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Notes on the Splitting Principle

The purpose of these notes is to formally state the Splitting Principle and comment on its justifi-
cation. There are two possible proofs, but one of them is based on a fact that we have not proved.
Therefore, one should consider the other approach as the proof.

Throughout these notes, all vector bundles should be assumed to be complex, all cohomology rings
are with arbitrary coefficients, P∞ denotes the infinite complex projective space CP∞, and Gn is
the infinite complex Grassmannian GrnC∞. Alternatively, all vector bundles should be assumed to
be real, all cohomology rings are with Z2-coefficients, P∞ denotes the infinite real projective space
RP∞, and Gn is the infinite real Grassmannian GrnR∞. A base space B will be assumed to be
paracompact. Let H

∏
(B) be the product (rather than just sum) of all cohomology groups of B.

So, an element of H
∏

(B) is a possibly infinite series

a0 + a1 + . . . , where ai ∈ H i(B).

Basic Splitting Principle: Suppose for every vector bundle E−→B of rank k we have assigned
classes p(E), q(E) ∈ H

∏
(B) that are natural with respect to continuous maps. In other words,

p(f∗E) = f∗p(E) ∈ H
∏

(B′) and q(f∗E) = f∗q(E) ∈ H
∏

(B′)

for every continuous map f : B′−→B and vector bundle E −→B. If p(E) = q(E) for every split
vector bundle E (over every base B), then p(E)=q(E) for every vector bundle E.

General Splitting Principle: Suppose for every r-tuple of vector bundles (E1, . . . , Er) of ranks
(k1, . . . , kr) over every base B we have assigned classes

p(E1, . . . , Er), q(E1, . . . , Er) ∈ H
∏

(B)

that are natural with respect to continuous maps. In other words,

p
(
f∗E1, . . . , f

∗Er
)

= f∗p(E1, . . . , Er) ∈ H
∏

(B′) and

q
(
f∗E1, . . . , f

∗Er) = f∗q(E1, . . . , Er) ∈ H
∏

(B′)

for every continuous map f : B′ −→B and r-tuple of vector bundles E1, . . . , Er −→B (of ranks
k1, . . . , kr). If

p(E1, . . . , Er) = q(E1, . . . , Er)

for every r-tuple of split vector bundles E1, . . . , Er (over every base B), then

p(E1, . . . , Er) = q(E1, . . . , Er)



for every r-tuple of vector bundles E1, . . . , Er.

Approach I: The first proof of the splitting principle is based on the following claim, which we
have not proved.

Claim (basic version): For every vector bundle E−→B, there exists a topological space B̃ and a
continuous map π : B̃−→B such that the homomorphism

π∗ : H∗(B) −→ H∗(B̃)

is injective and the vector bundle π∗E−→B̃ splits.

Claim (general version): For every r-tuple of vector bundles E1, . . . , Er −→ B, there exists a
topological space B̃ and a continuous map π : B̃−→B such that the homomorphism

π∗ : H∗(B) −→ H∗(B̃)

is injective and the vector bundle π∗Ei−→B̃ splits for every i=1, . . . , r.

Assuming the basic version of the claim, the basic Splitting Principle is proved as follows. Given a
vector bundle E−→B, let π : B̃−→B be as in the claim. Since π∗E−→B̃ splits, p(π∗E)=q(π∗E).
Thus, by the naturality of p and q,

π∗p(E) = p(π∗E)=q(π∗E) = π∗q(E) ∈ H
∏

(B̃).

Since the homomorphism π∗ is injective, it follows that

p(E) = q(E) ∈ H
∏

(B).

The general splitting principle is proved in exactly the same way using the general version of the
claim.

Why is the claim true? For every vector bundle E−→B, there exists a fibration PE−→B called
the projectivization of E. It is obtained by replacing each fiber Eb of E by its projectivization
(taken over C or R as appropriate), i.e. PEx. Since a (linear) isomorphism between vector spaces
V and W induces a diffeomorphism between PV and PW , the linear trivialization (transition) maps
for E induce trivialization (transition) maps for PE. If k is the rank E, the fibers of the fibration
p : PE−→B are the (k−1)-dimensional projective spaces. Under our assumptions on the coefficient
ring, the fibration p : PE−→B admits a cohomology extension of the fiber

θ : H∗(Pk−1) −→ H∗(PE).

This means that θ is a homomorphism such that

ι∗b ◦ θ : H∗(Pk−1) −→ H∗(PEb)

is an isomorphism for every b∈B, where ιb : Eb−→E is the inclusion map. Thus, by the Thom
Isomorphism Theorem, the homomorphism

Φ: H∗(B)⊗H∗(Pk−1) −→ H∗(PE), α⊗β −→ p∗(α) ∪ θ(β),
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is an isomorphism. In particular, the homomorphism

p∗ : H∗(B) −→ H∗(PE)

is injective. So, the key missing argument is a construction of θ. This is not very simple; in fact,
θ need not be unique.

Let’s assume the conclusion of the previous paragraph. Suppose E −→ B is a vector bundle of
rank k. Let

π1 : PE −→ B

be its projectivization. The vector bundle π∗1E−→PE contains the tautological line bundle:

γ1 ≡ γ =
{

(`, v)∈π∗1E⊂PE×E : v∈`⊂Eπ1(`)

}
.

Since B is paracompact, we obtain a splitting

π∗1E = E1 ⊕ γ1,

where E1 is a vector bundle of rank k−1. If k=2, we are done, as π∗1E is a split vector bundle and
the homomorphism

π∗1 : H∗(B) −→ H∗(PE)

is injective. If k>2, let π2 : PE1−→PE be the projectivization of E1. Then,

π∗2E1 = E2 ⊕ γ2 =⇒ π∗2π
∗
1E = E2 ⊕ γ2 ⊕ π∗2γ1

for some vector bundle E2−→PE2 of rank k−2. After taking k−1 projectivizations, we obtain a
fibration

π ≡ π1◦. . .◦πk−1 : B̃≡PEk−2 −→ B

such that
π∗E = Ek−1 ⊕ γk−1 ⊕ π∗k−1γk−2 ⊕ π∗k−1π

∗
k−2γk−3 ⊕ . . .⊕ π∗k−1. . .π

∗
2γ1

is a sum of line bundles and the homomorphism

π∗ = π∗k−1◦. . .◦π∗1 : H∗(B) −→ H∗(B̃)

is injective.

The last paragraph implies the basic case of the claim (assuming θ exists). The general case is
obtained by repeating the same construction for vector bundles E2, . . . , Er pull-backed to B̃. So,
we have to do the construction of the previous paragraph r times.

Approach II: Let γk−→Gk be the tautological k-plane bundle. The second proof of the splitting
principle is based on the following claim.

Claim (basic version): There exists a continuous map f : (P∞)k −→Gk such that the homomor-
phism

f∗ : H∗(Gk) −→ H∗
(
(P∞)k

)
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is injective and

f∗γk = (γ1)k =
j=k⊕
j=1

π∗j γ1 −→ (P∞)k.

Claim (general version): Let k1, . . . , kr be positive integers. There exists a continuous map

f : (P∞)k1+...+kr −→ Gk1×. . .×Gkr

such that the homomorphism

f∗ : H∗
(
Gk1×. . .×Gkr

)
−→ H∗

(
(P∞)k1+...+kr

)
is injective and the vector bundle f∗(π∗i γki

)−→(P∞)k1+...+kr splits for every i=1, . . . , r.

Assuming the basic version of this claim, the basic Splitting Principle is proved as follows. By
assumption, p(γk1 )=q(γk1 ). Since γk1 =f∗γk, by naturality of p and q, we have

f∗p(γk) = p(γk1 ) = q(γk1 ) = f∗q(γk) ∈ H
∏(

(P∞)k
)
.

Since the homomorphism f∗ is injective, it follows that

p(γk) = q(γk) ∈ H
∏

(Gk).

If E−→B is any vector bundle of rank k, E= g∗γk for some continuous map g : B−→Gk. Since
p(γk)=q(γk) and p and q are natural with respect to continuous maps,

p(E) = g∗p(γk) = g∗q(γk) = q(E) ∈ H
∏

(B).

The general Splitting Principle follows in a similar way from the general version of the claim. In
particular, we first obtain that

p
(
π∗1γk1 , . . . , π

∗
rγkr

)
= q
(
π∗1γk1 , . . . , π

∗
rγkr

)
∈ H

∏(
Gk1×. . .×Gkr

)
.

If E1, . . . , Er −→ B are vector bundles of ranks k1, . . . , kr, respectively, for each i there exists a
continuous map gi : B−→Gki

such that Ei=g∗i γki
. Let

g = g1×. . .×gr : B −→ Gk1×. . .×Gkr .

Since gi=πi◦g, Ei=g∗π∗i γki
. Thus, by the naturality of p and q, we have

p
(
E1, . . . , Er

)
= p
(
g∗π∗1γk1 , . . . , g

∗π∗rγkr

)
= g∗p

(
π∗1γk1 , . . . , π

∗
rγkr

)
= g∗q

(
π∗1γk1 , . . . , π

∗
rγkr

)
= q
(
g∗π∗1γk1 , . . . , g

∗π∗rγkr

)
= q
(
E1, . . . , Er

)
∈ H

∏
(B),
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as needed.

In contrast to the key claim in Approach I, the key claim in Approach II has been proved. Recall
that the last condition on f in the basic case of the latter claim determines f : (P∞)k−→Gk up to
homotopy and thus the homomorphism

f∗ : H∗(Gk) −→ H∗
(
(P∞)k

)
uniquely (see Milnor’s Theorems 5.6, 5.7 for the real case; Theorem 14.6 for the complex case).
Furthermore,

H∗(Gk) ≈ R[c1, . . . , ck],

where ci=ci(γk) in the complex case and ci=wi(γk) in the real case (see 14.5 and 7.1, respectively).
By the product formula for chern (Stiefel-Whitney) classes,

f∗ci ∈ H∗
(
(P∞)k

)
≈ R[a1, . . . , ak]

is the i-th elementary symmetric polynomials in a1, . . . , ak, where ai=π∗i c1(γ1) in the complex case
and ai = π∗iw1(γ1) in the real case. Since the k elementary symmetric polynomials σ1, . . . , σk are
algebraically independent in R[a1, . . . , ak], it follows that f∗ is injective.

The general case of the claim follows from the basic one and the Kunneth formula (see Theo-
rem A.6). We can simply take

f = fk1×. . .×fkr : (P∞)k1×. . .×(P∞)kr −→ Gk1×. . .×Gkr ,

where fki
: (P∞)ki−→Gki

are the maps provided by the basic case of the claim. We then find that

f∗π∗i γki
= p∗i γ

ki
1 −→ (P∞)k1×. . .×(P∞)kr ,

where
pi : (P∞)k1×. . .×(P∞)kr −→ (P∞)ki

is the projection onto the i-th factor.

This second proof also shows that for the basic Splitting Principle it is sufficient to require that

p(γk1 ) = q(γk1 ) ∈ H
∏(

(P∞)k
)
,

i.e. just for the split bundle E=γk1 . In the general case, we need to check only that

p
(
p∗1γ

k1
1 , . . . , p∗rγ

kr
1

)
= q
(
p∗1γ

k1
1 , . . . , p∗rγ

kr
1

)
∈ H

∏(
(P∞)k1×. . .×(P∞)kr

)
.

Application: If E−→B is a complex vector bundle of rank k,

c1
(
Λtop

C E
)
≡ c1

(
ΛkCE

)
= c1(E).
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If E is real, this equality holds with c1 and ΛC replaced by w1 and ΛR.

For every vector bundle E−→B (over every paracompact base B), let

p(E) = c1
(
Λtop

C E
)
∈ H2(B; Z) and q(E) = c1(E) ∈ H2(B; Z).

If f : B′−→B is any continuous map and E−→B is a vector bundle of rank k, then

p(f∗E) ≡ c1
(
Λtop

C (f∗E)
)

= c1
(
f∗(Λtop

C E)
)

= f∗c1
(
Λtop

C E
)
≡ f∗p(E) ∈ H2(B′; Z);

q(f∗E) ≡ c1
(
f∗E

)
= f∗c1(E) ≡ f∗q(E) ∈ H2(B′; Z).

Thus, p and q are natural with respect to smooth maps.

On the other hand, if E=L1⊕. . .⊕Lk is a sum of line bundles, then

Λtop
C E = L1⊗. . .⊗Lk p(E) = c1

(
L1⊗. . .⊗Lk

)
= c1(L1) +. . .+ c1(Lk);

c(E) =
(
1+c1(L1)

)
. . .
(
1+c1(Lk)

)
=⇒ q(E) ≡ c1(E) = c1(L1) +. . .+ c1(Lk).

Thus, p(E)=q(E) for every split vector bundle E of rank k. Since p and q are natural with respect
to continuous maps, it follows that p(E)=q(E) for every vector bundle E of rank k.

Previous Applications: Your first application of the Splitting Principle was to compute w(E⊗F )
(Problem 7-C). In this case, r= 2. You used the same case to check that ch(E⊗F ) = ch(E)ch(F )
(Problem 16-B). The basic Splitting Principle was used to express e(Sym2E) and e(Sym3E) for a
complex rank-two vector bundle E in terms of the chern classes of E (Problem v).
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