## MAT 531 Geometry/Topology Homework 3

Let $X$ be a smooth manifold and $\lambda_{p}: T_{p} X \rightarrow \mathbb{R}$ a functional (not necessarily linear) depending smoothly on $p \in X$ and satisfying the following homogeneity property:

$$
\lambda_{p}(\xi v)=\xi \lambda_{p}(v) \quad \forall \xi>0, v \in T_{p} X
$$

For a smooth path $\gamma:[0,1] \rightarrow X$, define the integral of $\lambda$ over $\gamma$ as follows:

$$
\int_{\gamma} \lambda:=\int_{0}^{1} \lambda_{\gamma(t)}(\dot{\gamma}(t)) d t .
$$

The functional $\lambda$ is called a 1 -form (or a covector field) if $\lambda_{p}$ is linear for each $p \in X$.

1. Let $\tau:[0,1] \rightarrow[0,1]$ be a diffeomorphism such that $\tau(0)=0$ and $\tau(1)=1$ (i.e. $\tau$ is increasing, or orientation-preserving). Prove that

$$
\int_{\gamma \circ \tau} \lambda=\int_{\gamma} \lambda .
$$

2. Suppose that $\lambda$ satisfies the relation $\lambda_{p}(-v)=-\lambda_{p}(v)$ for all $p \in X$ and $v \in T_{p} X$. Let $\tau:[0,1] \rightarrow[0,1]$ be a diffeomorphism such that $\tau(0)=1$ and $\tau(1)=0$ (i.e. $\tau$ is decreasing, or orientation-reversing). Prove that

$$
\int_{\gamma \circ \tau} \lambda=-\int_{\gamma} \lambda .
$$

3. Let $V$ be a finite dimensional vector space over $\mathbb{R}$ with a basis $\left(e_{1}, \ldots, e_{n}\right)$. Denote by $\left(e^{1}, \ldots, e^{n}\right)$ the dual basis in the dual space $V^{*}$. Prove that $n^{2}$ vectors $e^{i} \otimes e^{j}, i, j=1, \ldots, n$ form a basis in the space $V^{*} \otimes V^{*}$.
4. In the notation of problem 3, prove that the vectors $e_{i} \wedge e_{j}, i<j$, form a basis in the vector space $\Lambda^{2} V$, and the vectors $e_{i} \cdot e_{j}, i \leq j$, form a basis in the vector space $S y m^{2} V$. Find dimensions of the spaces $\Lambda^{2} V$ and $S y m^{2} V$.
5. Prove that there are canonical isomorphisms
$V \otimes W \cong W \otimes V, \quad(U \otimes V) \otimes W \cong U \otimes(V \otimes W), \quad V^{*} \otimes W \cong H o m(V, W)$.
Here $U, V, W$ are vector spaces, and $\operatorname{Hom}(V, W)$ denotes the space of all linear maps (homomorphisms) of $V$ to $W$.
