
Math53: Ordinary Differential Equations
Autumn 2004

Midterm I Solutions

Problem 1 (20pts)

Find the general solution y=y(t) to the ODE

ty′ = 7t − 6y.

Sketch at least five solution curves, on the same plot of the ty-plane, that indicate all possible types
of behavior of solutions of this ODE.

This ODE is linear:

ty′ = 7t − 6y =⇒ y′ + 6t−1y = 7 =⇒ P (t) = e
∫

6t−1dt = e6 ln |t| = t6

=⇒ t6(y′+6t−1y) = t6 · 7 =⇒ (t6y)′ = 7t6 =⇒ t6y =

∫

7t6 dt = t7 + C

=⇒ y(t) = t + Ct−6

If C = 0, the corresponding solution curve is y = t. If C > 0, there are two solution curves,
corresponding to the intervals (−∞, 0) and (0,∞). On the latter interval, this curve lies above the
line y= t, is asymptotic to it as t−→∞, and approaches the positive y-axis t−→0. If C <0, there
are again two solution curves, corresponding to the intervals (−∞, 0) and (0,∞). On the latter
interval, this curve lies below the line y = t, is asymptotic to it as t −→∞, and approaches the
negative y-axis t−→0. Solution curves on the interval (−∞, 0) are obtained by reflecting solution
curves on the interval (0,∞) about the origin. Under this reflection, C is replaced by −C.
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Problem 2 (25pts)

(a; 7pts) Show that the substitution y= tv, where v=v(t) is a function of t, reduces the ODE

y′ =
t2 + y2

ty
to tv′ = 1/v.

Plugging in tv instead of y into the first ODE and using the product rule, we get

(tv)′ =
t2 + (tv)2

t · (tv)
=⇒ v + tv′ =

t2 + t2v2

t2v
=

1 + v2

v
=⇒ tv′ =

1 + v2

v
− v =

1

v
.

(b; 8pts) Find the general solution v=v(t) to the second ODE in (a).
The second ODE in (a) is separable:

t
dv

dt
=

1

v
=⇒ v dv =

dt

t
=⇒

∫

v dv =

∫

dt

t
=⇒ 1

2
v2 = ln |t| + C

=⇒ v2 = 2 ln |t| + C or v(t) = ±
√

2 ln |t| + C

(c; 10pts) Find the solution y=y(t) to the initial value problem

y′ =
t2 + y2

ty
, y(1) = −1,

explicitly. Specify the interval of existence. Sketch the corresponding solution curve.
Since y = tv, v(1) = −1. Plugging this initial condition on v into the first expression in the box
above, we get

(−1)2 = 2 ln 1 + C =⇒ C = 1 =⇒ v(t) = −
√

2 ln |t| + 1 =⇒ y(t) = t · v(t) = −t
√

2 ln |t| + 1

We must take the negative square root because v(t)=−1. The last expression above is defined if
t 6=0 and

2 ln |t|+1≥0 ⇐⇒ ln |t| ≥ −1/2 ⇐⇒ |t| ≥ e−1/2 ⇐⇒ t ∈ (−∞,−e−1/2), (e−1/2,∞).

The initial value of the parameter t is 1. It lies in the second interval. Thus,

y(t) = −t
√

2 ln t + 1, t ∈ (e−1/2,∞)
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The corresponding solution curve starts at (e−1/2, 0)
and descends with ever, but slowly, increasing slope.
It passes through the initial data point (1,−1).



Problem 3 (30pts)

(a; 7pts) Find the general solution y=y(t) to the ODE

y′′ − 4y′ + 3y = 0.

The characteristic polynomial for this ODE is

λ2 − 4λ + 3 = (λ − 1)(λ − 3).

Since the two roots are λ1, λ2 =1, 3, the general solution of this ODE is given by

y(t) = C1e
t + C2e

3t

(b; 15pts) Find a solution y=y(t) to the ODE

y′′ − 4y′ + 3y = et.

Given the forcing term, we would normally look for a solution of the form yp(t) = Aet. However,
Aet is a solution of the homogeneous equation in this case. We instead try yp(t)=Atet:

yp(t) = Atet =⇒ y′p(t) = A
(

tet + et
)

=⇒ y′′p(t) = A
(

tet + 2et
)

=⇒ A
(

(tet+2et) − 4(tet+et) + 3tet
)

= et =⇒ A ·
(

− 2et
)

= et =⇒ A = −1

2

=⇒ yp(t) = −1

2
tet

(c; 8pts) Find the solution y=y(t) to the initial value problem

y′′ − 4y′ + 3y = −2et, y(0) = 0, y′(0) = 3.

Since y = −1

2
tet is a solution of y′′−4y′+3y=et, a solution of

y′′ − 4y′ + 3y = −2et

is given by yp = −2 ·
(

− 1

2
tet

)

= tet. Thus, the general solution of y′′−4y′+3y=−2et is

y = C1e
t + C2e

3t + tet,

using part (a). We need to find C1 and C2 such that

{

y(0) = C1 + C2 = 0

y′(0) = C1 + 3C2 + 1 = 3
=⇒ C1 = −1, C2 = 1 =⇒ y(t) = −et + e3t + tet, t∈(−∞,∞)



Problem 4 (25pts)

(a; 5pts) Sketch the graph of the function

f(y) = (y + 2)2(y − 1).

Label all its intercepts with the y-axis and the f(y)-axis.
See the first plot below.

(b; 20pts) Find the equilibrium solutions of the ODE

y′ = (y + 2)2(y − 1), y = y(t),

and sketch their graphs in the ty-plane. On the same plot, sketch at least one solution curve for
this ODE in each region of the ty-plane cut out by the graphs of the equilibrium solutions. Indicate
their asymptotic behavior, i.e. as t−→±∞. Explain your reasoning. Determine whether each of
the equilibrium solutions is asymptotically stable or unstable. Draw the phase line.

The equilibrium, or constant solutions, are y(t) = y∗ such that f(y∗) = 0. In this case, the equi-
librium solutions are y=−2, y=1 Their graphs are the horizontal lines y =−2 and y = 1,
shown in the last plot below.

Since no two solution curves can cross, no solution curve can cross the horizontal lines y=−2 and
y = 1. Thus, if y(t0)<−2 for some t0, y(t)<−2 for all t. It follows that in this case y′(t)< 0 for
all t, as can be seen either from the graph of f or directly from its definition. Thus, the solution
curves in the bottom region descend. They drop to −∞ as t increases and approach the horizontal
line y = −2 as t −→ −∞. By the same reasoning, if −2 < y(t0) < 1 for some t0, −2 < y(t) < 1
and y′(t) < 0 for all t, and the solution curves in the middle region descend. They approach the
horizontal lines y =−2 and y = 1 as t−→∞ and t−→−∞, respectively. Finally, if y(t0) > 1 for
some t0, y(t)>1 and y′(t)>0 for all t, and the solution curves in the top region ascend. They rise
to ∞ as t increases and approach the horizontal line y = 1 as t−→−∞; see the third plot below.
The phase line, i.e. the middle plot below, encodes what happens to the solution curves in each
region by arrows. An equilibrium solution is stable if both arrows around it point toward it. Since
this is not the case for either of two equilibrium points, y=−2, 1 are unstable
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