MAT 531 Geometry/Topology Homework 1

Let U and V be open subsets of \mathbb{R}^n . A smooth map $f: U \to V$ is called a *diffeomorphism* if it is invertible, and the inverse map $f^{-1}: V \to U$ is also smooth.

A smooth submanifold in \mathbb{R}^n is a subset $M \subset \mathbb{R}^n$ satisfying the following assumption. For any point $p \in M$, there exists a neighborhood U of p in \mathbb{R}^n and a diffeomorphism ϕ of U to an open subset $V \subset \mathbb{R}^n$ such that

$$\phi(U \cap M) = V \cap \{x_1 = \dots = x_k = 0\}$$

Here (x_1, \ldots, x_n) is a coordinate system in \mathbb{R}^n , and k is a natural number.

- (1) Let X be a complete metric space and $f: X \to X$ a continuous map. Suppose that some iterate f^k of f is a contraction. Then f has a fixed point. Is this fixed point unique?
- (2) Prove that the boundary of the unit square is not a smooth submanifold of \mathbb{R}^2 .
- (3) Prove that the unit circle is a smooth submanifold of \mathbb{R}^2 , and that the unit 2-sphere is a smooth submanifold of \mathbb{R}^3 .
- (4) Suppose that a smooth map $f : \mathbb{R} \to \mathbb{R}^2$ has nowhere vanishing derivative, that the image of f is closed in \mathbb{R}^2 , and that f is a homeomorphism of \mathbb{R} to $f(\mathbb{R})$. Then the image of f is a smooth submanifold in \mathbb{R}^2 .
- (5) Suppose that a subset $M \subset \mathbb{R}^2$ is given by a smooth equation f(x, y) = 0 such that the gradient of f vanishes nowhere on M. Then M is a smooth submanifold of \mathbb{R}^2 .