MAT 531 Geometry/Topology Homework 6

1. Consider a complex polynomial $f: \mathbb{C} \rightarrow \mathbb{C}$. Prove that it has only finitely many critical values. Deduce that the mapping degree of f is independent of the choice of a regular value.
2. Prove the Fundamental Theorem of Algebra: any nonconstant complex polynomial has at least one complex root. Find the mapping degree of a complex polynomial in terms of its algebraic degree.
3. Let X be a smooth manifold of dimension m and Y a smooth manifold of dimension $n \leq m$. Consider a smooth map $f: X \rightarrow Y$. A point $x \in X$ is called a critical point of f if the differential $d_{x} f$ is not onto (i.e., it does not have the maximal rank). The image of any critical point is called a critical value. A regular value of f is any point $y \in Y$ that is not a critical value. Prove that for any regular value $y \in Y$, the subset $f^{-1}(y) \subseteq X$ is a smooth submanifold of dimension $m-n$. Hint: use the Implicit Function Theorem.
4. Let X and Y be smooth manifolds. A smooth homotopy between two smooth maps $f, g: X \rightarrow Y$ is defined as a smooth map $F: X \times[0,1] \rightarrow Y$ such that $F(x, 0)=f(x)$ and $F(x, 1)=g(x)$ for all $x \in X$. Suppose that both X and Y are oriented, and that smooth maps $f, g: X \rightarrow Y$ are smoothly homotopic. Prove that f and g have the same mapping degree. You can use the following fact without proof: there exists a point $y \in Y$ that is a regular value of F, f and g.
5. Let $f, g: X \rightarrow Y$ be two diffeomorphisms of a smooth manifold X to a smooth manifold Y. A smooth homotopy F connecting f with g is called a smooth isotopy if the map $F(\cdot, t): x \in X \mapsto F(x, t) \in Y$ is a diffeomorphism for each $t \in[0,1]$. Prove that the time 1 flow $\phi_{v}^{1}: X \rightarrow X$ of any smooth vector field v on X is smoothly isotopic to the identity map.

6*. Let X be a connected smooth manifold. Prove that for any pair of points $y_{1}, y_{2} \in Y$, there exists a smooth self-map $h: Y \rightarrow Y$ smoothly isotopic to the identity and such that $h\left(y_{1}\right)=y_{2}$. Deduce that the mapping degree of a smooth map $f: X \rightarrow Y$ does not depend on the choice of a regular value in Y, i.e. $\operatorname{mdeg}_{y_{1}}(f)=\operatorname{mdeg}_{y_{2}}(f)$.

Hint: define a smooth vector field on X, whose time 1 flow maps x_{1} to x_{2}. It may be convenient first to define this vector field on a neighborhood of the path connecting x_{1} to x_{2}.

