MAT 531 Geometry/Topology Homework 4

1. Using the coordinate expression for the differential of a k-form

$$
\alpha=\alpha_{i_{1} \ldots i_{k}} d x^{i_{1}} \wedge \cdots \wedge d x^{i_{k}} \quad \Longrightarrow \quad d \alpha=d \alpha_{i_{1} \ldots i_{k}} \wedge d x^{i_{1}} \wedge \cdots \wedge d x^{i_{k}},
$$

prove that $d(d \alpha)=0$ and that

$$
d(\alpha \wedge \beta)=d \alpha \wedge \beta+(-1)^{\operatorname{deg}(\alpha)} \alpha \wedge d \beta
$$

Recall the coordinate expressions for the gradient of a function f on \mathbb{R}^{3}, and the divergence and the curl of a vector field v on \mathbb{R}^{3} :
$\operatorname{grad}(f)=\left(\begin{array}{l}\partial_{1} f \\ \partial_{2} f \\ \partial_{3} f\end{array}\right), \quad \operatorname{div}(v)=\partial_{1} v^{1}+\partial_{2} v^{2}+\partial_{3} v^{3}, \quad \operatorname{curl}(v)=\operatorname{det}\left(\begin{array}{ccc}e_{1} & e_{2} & e_{3} \\ \partial_{1} & \partial_{2} & \partial_{3} \\ v^{1} & v^{2} & v^{3}\end{array}\right)$.
Here $\left(e_{1}, e_{2}, e_{3}\right)$ is an orthonormal basis for $\mathbb{R}^{3}, \partial_{1}, \partial_{2}, \partial_{3}$ the corresponding differentiations (partial derivatives), and $\left(v^{1}, v^{2}, v^{3}\right)$ coordinates of v in the given basis.
2. Prove that for any vector field u on the space \mathbb{R}^{3} with a fixed Euclidean metric and for any function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$,

$$
\langle\operatorname{grad} f, u\rangle=d f(u)=\partial_{u} f .
$$

(the last equality is independent of a Euclidean metric).
3. In the settings of Problem 2, prove that $\operatorname{div}(u)=d \alpha\left(e_{1}, e_{2}, e_{3}\right)$, where the differential 2 -form α is the unique 2 -form on \mathbb{R}^{3} satisfying the relation

$$
\alpha(v, w)=\operatorname{det}(u, v, w)=\operatorname{det}\left(\begin{array}{ccc}
u^{1} & v^{1} & w^{1} \\
u^{2} & v^{2} & w^{2} \\
u^{3} & v^{3} & w^{3}
\end{array}\right)
$$

for any vector fields v and w on \mathbb{R}^{3}.
4. In the same settings, prove that $\operatorname{det}(\operatorname{curl}(u), v, w)=d \beta(v, w)$, where the differential 1-form β is the unique 1-form on \mathbb{R}^{3} satisfying the relation $\langle u, v\rangle=\beta(v)$ for any vector field v on \mathbb{R}^{3}.
5. Prove the following relations:

$$
\begin{gathered}
\operatorname{curl}(\operatorname{grad} f)=0, \quad \operatorname{div}(\operatorname{curl}(v))=0, \quad \operatorname{div}(\operatorname{grad} f)=\Delta f, \\
\operatorname{curl}(\operatorname{curl}(v))=\operatorname{grad}(\operatorname{div}(v))-\Delta v .
\end{gathered}
$$

The Laplace operator Δ is defined as $\partial_{1}^{2}+\partial_{2}^{2}+\partial_{3}^{2}$.
6*. For any 1-form α on a smooth manifold, and for any pair of vector fields v and w, prove that

$$
d \alpha(v, w)=\partial_{v} \alpha(w)-\partial_{w} \alpha(v)-\alpha([v, w]) .
$$

