
Math53: Ordinary Differential Equations
Autumn 2004

Solutions to Problem Set 1

Note: Even if you have done every problem, you are encouraged to look over these solutions, especially
2.2:14,18, 2.4:18, 2.5:4, and 3.1:12. In these problems, the constant C is found as soon as it appears.
In the last two problems, the answers are found from implicitly defined solutions.

Problem 1 (20pts)

(a; 2pts) State the two Fundamental Theorems of Calculus.
(a-i) If F is a continuously differentiable function on the interval (a, b) and t0∈(a, b), then

F (t) = F (t0) +

∫ t

t0

F ′(s)ds for all t ∈ (a, b). (1)

(a-ii) If f is a continuous function on the interval (a, b), t0∈(a, b),

and F (t) ≡
∫ t

t0

f(s)ds for all t ∈ (a, b),

then F ′(t) = f(t) for all t ∈ (a, b).

(b; 2pts) State the chain rule of one-variable differentiation.
If f and g are continuously differentiable functions on (a, b) and (c, d), respectively, and a< g(t) < b
for all t∈(c, d), then the function

h(t) ≡ f(g(t)), t ∈ (c, d),

is defined and continuously differentiable on (c, d) and

h′(t) = f ′(g(t)) · g′(t) for all t ∈ (c, d).

(c; 2pts) State the product rule of one-variable differentiation.
If f and g are continuously differentiable functions on (a, b), then the function

h(t) ≡ f(t) · g(t), t ∈ (a, b),

is also continuously differentiable and

h′(t) = f ′(t) · g(t) + f(t) · g′(t) for all t ∈ (a, b). (2)

(d; 1pt) If a is a real number and f(x)=xa, what is f ′(x)? (no proof necessary)

f ′(x) = a · xa−1.

(e; 1pt) If f(x)=ex, what is f ′(x)? (no proof necessary)

f ′(x) = ex.



(f; 3pts) State the quotient rule of one-variable differentiation. Deduce it from (b)-(d).
If f and g are continuously differentiable functions on (a, b) and g(t) 6= 0 for all t ∈ (a, b), then the
function

h(t) ≡ f(t)
/

g(t), t ∈ (a, b),

is also continuously differentiable and

h′(t) =
f ′(t)

g(t)
− f(t) · g′(t)

g(t)2
for all t ∈ (a, b). (3)

In order to prove (3), we apply (c) to the functions f and G(t)=1/g(t). Since h=f ·G,

h′(t) = f ′(t) · G(t) + f(t) · G′(t) =
f ′(t)

g(t)
+ f(t) · G′(t). (4)

In order to compute G′(t), we apply (b) to the functions y(x) = x−1 and g and use (d) with a =−1.
Since G(t)=y(g(t)),

G′(t) = y′(g(t)) · g′(t) = (−1) · g(t)−2 · g′(t) = − g′(t)

g(t)2
. (5)

The quotient rule, i.e. (3), is obtained by plugging (5) into (4).

(g; 3pts) State the change-of-variables formula of one-variable integration. Deduce it from (a) and (b).
If f is a continuous function on (a, b), g is a continuously differentiable function on (c, d) such that
a<g(t)<b for all t∈(c, d), t0∈(c, d),

and F (x) ≡
∫ x

g(t0)
f(y)dy for all x ∈ (a, b), (6)

then

∫ t

t0

f(g(s)) · g′(s)ds = F (g(t)) for all t ∈ (c, d). (7)

By (c) applied to F , g, and h(t)=F (g(t)),

h′(t) = F ′(g(t)) · g′(t). (8)

Since h(t0)=0 by (6), the change-of-variables formula, i.e. (7), follows from (1) and (8).

(h; 2pts) State the integration-by-parts formula of one-variable integration. Deduce it from (a) and (c).
If f and g are continuously differentiable functions on (a, b) and t0∈(c, d),

∫ t

t0

f(s) · g′(s)ds =
(

f(t)g(t)−f(t0)g(t0)
)

−
∫ t

t0

f ′(s) · g(s)ds for all t ∈ (a, b). (9)

Rearranging (2) with h(s)=f(s)g(s), we obtain

f(s) · g′(s) = h′(s) −f ′(s) · g(s) for all s ∈ (a, b). (10)

The integration-by-parts formula, i.e. (9), is obtained by integrating both sides of (10) and apply-
ing (1) to the middle term.

2



(i; 3pts) Suppose a=a(t) is a smooth function, c is a real number,

f(t) =

∫ t

c
a(s)ds, and h(t)=ef(t).

Compute h′(t), using (a), (b), and (e).
We apply (b) to the functions F (x)=ex and G(t)=f(t). Since h(t)=F (G(t)),

h′(t) = F ′(G(t)) · G′(t) = eG(t) · G′(t) = ef(t) · f ′(t) = f ′(t) · ef(t). (11)

The second equality in (11) is a consequence of (e). Since f ′(t)=a(t) by (a-ii),

h′(t) = a(t) · ef(t). (12)

(j; 1pt) Find a nontrivial first-order differential equation which is solved by the function h = h(t)
of (i).
Since h=ef , by (12),

h′(t) = a(t) · h(t) or h′ = a · h, h=h(t).

This is the simplest possible nontrivial ODE satisfied by h.

Note: There are a number of ways of phrasing (a)-(c) and (f)-(h).

Section 1.3, Problems 4 and 23 (12pts)

1.3: 4; 5pts: Find the general solution of the differential equation

y′ = 2 sin 3t − cos 5t.

Indicate the interval of existence and sketch at least two members of the family of solution curves. By
FTC, e.g. (a-i) of Problem 1,

y(t) =

∫

(

2 sin 3t−cos 5t
)

dt = −2
3 cos 3t − 1

5 sin 5t + C

Since y is defined for all t, the interval of existence is (−∞,∞) Three solution curves are shown

in Figure 1. The most important feature here is that the three graphs differ by vertical shifts.

1.3: 23; 7pts: Find the solution the initial value problem

y′ =
t + 1

t(t + 4)
, y(−1) = 0.

Indicate the interval of existence and sketch the solution.
By FTC, e.g. (a-i) of Problem 1,

y(t) = y(−1) +

∫ t

−1

s+1

s(s+4)
ds = 0 +

∫ t

−1

1

4

(1

s
+

3

s+4

)

ds

=
1

4

(

ln |s|+3 ln |s+4|
)
∣

∣

s=t

s=−1
=

1

4
ln |t| + 3

4
ln |t+4| − 3

4
ln 3.
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Figure 1: Plots for Problems 1.3:4 and 1.3:23

The last expression is defined on the intervals (−∞,−4), (−4, 0), and (0,−∞). Since the initial value
of the parameter lies in the middle interval, the solution to the initial value problem is

y(t) = 1
4 ln |t| + 3

4 ln(t+4) − 3
4 ln 3, t ∈ (−4, 0)

The solution curve is shown in Figure 1. Note that y approaches −∞ as t tends to −4 and 0, and the
curve passes through the point (−1, 0), as required by the initial condition.

Section 2.1, Problems 8 and 18 (12pts)

2.1: 8 (a; 2pts) Use implicit differentiation to show that t2+y2 = C2 implicitly defines solutions of
the differential equation t+yy′=0.
We differentiate both sides of t2+y2 =C2 with respect to t. The derivative of RHS is 0. On the other
hand, by the chain rule, i.e. (b) of Problem 1,

d

dt

(

t2+y2
)

= 2t + 2y · y′ = 2(t+yy′).

Comparing the derivatives of the two sides, we obtain t+yy′=0, as needed.
(b; 2pts) Solve t2+y2 =C2 for y in terms of t to find explicit solutions. Show that these functions are
also solutions of t+yy′=0.
Solving for y, we obtain y(t)=±

√
C2−t2. By the chain rule,

y′(t) = ± d

dt
(C2−t2)1/2 = ±1

2
(C2−t2)1/2−1 · (−2t) = ± −t√

C2−t2

=⇒ t + yy′ = t +
(

±
√

C2−t2
)

(

± −t√
C2−t2

)

= 0.

(c; 2pts) Discuss the interval of existence of each solution in part (b).
We need C2−t2≥0. Thus, t∈(−C,C) for C >0.
(d; 1pt) Sketch the solutions in part (b) for C =1, 2, 3, 4.
The solution curves are the upper and lower circles of radii 1, 2, 3, 4 centered at the origin as in the
first diagram in Figure 2.

2.1: 18; 5pts: Plot the direction field for the ODE y′=y2−t by drawing short lines of the appropriate
slope centered at the integer valued coordinates (t, y), where −2≤ t≤2 and −1≤y≤1.
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Figure 2: Plots for Problems 2.1:8 and 2.1:18

The second plot in Figure 2 shows short lines of the slope y′=y2 − t at the fifteen points. Notice that
the top and bottom row look the same.

Section 2.2, Problems 4,12,14,18 (26pts)

2.2: 4; 5pts: Find the general solution of the equation y′=(1+y2)ex.
Write y′= dy

dx and split the variables:

y′=(1+y2)ex ⇐⇒ dy

1+y2
= exdx ⇐⇒

∫

dy

1+y2
=

∫

exdx

⇐⇒ tan−1 y = ex + C ⇐⇒ y = tan(ex+C)

2.2: 12; 5pts: Find the general solution of the equation y′=(2xy+2x)/(x2−1).
Write y′= dy

dx and split the variables:

y′ =
2x(y+1)

x2−1
⇐⇒ dy

y+1
=

2xdx

x2−1
⇐⇒

∫

dy

y+1
=

∫

2x

x2−1
dx

⇐⇒ ln |y+1| = ln
∣

∣x2−1| + C

⇐⇒ |y+1| = eC |x2−1| ⇐⇒ y = −1 + C(x2 − 1), x 6= ±1

2.2: 14; 8pts: Find the exact solution, including the interval of existence, to the initial value problem

y′ = −2t(1 + y2)

y
, y(0) = 1.

Write y′= dy
dx and split the variables:

y′ = −2t(1 + y2)

y
⇐⇒ ydy

1+y2
= −2tdt ⇐⇒

∫

ydy

1+y2
=−

∫

2tdt

⇐⇒ 1

2
ln(1+y2) = −t2+C ⇐⇒ 1+y2 = e2Ce−2t2

Since y(0)=1, 1+1=e2C · 1 and e2C =2. Thus,

y =
√

2e−2t2−1, t∈(−
√

(ln 2)/2,
√

(ln 2)/2)

5



We must take the positive square root in order to satisfy the initial condition.

2.2: 18; 8pts: Find the exact solution, including the interval of existence, to the initial value problem

y′ =
x

1 + 2y
, y(−1) = 0.

Write y′= dy
dx and split the variables:

y′ =
x

1 + 2y
⇐⇒ (1+2y)dy = xdx ⇐⇒

∫

(1+2y)dy =

∫

x dx

⇐⇒ y + y2 =
1

2
x2 + C.

Since y(−1)=0, 0+0=(1/2)+C and C =−1/2. Thus,

y = 1
2

(

− 1 +
√

2x2−1
)

, x∈(−∞,−1/
√

2)

In order to satisfy the initial condition, we must take the positive square root.

Section 2.3, Problem 4 (8pts)

A rocket ascends vertically with constant acceleration a= 100m/s2 for t1 = 1 min. The rocket motor
is then shut-off and the rocket continues upward under the influence of gravity. Find the maximum
altitude ym reached by the rocket and the total time T elapsed from the take-off until the rocket returns
to the ground.
The upward velocity v=v(t) is described by

v′(t)=a if t∈(0, t1), v′(t)= −g if t∈(t1, T ).

Integrating the two equations, we obtain

v(t) = v(0) +

∫ t

0
a ds = at if t∈(0, t1),

v(t) = v(t1) +

∫ t

t1

(−g) ds = at1 − g · (t−t1) = (a+g)t1 − gt if t∈(t1, T ).

Since y′(t)=v(t), integrating again, we obtain y(t)= 1
2at2 if t∈(0, t1), and

y(t) = y(t1) +

∫ t

t1

v(t1) ds =
1

2
at21 + (a+g)t1 · (t−t1) −

1

2
g · (t2−t21)

= −1

2
(a+g)t21 + (a+g)t1t −

1

2
gt2 if t∈(t1, T ).

The maximum altitude is reached at the time t2∈ (t1, T ) such that

v(t2) = 0 ⇐⇒ (a+g)t1 − gt2 = 0 ⇐⇒ t2 =
a+g

g
t1 =⇒ ym = y(t2) =

a2+ag

2g
t21.

The rocket returns to the ground at the time T >t1 such that

y(T ) = −1

2
(a+g)t21 + (a+g)t1T − 1

2
gT 2 = 0 =⇒ T =

a + g +
√

a(a + g)

g
t1.
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In order to satisfy the condition T > t1, we must take the positive square root. Can you check that
the smaller root does not satisfy this inequality, if a>0? Plugging in a=100, g=9.8, and t1 =60 into
the above expressions for ym and T , we conclude that ym ≈ 2, 016, 735 m., T ≈ 1, 314 sec.

Section 2.4, Problems 2,6,13,14,18 (32pts)

2.4: 2; 5pts: Find the general solution of the first-order linear ODE y′−3y= 5.
The integrating factor P (t) is given by

P (t) = e
∫

(−3)dt = e−3t =⇒ y′−3y= 5 ⇐⇒ e−3ty′−3e−3ty= 5e−3t ⇐⇒ (e−3ty)′ = 5e−3t

⇐⇒ e−3ty(t) = 5

∫

e−3tdt = −5

3
e−3t + C ⇐⇒ y(t) = −5

3 + Ce3t

2.4: 6; 5pts: Find the general solution of the first-order linear ODE tx′=4x + t4.
First, rewrite this equation as x′−4t−1x= t3. The integrating factor P (t) is given by

P (t)=e
∫

(−4t−1)dt =e−4 ln t = t−4 =⇒ x′−4t−1x= t3 ⇐⇒ t−4x′−4t−5x= t−1 ⇐⇒
(

t−4x
)′

= t−1

⇐⇒ t−4x(t) =

∫

t−1dt = ln |t| + C ⇐⇒ x(t) = t4 ln |t| + Ct4

2.4: 13 (a; 4pts) Solve the ODE y′+y cos t=cos t, using the integrating factor approach.
The integrating factor P (t) is given by

P (t)=e
∫

cos tdt =esin t =⇒ y′+y cos t=cos t ⇐⇒ esin t(y′ + y cos t) = esin t cos t

⇐⇒ (esin ty)′=esin t cos t ⇐⇒ esin ty =

∫

esin t cos t dt ⇐⇒ y(t) = 1 + Ce− sin t

(b; 4pts) Solve the ODE y′+y cos t = cos t using the separation of variables approach. Discuss any
discrepancies between this solution and the solution found in part (a).

y′+y cos t=cos t ⇐⇒ dy

dt
=(1 − y) cos t ⇐⇒ dy

1−y
=cos x dx

⇐⇒ − ln |1−y|=sinx + C ⇐⇒ |1−y|=e− sinx−C ⇐⇒ 1−y = ±e−Ce− sin x

The constant A = ±e−C varies over all real numbers except zero. On the other hand, we divided by
y−1 and thus might have missed the constant solution y=1. We then let A vary over all real numbers,
including zero, to get all solutions:

y(t) = 1 − Ae− sin t

This is the same result as the one in part (a), since A and C vary over the set of all reals.

2.4: 14; 6pts: Find the solution to the initial value problem y′=y+2te2t, y(0)=3.
First, rewrite the ODE as y′−y=2te2t. The integrating factor P (t) is given by

P (t) = e
∫

(−1)dt = e−t =⇒ y′−y= 2tet ⇐⇒ e−ty′−e−ty= 2tet ⇐⇒ (e−ty)′ = 2t

⇐⇒ e−ty(t) = 2

∫

tetdt = 2
(

tet −
∫

etdt
)

= 2tet − 2et + C.
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Figure 3: Solution Curve for Problem 2.4:18

Since y(0)=3, 1 · 3 = −2+C, and C =5. Thus, y(t) = 2te2t − 2e2t + 5et

2.4: 18; 8pts: Find the solution, including the interval of existence, to the initial value problem
ty′+2y=sin t, y(π/2)=0, and sketch it.
Rewrite the ODE as y′+2t−1y= t−1 sin t. The integrating factor P (t) is given by

P (t)=e
∫

2t−1dt =e2 ln |t|= t2 =⇒ y′+2t−1y= t−1 sin t ⇐⇒ t2y′+2ty= t2 sin t ⇐⇒ (t2y)′= t sin t

⇐⇒ t2y(t) =

∫

t sin t dt = −t cos t +

∫

cos t dt = −t cos t + sin t + C.

Since y(π/2)=0, (−π/2) · 0+1+C =0, and C =−1. Thus,

y(t) = sin t−t cos t−1
t2

Since the solution cannot be extended to zero, the interval of existence is (0,∞) Figure 3 shows the

solution curve. Its main features are that the curve approaches −∞ as t tends to 0, passes through
the point (π/2, 0), as required by the initial condition, and is close to the x-axis for large values of t.

Section 2.5, Problem 4 (8pts)

A tank contains V = 500 Gls of a salt-water solution at the concentration of ρ0 = .05 lbs/Gl. Pure
water is poured into the tank, and a drain at the bottom is adjusted so as to keep the volume of
solution constant. At what rate r should the water be poured into the tank to lower the concentration
to ρ1 = .01 lbs/Gl in t1 =1 Hr.
Let y(t) be the amount of salt at time t and ρ(t)=y(t)/V be the salt concentration. Then,

y′(t) = 0 − ρ(t) · r,

since no salt is coming in, while it is leaving at the rate of ρ(t) · r. Thus,

ρ′ = − r

V
ρ.

Since this equation is separable and r/V is constant,

dρ

ρ
= − r

V
dt =⇒

∫

dρ

ρ
= −

∫

r

V
dt =⇒ ln ρ(t) = − r

V
t + C.
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We could now solve the last equation for ρ(t), then find C using the initial condition, and then find r
using the final condition. However, we can do this without solving for ρ(t). Plugging in ρ(0)=ρ0, we
get

ln ρ0 = − r

V
· 0 + C =⇒ C = ln ρ0.

Plugging in ρ(t1)=ρ1, we get

ln ρ1 = − r

V
· t1 + ln ρ0 =⇒ r =

V

t1

(

ln ρ0 − ln ρ1

)

=
V

t1
ln(ρ0/ρ1).

Plugging in t1 =60, ρ0 = .05, V =500, we obtain r ≈ 13.4 Gls/min

Section 2.7, Problems 2,4,6,26 (16pts)

2.7: 2; 4pts: Does the initial value problem y′ =
√

y, y(4) = 0 satisfy the conditions of the Theorem
on the uniqueness of solutions (Theorem 7.16 in the textbook)?
The equation is of the form y′ = f(t, y) =

√
y. f is defined only on the half-plane {(t, y) : y ≥ 0} and it

is continuous there. But ∂f/∂y = 1/(2
√

y) is continuous only on the open half-plane {(t, y) : y > 0}.
Hence, any rectangle in the (y, t)-plane containing the initial point (4, 0) contains points where ∂f/∂y
is discontinuous, so the conditions of the theorem are not satisfied.

2.7: 4; 4pts: Does the initial value problem ω′ = ω sin ω + s, ω(0) = −1 satisfy the conditions of the
Theorem on the uniqueness of solutions (Theorem 7.16 in the textbook)?
The equation is of the form ω′ = f(s, ω) = ω sin ω + s. Function f is continuous in the whole plane,
and so is its partial ∂f/∂ω = sin ω + ω cos ω. In particular, any rectangle around the initial value
point will satisfy the conditions of the theorem.

2.7: 6; 4pts: Does the initial value problem y′ = (y/x) + 2, y(0) = 1 satisfy the conditions of the
Theorem on the uniqueness of solutions (Theorem 7.16 in the textbook)?
The equation is of the form y′ = f(x, y) = (y/x) + 2. Function f is continuous outside the line x = 0.
The initial value point is (0, 1), so there is no rectangle containing it in which f is continuous, and
the conditions for uniqueness of solution are not satisfied.

2.7: 26; 4pts: Is it possible to find a function f(t, x) that is continuous and has continuous partial
derivatives such that the functions x1(t) = cos t and x2(t) = 1− sin t are both solutions to the equation
x′ = f(t, x) near t = π/2?
Since f is continuous and has continuous partial derivatives in the entire (t, x)-plane, the equation
x′ = f(t, x) satisfies the conditions of the uniqueness theorem. Notice that x1(π/2) = x2(π/2) = 0,
so the curves x1(t) = cos t and x2(t) = 1 − sin t have a common point (π/2, 0), so if they were both
solutions of our equation, by the uniqueness theorem they would have to agree on any rectangle con-
taining (π/2, 0). Since they do not, they cannot both be solutions of the equation x′ = f(t, x).

Section 3.1, Problem 12 (8pts)

A population is observed to obey the logistic equation with eventual population 20, 000. The initial
population is 1000, and 8 hours later, the observed population is 1200. Find the reproductive rate and
the time required for the population to reach three quarters of its carrying capacity.
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In the logistic model of population growth, we assume that the death and birth rates vary with
population P according to formulas d = d0 + aP and b = b0 − cP . Then we get:

P (t + ∆t) − P (t) ≈ (b − cP (t)P (t)∆t − (d + aP (t))P (t)∆t = (b − d − (a + c)P (t))P (t)∆t

P ′(t) = lim
∆t→0

P (t + ∆t) − P (t)

∆t
= (b − d − (a + c)P (t))P (t)

Set r = b − d and a + c = r/K where K is a new constant, to get the logistic equation

P ′ = r(1 − P/K)P

This equation is separable:

dP

dt
=rP

(

1 − P

K

)

=⇒ K dP

P (K − P )
= r dt =⇒

(

1

P
+

1

K−P

)

dP =r dt

=⇒ ln |P | − ln |K−P | = rt + C =⇒ ln
( P

K−P

)

= rt + C =⇒ P (t) =
KAert

1+Aert

If P0 is population at time t0 =0, then

C = ln
( P0

K−P0

)

=⇒ A = eC =
P0

K−P0
=⇒ P (t) =

KP0

P0 + (K−P0)e−rt

As t → ∞, e−rt → 0, and limt→∞ P (t) = K.

In this particular problem, the initial population is P0 = 1000 and the carrying capacity, or eventual
population, is K = 20, 000. We want to find t2 such that P (t2) = fK, where f = 3/4. We first find
the rate r, using P (t1)=P1 =1200, where t1 =8Hrs and then use it find t2:

ln
( P1

K−P1

)

= rt1 + ln
( P0

K−P0

)

=⇒ r =
1

t1
ln

( P1

K−P1
:

P0

K−P0

)

=⇒ ln
( fP0

K−fP0

)

= rt2 + ln
( P0

K−P0

)

=⇒ t2 =
1

r
ln

( fK

K−fK
:

P0

K−P0

)

= t1 ln
( f

1−f
:

P0

K−P0

)/

ln
( P1

K−P1
:

P0

K−P0

)

.

Plugging in the numbers, we get t ≈ 167.671Hrs

Section 3.4, Problem 14 (8pts)

Solve the general IVP modeling the LR circuit,

L
dI

dt
+ RI = E, I(0) = I0,

where L, R, and E are constants.
Rewrite the ODE as I ′+(R/L)I =(E/L). The integrating factor P (t) is given by

P (t)=e
∫

(R/L)dt =e(R/L)t =⇒ I ′ +
R

L
I =

E

L
=⇒ e(R/L)tI ′ +

R

L
e(R/L)tI =

E

L
· e(R/L)t

=⇒
(

e(R/L)tI
)′

=
E

L
· e(R/L)t =⇒ e(R/L)tI(t) =

E

L

∫

e(R/L)tdt =
E

R
e(R/L)t + C.

Since I(0)=I0, 1 · I0 = E
R · 1 + C, and C =I0−E

R . Thus,

I(t) = E
R +

(

I0−E
R

)

e−(R/L)t
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