
Math53: Ordinary Differential Equations
Autumn 2004

Solutions to Problem Set 2

Note: Even if you have done every problem, you are encouraged to look over these solutions, espe-
cially 2.9:20,26,28, 4.3:26, B-(b). In the last two problems, complex numbers are used to simplify
computations.

Section 2.6, Problems 10,14,26,36 (25pts)

2.6: 10; 6pts: Determine whether the equation

(1 − y sin x)dx + (cos x)dy = 0

is exact. If it is, solve it.

With P (x, y) = 1 − y sin x and Q(x, y) = cos x, we get:

∂P

∂y
=− sin x =

∂Q

∂x
.

Thus, the equation is exact. We solve it by setting

F (x, y) =

∫

P (x)dx =

∫

(1 − y sin x)dx = x + y cos x + φ(y);

=⇒ cos x = Q(x, y) =
∂F

∂y
= cos x + φ′(y) =⇒ φ′(y) = 0 =⇒ φ(y) = C;

=⇒ F (x, y)=x + y cos x + C.

Thus, the solution is F (x, y)=x + y cos x + C = 0 or F (x, y)=x + y cos x = C

2.6: 14; 3pts: Determine whether the equation dy/dx = x/(x−y) is exact. If it is, solve it.

Rewrite the equation as (x)dx + (y−x)dy = 0. Then, P (x, y) = x, Q(x, y) = y−x, and

∂P

∂y
= 0 6= −1 =

∂Q

∂x
.

Thus, the equation is not exact

2.6: 26; 8pts: The equation

y dx + (x2y − x) dy = 0

is not exact. Suppose it has an integrating factor that is a function of x alone. Find the integrating

factor and use it to solve the equation.

Let µ(x) be the integrating factor, so the equation becomes

µ(x)y dx + µ(x)(x2y − x) dy=0.



In order for this equation to be exact, we need:

∂

∂y
(µ(x)y)=

∂

∂x
(µ(x)(x2y − x))

=⇒ µ(x)=µ′(x)(x2y − x) + µ(x)(2xy − 1)

=⇒ 2µ(x)(1 − xy) = xµ′(x)(xy − 1) =⇒ µ(x) = −1

2
xµ′(x).

This is a separable equation on µ=µ(x):

dµ

dx
= −2

x
µ =⇒ dµ

µ
= −2dx

x
=⇒

∫

dµ

µ
= −

∫

2dx

x

=⇒ ln µ = −2 ln x =⇒ µ(x) = x−2.

Note that we need to find only one integrating factor. After multiplying the original equation by
µ(x), we get the exact equation

y

x2
dx +

(

y − 1

x

)

dy = 0 =⇒ F (x, y) =

∫

y

x2
dx = −y

x
+ φ(y).

To find φ, differentiate F with respect to y:

y − 1

x
=

∂F

∂y
(x, y) = −1

x
+ φ′(y) =⇒ φ′(y) = y =⇒ φ(y) =

y2

2
+ C

=⇒ F (x, y) = −y

x
+

y2

2
=⇒ − y

x + y2

2 + C = 0

2.6: 36; 8pts: Solve the homogeneous equation (x+y)dx + (y−x)dy=0.
After making the substitution y = xv, we get

(x+y)dx + (y−x)dy = 0 ⇐⇒ (1+v)x dx + (v−1)x (v dx + x dv) = 0

⇐⇒ (1+v2)x dx + (v−1)x2 dv = 0 ⇐⇒ dx

x
=

(1−v)dv

1+v2

⇐⇒
∫

dx

x
=

∫

dv

1 + v2
−

∫

v dv

1 + v2

=⇒ ln |x| = arctan v − 1

2
ln |1+v2| + C

=⇒ ln |x| + 1

2
ln

(

x2+y2

x2

)

− arctan
(y

x

)

= C

=⇒ ln(x2+y2) − 2 arctan(y/x) = C
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Figure 1: Plots for Problem 2.9:20: (i),(ii),(iii)

Section 2.9, Problems 20,26,28 (23pts)

2.9: 20; 9pts: For the autonomous differential equation

y′ = f(y) = (y+1)(y2−9),

sketch the graph of f(y) and use it to develop a phase line and to classify each equilibrium point as

either unstable or asymptotically stable. Sketch the equilibrium solutions in the (t, y)-plane and at

least one solution trajectory in each plane region bounded by these equilibrium solutions.

Since f(y) = (y+3)(y+1)(y−3), the equilibrium solutions are y(t) = −3, y(t) = −1, and y(t) = 3.
The corresponding solution curves are horizontal lines. Other solution curves cannot cross these
lines. Thus, a solution curve that starts in one of the four bands must stay there. The graph of
f(y) in Figure 1 shows the sign of f(y) and the sign of y′(t) in each of the four regions, i.e. whether
solution curves rise or descend in each region. For example, if −3 < y(t) < −1, then y′ = f(y)
is positive, and y(t) increases toward y = −1. It descends toward y = −3 as t −→ −∞. This
information about what happens to y(t) is indicated on the vertical phase line in the middle of
Figure 1. Since both nearby arrows point toward y =−1, this equilibrium point is asymptotically
stable. This means that if a solution of the ODE starts near −1, it will approach −1 as t−→∞.
This is not the case for the other two equilibrium points. In fact, for both of them, if a solution
starts nearby, it may (in fact, will) move away. Thus, the equilibria y=−3 and y=3 are unstable.

2.9: 26; 9pts: Solve the initial value problem

y′ = (3 + y)(1 − y), y(0) = 2,

and describe the behavior of the solution when t −→ ∞.

This equation is autonomous and thus separable:

dy

dt
= (3+y)(1−y) ⇐⇒ dy

(3+y)(1−y)
= dt ⇐⇒ 1

4

(

1

3+y
+

1

1−y

)

dy = dt

⇐⇒ ln |3+y| − ln |1−y| = 4t + C ⇐⇒ ln
|3+y|
|1−y| = 4t + C.

Since y(0) = 2, ln(5/1)=C, C =ln 5, and

|3+y|
|1−y| = e4t+ln 5 = 5e4t =⇒ 3+y

1−y
= −5e4t.
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Due to the initial condition, we must use the negative sign here. We solve this equation for y:

3+y = −5(1−y)e4t =⇒ 3+5e4t = (5e4t−1)y =⇒ y =
3+5e4t

5e4t−1
=

3e−4t+5

5−e−4t
.

It follows that limt→∞ y = (0 + 5)/(5 − 0) = 1. This conclusion can also be obtained by sketching
the graph of f(y)=(3+y)(1−y) and the phase line for the ODE.

2.9: 28; 5pts: Determine the stability of the equilibrium solutions of x′ = x(x−1)(x+2).
The equilibrium points for

x′ = f(x) = x(x − 1)(x + 2)

are the zeros of f . Thus, they are −2, 0 and 1. By the derivative test for stability, we have:

f ′(−2) = 6 > 0 =⇒ x = −2 is unstable.

f ′(0) = −2 < 0 =⇒ x = 0 is asymptotically stable.

f ′(1) = 3 > 0 =⇒ x = 1 is unstable.

This conclusion can also be obtained by sketching the graph of f(y) and the phase line for the ODE.
Unlike the derivative test, this latter method will always work.

Section 4.3, Problems 4,10,14,26 (24pts)

4.3:4; 5pts: Find the general solution of the ODE

2y′′ − y′ − y = 0.

The characteristic polynomial for this equation is

2λ2 − λ − 1 = (2λ + 1)(λ − 1).

Thus, the two characteristic roots are λ1 =−1/2 and λ2 =1. Since they are real and distinct, and

the general solution of the ODE is y(t) = C1e
t + C2e

−t/2

4.3:10; 6pts: Find the general solution of the ODE

y′′ + 2y′ + 17y = 0.

The characteristic polynomial for this equation is

λ2 + 2λ + 17 = (λ − λ1)(λ − λ2), λ1, λ2 = −1 ±
√

1−17 = −1 ± 4i.

Thus, the two characteristic roots are complex, and so is the general solution of the ODE

y(t) = C1e
(−1+4i)t + C2e

(−1−4i)t.

The corresponding general real solution is given by y(t) = C1e
−t cos 4t + C2e

−t sin 4t
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4.3:14; 5pts: Find the general solution of the ODE

y′′ − 6y′ + 9y = 0.

The characteristic polynomial for this equation is

λ2 − 6λ + 9 = (λ − 3)2.

Thus, this equation has a repeated root, λ=3, and the general solution of the ODE is

y(t) = C1e
3t + C2te

3t

4.3:26; 8pts: Find the solution to the initial value problem

4y′′ + y = 0, y(1) = 0, y′(1) = −2.

The characteristic polynomial for this equation is

4λ2 + 1 = (2λ + i)(2λ − i).

Thus, the two roots, λ1 = i/2 and λ=−i/2, are distinct, and the general (complex) solution is

y(t) = C1e
it/2 + C2e

−it/2.

The initial conditions y(1)=0 and y′(1)= −2 give

0 = y(1) = C1e
i/2 + C2e

−i/2 and − 2 = y′(1) = C1
i

2
ei/2 − C2

i

2
e−i/2.

Thus, C1 =2ie−i/2 and C2 =−2iei/2, and

y(t) = 2ie−i/2eit/2 − 2iei/2e−it/2 = 2i
(

ei(t−1)/2 − e−i(t−1)/2
)

= 2i · 2i sin((t−1)/2) = −4 sin((t−1)/2).

Thus, the solution to the initial value problem is y(t) = −4 sin((t−1)/2) Please check that this

function indeed satisfies the ODE and the initial conditions.

Section 4.4, Problem 17 (8pts)

Prove that an overdamped solution of my′′+µy′+ky=0 can cross the time axis no more than once.

Rewrite the given equation as

y′′ +
µ

m
y′ +

k

m
= 0 =⇒ y′′ + 2cy′ + ω2

0y = 0,

where 2c=µ/m and ω2
0 = k/m. The characteristic equation is λ2+2cλ+ω2

0 =0. Its roots are

λ1 = −c −
√

c2 − ω2
0 and λ2 = −c +

√

c2 − ω2
0.
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Since the system is overdamped, c2−ω2
0 >0. Thus, λ1 and λ2 are real and λ1 6=λ2 <0. The general

solution is of the form
y(t)=C1e

λ1t + Cλ2t
2 .

The number of times any such curve crosses the t-axis is the number of values of t for which

C1e
λ1t + C2e

λ2t = eλ1t(C1 + C2e
(λ2−λ1)t) = 0.

Since eλ1t is never zero, the point (t, y(t)) will lie on the t-axis if and only if

C1 + C2e
(λ2−λ1)t = 0 =⇒ e(λ2−λ1)t = −C1

C2

If C1/C2 ≥ 0, the right hand side is negative or zero. This equation has then has no solutions in
t, since the exponential of a real number is always positive. Thus, if C1/C2 ≥ 0, y(t) is never zero.
If C1/C2 < 0, the solution curve intersects the t-axis only at the time

t =
1

λ2−λ1
ln

(

− C1

C2

)

.

Note that λ1 6=λ2. Thus, if C1/C2 <0, then the solution curve intersects the t-axis exactly once.

Problem B (20pts)

(a; 10pts) Use the second-order integrating factor method to find the real general solution of

y′′ + 5y′ + 4y = t · e−t. (1)

In this case, the characteristic polynomial is

λ2 + 5λ + 4 = (λ + 1)(λ + 4).

Thus, the two characteristic roots are λ1 =−4 and λ2 =−1, and

(

e((−4)−(−1))t(e−(−4)ty)′
)

′

= e−(−1)t(y′′ + 5y′ + 4y). (2)

Multiplying both sides of (1) by et and using (2), we obtain

y′′ + 5y′ + 4y = t · e−t =⇒ et(y′′ + 5y′ + 4y) = t =⇒
(

e−3t(e4ty)′
)

′

= t.

Integrating twice, we obtain

e−3t(e4ty)′ =

∫

t dt =
1

2
t2 + C1 =⇒ (e4ty)′ =

1

2
t2e3t + C1e

3t

=⇒ e4ty(t) =
1

2

∫

t2e3tdt + C1

∫

e3tdt =
1

6

(

t2e3t −
∫

2te3tdt
)

+
C1

3
e3t

=
1

6
t2e3t − 1

9

(

te3t −
∫

e3tdt
)

+
C1

3
e3t =

1

6
t2e3t − 1

9
te3t +

1

27
e3t +

C1

3
e3t + C2.
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Since we can replace (1/27)+(C1/3) with C1, the general solution of (1) is

y(t) = 1
6t2e−t − 1

9te−t + C1e
−t + C2e

−4t

(b; 10pts) Use the second-order integrating factor method to find the real general solution of

y′′ + 4y = 4cos 2t. (3)

Here is one approach. The general real solution y=y(t) of this equation is given by y=Rez, where
z=z(t) is the complex general solution of

z′′ + 4z = 4e2it. (4)

The characteristic polynomial for this equation is

λ2 + 0 · λ + 4 = (λ + 2i)(λ − 2i).

Thus, the two characteristic roots are λ1 =−2i and λ2 =2i, and

(

e((−2i)−(2i))t(e−(−2i)tz)′
)

′

= e−(2i)t(z′′ + 4z). (5)

Multiplying both sides of (4) by e−2it and using (5), we obtain

z′′ + 4z = 4e2it =⇒ e−2it(z′′ + 4z) = 4 =⇒
(

e−4it(e2itz)′
)

′

= 4.

Integrating twice, we obtain

(

e−4it(e2itz)′
)

′

= 4 =⇒ e−4it(e2itz)′ = 4t + C1 =⇒ (e2itz)′ = 4te4it + C1e
4it

=⇒ e2itz =

∫

(4te4it+C1e
4it)dt =

4

4i

(

te4it −
∫

e4itdt
)

+
C1

4i
e4it

=
1

i
te4it +

1

4
e4it +

C1

4i
e4it + C2.

Since we can replace (1/4)+(C1/4i) with C1, the general solution of (4) is

z(t) =
1

i
te2it + C1e

2it + C2e
−2it.

Taking the real part of this equation and modifying the constants, we obtain

y(t) = Re z(t) = t sin 2t + C1 cos 2t+C2 sin 2t

Here is another approach. The characteristic polynomial and roots for the original equation are
the same as for its complex version. Thus, (5) holds with z replaced by y, and

y′′ + 4y = 4cos 2t =⇒ e−2it(y′′ + 4y) = 4e−2it cos 2t =⇒
(

e−4it(e2ity)′
)

′

= 4e−2it cos 2t.
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Integrating the last expression once, we obtain

e−4it(e2ity)′ =

∫

4e−2it cos 2t dt = 4

∫

cos2 2t dt − 4i

∫

cos 2t sin 2t dt

= 2

∫

(cos 4t +1)dt − 2i

∫

sin 4t dt =
1

2
sin 4t + 2t +

i

2
cos 4t + C1 =

i

2
e−4it + 2t+C1.

The second and last equalities above follow from Euler’s formula, applied in opposite directions.
The third inequality uses the half-angle trigonometric formulas. Finally, proceeding as in the second
integration step of the first approach, we obtain

e2ity =

∫

(

2te4it + C1e
4it +

i

2

)

dt =
1

2i
te4it +

1

8
e4it +

C1

4i
e4it +

it

2
+ C2

=⇒ y(t) =
t

2i

(

e2it − e−2it
)

+ C1e
2it + C2e

−2it = t sin 2t + C1e
2it + C2e

−2it.

As before, the complex form C1e
2it+C2e

−2it is equivalent to the real form A1 cos 2t+A2 sin 2t.

Remarks: (1) When the nonhomogeneous term, i.e. RHS in (3), is cos ωt or sin ωt, the first ap-
proach, i.e. complexifying the ODE, is generally faster, but riskier if you are not used to complex
numbers. This is the case whether you use the second-order integrating factor approach or the
method of undetermined coefficients. Note that if the the forcing term is sin ωt, you would need to
take the imaginary part of the complex solution.
(2) The complex form C1e

at+ibt+C2e
at−ibt of the general solution of an ODE is always equivalent

to the real form A1e
at cos bt+A2e

at sin bt.

Remark: In these two cases, i.e. (a) and (b), the second-order integrating factor approach is not any
easier and perhaps a bit harder than the method of undetermined coefficients, which is described
in Section 4.5. In general, the method of undetermined coefficients will be faster whenever it is
applicable, i.e. you know what form a solution should have. On the other hand, the integrating
factor approach works for all forcing terms.
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