f}\right)+\beta\left(y_{g}^{\prime \prime}+p y_{g}^{\prime}+q y_{g}\right) \\
& =\alpha f(t)+\beta g(t) .
\end{aligned}
$$

Thus, $z(t)=\alpha y_{f}(t)+\beta y_{g}(t)$ is a solution of $y^{\prime \prime}+p y^{\prime}+q y=\alpha f(t)+\beta g(t)$.
4.5:32; 12pts: Use the previous exercise to find a particular solution of the equation

$$
y^{\prime \prime}-y=t-e^{-t} .
$$

The forcing term is the linear combination $t-e^{-t}=1 \cdot t+(-1) e^{-t}$. We first find a particular solution $y_{p_{1}}$ of $y^{\prime \prime}-y=t$, and then a particular solution $y_{p_{2}}$ of $y^{\prime \prime}-y=-e^{-t}$. By the previous exercise, $y_{p_{1}}-y_{p_{2}}$ will be a particular solution to our equation. To find $y_{p_{1}}$, substitute $y=a t+b$ into

$$
y^{\prime \prime}-y=t \quad \Longrightarrow \quad-a t-b=t \quad \Longrightarrow \quad a=-1, b=0 \quad \Longrightarrow \quad y_{p_{1}}(t)=-t .
$$

To find $y_{p_{2}}$, note that the characteristic equation for the homogeneous equation $y^{\prime \prime}-y=0$ is $\lambda^{2}-1=0$. Its roots are $\lambda_{1}=-1$ and $\lambda_{2}=1$, giving the homogeneous solution

$$
y_{h}=C_{1} e^{-t}+C_{2} e^{t} .
$$

It follows that the forcing term e^{-t} is a solution of the homogeneous equation. So we try to find $y_{p_{2}}$ of the form $y_{p_{2}}(t)=A t e^{-t}$:

$$
y_{p_{2}}=A t e^{-t} \quad \Longrightarrow \quad y_{p_{2}}^{\prime}=A e^{-t}(1-t) \quad \Longrightarrow \quad y_{p_{2}}^{\prime \prime}=A e^{-t}(t-2) .
$$

The equation now becomes:

$$
e^{-t}=y_{p_{2}}^{\prime \prime}-y_{p_{2}}=A e^{-t}(t-2)-A t e^{-t} \Longrightarrow-2 A=1 \Longrightarrow A=-\frac{1}{2} \Longrightarrow y_{p_{2}}(t)=-\frac{1}{2} t e^{-t} .
$$

So a particular solution of $y^{\prime \prime}-y=t-e^{-t}$ is $\quad y_{p}=y_{p_{1}}-y_{p_{2}}=-t+\frac{1}{2} t e^{-t}$
4.5:42; 12pts: Find a particular solution of the equation $y^{\prime \prime}+5 y^{\prime}+4 y=t e^{-t}$.

The characteristic polynomial for the corresponding homogeneous equation $y^{\prime \prime}+5 y^{\prime}+4=0$ is

$$
\lambda^{2}+5 \lambda+4=(\lambda+1)(\lambda+4) .
$$

Its roots are $\lambda_{1}=-1$ and $\lambda_{2}=-4$. Thus, the homogeneous solution is

$$
y_{h}=C_{1} e^{-4 t}+C_{2} e^{-t} .
$$

In particular, e^{-t} is a solution to the homogeneous equation. Thus, we modify the hint in Exercise 39 , and look for a particular solution of the form $y_{p}=t(a t+b) e^{-t}$:

$$
\begin{aligned}
y_{p}(t)=t(a t+b) e^{-t} & \Longrightarrow y_{p}^{\prime}(t)=\left(-a t^{2}+(2 a-b) t+b\right) e^{-t} \\
& \Longrightarrow y_{p}^{\prime \prime}(t)=\left(a t^{2}+(-4 a+b) t+(2 a-2 b)\right) e^{-t}
\end{aligned}
$$

Substituting, we get:

$$
t e^{-t}=y^{\prime \prime}+5 y^{\prime}+4 y=(6 a t+(2 a+3 b)) e^{-t} \quad \Longrightarrow \quad 6 a=1,2 a+3 b=0 \quad \Longrightarrow \quad a=\frac{1}{6}, b=-\frac{1}{9} .
$$

Thus, a solution of $y^{\prime \prime}+5 y^{\prime}+4 y=t e^{-t}$ is $\quad y_{p}=\frac{1}{6} t^{2} e^{-t}-\frac{1}{9} t e^{-t}$

Section 4.6, Problem 13 (12pts)

Verify that $y_{1}(t)=t$ and $y_{2}(t)=t^{-3}$ are solutions to the homogeneous equation

$$
t^{2} y^{\prime \prime}+3 t y^{\prime}-3 y=0
$$

Use variation of parameters to find the general solution to

$$
t^{2} y^{\prime \prime}+3 t y^{\prime}-3 y=t^{-1}
$$

For the first part, plug in $y_{1}(t)=t$ and $y_{2}(t)=t^{-3}$ into the homogeneous equation:

$$
\begin{aligned}
y_{1}=t, \quad y_{1}^{\prime}=1, \quad y_{1}^{\prime \prime}=0 & \Longrightarrow t^{2} y_{1}^{\prime \prime}+3 t y_{1}^{\prime}-3 y_{1}=t^{2} \cdot 0+3 t \cdot 1-3 \cdot t=0 \\
y_{1}=t^{-3}, y_{1}^{\prime}=-3 t^{-4}, y_{1}^{\prime \prime}=12 t^{-5} & \Longrightarrow t^{2} y_{2}^{\prime \prime}+3 t y_{2}^{\prime}-3 y_{2}=t^{2} \cdot\left(12 t^{-5}\right)+3 t \cdot\left(-3 t^{-4}\right)-3 t^{-3}=0
\end{aligned}
$$

as needed. We look for a solution to the inhomogeneous equation of the form

$$
y_{p}=v_{1} y_{1}+v_{2} y_{2}=t v_{1}+t^{-3} v_{2} \quad \Longrightarrow \quad y_{p}^{\prime}=\left(t v_{1}^{\prime}+t^{-3} v_{2}^{\prime}\right)+v_{1}-3 t^{-4} v_{2}
$$

We set the expression in the parenthesis to zero. Thus,

$$
y_{p}^{\prime}=v_{1}-3 t^{-4} v_{2} \Longrightarrow y_{p}^{\prime \prime}=v_{1}^{\prime}+12 t^{-5} v_{2}-3 t^{-4} v_{2}^{\prime} \Longrightarrow t^{2} y_{p}^{\prime \prime}+3 t y_{p}^{\prime}-3 y_{p}=t^{2} v_{1}^{\prime}-3 t^{-2} v_{2}^{\prime}=t^{-1}
$$

Since we also assumed that $t v_{1}^{\prime}+t^{-3} v_{2}^{\prime}=0$, we need to solve the system

$$
\left\{\begin{array}{l}
v_{1}^{\prime}+t^{-4} v_{2}^{\prime}=0 \\
v_{1}^{\prime}-3 t^{-4} v_{2}^{\prime}=t^{-3}
\end{array} \quad \Longrightarrow \quad v_{1}^{\prime}=\frac{1}{4} t^{-3}, v_{2}^{\prime}=-\frac{1}{4} t \quad \Longrightarrow \quad v_{1}=-\frac{1}{8} t^{-2}, v_{2}=-\frac{1}{8} t^{2} .\right.
$$

Note that we are looking for only one pair of $\left(v_{1}, v_{2}\right)$. We conclude that

$$
y_{p}=v_{1} y_{1}+v_{2} y_{2}=-\frac{1}{8} t^{-2} \cdot t-\frac{1}{8} t^{2} \cdot t^{-3}=-\frac{1}{4} t^{-1}
$$

is a (particular) solution of the inhomogeneous ODE, while the general solution is

$$
y(t)=C_{1} t+C_{2} t^{-3}-\frac{1}{4} t^{-1}
$$

