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Solutions to Problem Set 9

Problem 1 (20pts)

We have defined Čech cohomology for sheaves or presheaves of K-modules. All such objects are
abelian. The sets Ȟ0 and Ȟ1 can be defined for sheaves or presheaves of non-abelian groups as
well. The main example of interest is the sheaf S of germs of smooth (or continuous) functions to
a Lie group G over a smooth manifold (or topological space) M .1

Let U={Uα}α∈A be an open cover of M . Analogously to the abelian case, the set Čk(U ;S) of Čech
k-cocycles is a group under pointwise multiplication of sections:

· : Čk(U ;S)× Čk(U ;S) −→ Čk(U ;S),

{f · g}α0α1...αk
(p) = fα0α1...αk

(p) · gα0α1...αk
(p) ∀α0, α1, . . . , αk∈A, p∈Uα0∩Uα1∩. . .∩Uαk

,

where fα0α1...αk
, gα0α1...αk

: Uα0 ∩Uα1 ∩ . . .∩Uαk
−→ G are smooth (or continuous) functions (or

equivalently sections of S). The identity element e∈ Čk(U ;S) is given by

eα0α1...αk
(p) = idG ∀α0, α1, . . . , αk∈A, p∈Uα0∩Uα1∩. . .∩Uαk

.

Define the two bottom boundary maps by

d0 : Č
0(U ;S) −→ Č1(U ;S), (d0f)α0α1 = fα0

∣

∣

Uα0∩Uα1
· f−1

α1

∣

∣

Uα0∩Uα1

d1 : Č
1(U ;S) −→ Č2(U ;S), (d1g)α0α1α2 = gα1α2

∣

∣

Uα0∩Uα1∩Uα2
· g−1

α0α2

∣

∣

Uα0∩Uα1∩Uα2
· gα0α1

∣

∣

Uα0∩Uα1∩Uα2
,

for all α0, α1, α2∈A. We also define an action of Č0(U ;S) on Č1(U ;S) by

∗ : Č0(U ;S)×Č1(U ;S) −→ Č1(U ;S), {f∗g}α0α1 = fα0

∣

∣

Uα0∩Uα1
·gα0α1·f

−1
α1

∣

∣

Uα0∩Uα1
∈ Γ(Uα0∩Uα1 ;S).

Show that

(a) Ȟ0(U ;S) ≡ ker d0 ≡ d−1
0 (e) is a subgroup of Č0(U ;S);

(b) for every Čech 1-cocycle g (i.e. g∈ker d1) for an open cover U={Uα}α∈A,

gαα = e|Uα , gαβgβα = e|Uα∩Uβ
, gαβgβγgγα = e|Uα∩Uβ∩Uγ , ∀α, β, γ ∈ A;

(c) ∗ is a left action of Č0(U ;S) on Č1(U ;S) that restricts to an action on ker d1 and

Imd0 ⊂ Č0(U ;S)e.

1A Lie group G is a smooth manifold and a group so that the group operations are smooth. Examples include
O(k), SO(k), U(k), SU(k).



By part (c), we can define
Ȟ1(U ;S) = ker d1/Č

0(U ;S) ;

this is a pointed set (a set with a distinguished element).

If U ′ = {U ′
α}α∈A′ is a refinement of U = {Uα}α∈A, any refining map µ : A′ −→A induces group

homomorphisms
µ∗
k : Č

k(U ;S) −→ Čk(U ′;S),

which commute with d0, d1, and the action of Č0(·;S) on Č1(·;S), similarly to Section 5.33. Thus,
µ induces a group homomorphism and a map

R0
U ′,U : Ȟ0(U ;S) −→ Ȟ0(U ′;S) and R1

U ′,U : Ȟ1(U ;S) −→ Ȟ1(U ′;S).

(d) Show that these maps are independent of the choice of µ.

Thus, we can again define Ȟ0(M ;S) and Ȟ1(M ;S) by taking the direct limit of all Ȟ0(U ;S) and
Ȟ1(U ;S) over open covers of M . The first set is a group, while the second need not be (unless S
is a sheaf of abelian groups). These sets will be denoted by Ȟ0(M ;G) and Ȟ1(M ;G) if S is the
sheaf of germs of smooth (or continuous) functions into a Lie group G. As in the abelian case,
Ȟ0(M ;S) is the space of global sections of S.

(e) Show that there is a natural correspondence

{

isomorphism classes of rank k real vector bundles over M
}

←→ Ȟ1
(

M ;O(k)
)

.

(f) What are the analogues of these statements for complex vector bundles? (state them and
indicate the changes in the argument; do not re-write the entire solution).

For α0, α1, . . . , αk∈A, let Uα0α1...αk
= Uα0∩Uα1∩. . .∩Uαk

.

(a) If f ∈ker d0,

(d0f
−1)α0α1 ≡ f−1

α0

∣

∣

Uα0α1
· fα1

∣

∣

Uα0α1
=

(

f−1
α1

∣

∣

Uα0α1
· fα0

∣

∣

Uα0α1

)−1

=
(

(d0f)α1α0

)−1
=

(

e|Uα1α0

)−1
= e|Uα0α1

;

so f−1∈ker d0. If f, f̃ ∈ker d0,

(d0(ff̃))α0α1 ≡ (ff̃)α0

∣

∣

Uα0α1
(ff̃)−1

α1

∣

∣

Uα0α1
= fα0

∣

∣

Uα0α1
· f̃α0

∣

∣

Uα0α1
· f̃−1

α1

∣

∣

Uα0α1
· f−1

α1

∣

∣

Uα0α1

= fα0

∣

∣

Uα0α1
· (d0f̃)α0α1 · f

−1
α1

∣

∣

Uα0α1
= fα0

∣

∣

Uα0α1
· e|Uα0α1

· f−1
α1

∣

∣

Uα0α1

= (d0f)α0α1 = e|Uα0α1
;

so ff̃ ∈ker d0. Thus, ker d0 ⊂ Č0(U ;S) is a subgroup.

(b) If g∈ker d1,

gα1α2

∣

∣

Uα0α1α2
· g−1

α0α2

∣

∣

Uα0α1α2
· gα0α1

∣

∣

Uα0α1α2
= (d1g)α0α1α2 = e|Uα0α1α2

∀α0, α1, α2.
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Plugging in (α0, α1, α2) = (α, α, α), we obtain gαα = e|Uα . Plugging in (α0, α1, α2) = (β, α, β) and
using gββ =e|Uβ

, we obtain gαβgβα = e|Uαβ
. Finally, plugging in (α0, α1, α2)= (γ, α, β) and using

g−1
βγ =gγβ, we obtain

gαβ |Uαβγ
· gβγ |Uαβγ

· gγα|Uαβγ
= e|Uαβγ

.

(c) If f, f̃ ∈ Č0(U ;S) and g∈ Č1(U ;S), then

(

(ff̃)∗g
)

α0α1
≡ (ff̃)α0

∣

∣

Uα0α1
· gα0α1 · (ff̃)

−1
α1

∣

∣

Uα0α1
= fα0

∣

∣

Uα0α1
· f̃α0

∣

∣

Uα0α1
· gα0α1 · f̃α1

∣

∣

Uα0α1
· fα1

∣

∣

Uα0α1

= fα0

∣

∣

Uα0α1
· (f̃ ∗g)α0α1fα1

∣

∣

Uα0α1
=

(

f ∗(f̃ ∗g)
)

α0α1
;

so, ∗ is indeed a left action of Č0(U ;S) on Č1(U ;S). If f ∈ Č0(U ;S) and g∈ker d1, then

(

d1(f ∗g)
)

α0α1α2
= (f ∗g)α1α2

∣

∣

Uα0α1α2
· (f ∗g)−1

α0α2

∣

∣

Uα0α1α2
· (f ∗g)α0α1

∣

∣

Uα0α1α2

=
(

fα1

∣

∣

Uα1α2
gα1α2f

−1
α2

∣

∣

Uα1α2

)∣

∣

Uα0α1α2

(

fα0

∣

∣

Uα0α2
gα0α2f

−1
α2

∣

∣

Uα0α2

)−1∣
∣

Uα0α1α2

×
(

fα0

∣

∣

Uα0α1
gα0α1f

−1
α1

∣

∣

Uα0α1

)
∣

∣

Uα0α1α2

= fα1

∣

∣

Uα0α1α2
gα1α2

∣

∣

Uα0α1α2
g−1
α0α2

∣

∣

Uα0α1α2
gα0α1

∣

∣

Uα0α1α2
f−1
α1

∣

∣

Uα0α1α2

= fα1

∣

∣

Uα0α1α2
· (d1g)α0α1α2 · f

−1
α1

∣

∣

Uα0α1α2

= fα1

∣

∣

Uα0α1α2
· e|Uα0α1α2

· f−1
α1

∣

∣

Uα0α1α2
= e|Uα0α1α2

.

Thus, f ∗g∈ker d1 whenever g∈ker d1. Since d0f = f ∗e for all f ∈ Č0(U ;S), Imd0 ⊂ Č0(U ;S)e.

(d) If µ : A′−→A is a refining map, U ′
α⊂Uµ(α) for every α∈A′. The group homomorphisms

µ∗
k : Č

k(U ;S) −→ Čk(U ′;S)

are defined by

{

µ∗
0f

}

α0α1...αk
= fµ(α0)µ(α1)...µ(αk)

∣

∣

U ′

α0α1...αk

∀α0, α1, . . . , αk∈A
′.

Suppose µ′ : A′−→A is another refining map, U ′
α⊂Uµ(α)µ′(α) for every α∈A′. If f ∈ker d0, then

fµ(α0)

∣

∣

Uµ(α0)µ
′(α0)
· f−1

µ′(α0)

∣

∣

Uµ(α0)µ
′(α0)
≡ (d0f)µ(α0)µ′(α0) = e

∣

∣

Uµ(α0)µ
′(α0)

=⇒

fµ(α0)

∣

∣

Uµ(α0)µ
′(α0)

= fµ′(α0)

∣

∣

Uµ(α0)µ
′(α0)

=⇒ (µ∗
0f)α0 = fµ(α0)

∣

∣

U ′

α0

= fµ′(α0)

∣

∣

U ′

α0

= (µ′∗
0 f)α0

=⇒ µ∗
0=µ′∗

0 : Ȟ0(U ;S)=ker d0 −→ Ȟ0(U ′;S) ⊂ Č0(U ′;S).

We next verify that R1
U ′,U

is independent of µ. For each g∈ Č1(U ;S), define

h1g ∈ Č0(U ′;S) by (h1g)α = gµ′(α)µ(α)|U ′

α
.
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We will show that

µ′∗g = (h1g) ∗ (µ
∗g) ∀ g∈ker d1

=⇒ µ∗
1=µ′∗

1 : Ȟ1(U ;S)=ker d1/Č
0(U ;S) −→ Ȟ1(U ′;S)=ker d1/Č

0(U ′;S).

If g∈ker d1⊂ Č1(U ;S), then

gµ(α0)µ(α1)

∣

∣

Uµ′(α1)µ(α0)µ(α1)
· g−1

µ′(α1)µ(α1)

∣

∣

Uµ′(α1)µ(α0)µ(α1)
= g−1

µ′(α1)µ(α0)

∣

∣

Uµ′(α1)µ(α0)µ(α1)
,

gµ′(α0)µ(α0)

∣

∣

Uµ′(α1)µ
′(α0)µ(α0)

· g−1
µ′(α1)µ(α0)

∣

∣

Uµ′(α1)µ
′(α0)µ(α0)

= g−1
µ′(α1)µ′(α0)

∣

∣

Uµ′(α1)µ
′(α0)µ(α0)

=⇒
(

(h1g)∗(µ
∗g)

)

α0α1
= gµ′(α0)µ(α0)|U ′

α0α1
· gµ(α0)µ(α1)

∣

∣

U ′

α0α1

· g−1
µ′(α1)µ(α1)

|U ′

α0α1

= gµ′(α0)µ(α0)|U ′

α0α1
· g−1

µ′(α1)µ(α0)

∣

∣

U ′

α0α1

= g−1
µ′(α1)µ′(α0)

∣

∣

U ′

α0α1

= gµ′(α0)µ′(α1)

∣

∣

U ′

α0α1

= (µ′∗g)α0α1 .

The second-to-last equality follows from part (b).

(e) Suppose V −→ M is a real vector bundle of rank k. By Problem 5a on PS6, V admits a
Riemannian metric; see also Section 11 in Lecture Notes. If

hα : V |Uα −→ Uα×R
k

is a trivialization, by applying the Gramm-Schmidt procedure we can modify hα so that it is
metric-preserving with respect to the standard metric on R

k. If hβ : V |Uβ
−→Uβ×R

k is another
metric-preserving trivialization, the corresponding transition map

gαβ : Uαβ −→ GLkR

is an orthogonal transformation, i.e. gαβ∈C
∞(Uαβ ;O(k)).

Suppose U = {Uα}α∈A is a cover of M such that V |Uα is trivial for every α ∈ A. Choose an
orthogonal trivialization hα of V |Uα . The corresponding transition data

{

gαβ∈C
∞(Uαβ ;O(k)) : α, β∈A

}

then determines an element g∈ Č1(U ;O(k)). By Section 9 in Lecture Notes,

gαα = e|Uα , gαβgβα = e|Uαβ
, gαβ |Uαβγ

· gβγ |Uαβγ
· gγα|Uαβγ

= e|Uαβγ
∀α, β, γ ∈ A.

Therefore, g∈ker d1 defines an element

[gV ] ∈ Ȟ1(M ;O(k)).

We will show that this element depends only on the isomorphism class of V .

If U ′={U ′
α}α∈A′ is a refinement of U ={Uα}α∈A and µ : A′−→A is a refining map, then hµ(α)|U ′

α

is a trivialization of V |U ′

α
. The corresponding transition data is gµ(α)µ(β)|U ′

α∩U
′

β
, i.e. µ∗

1g. Since

[g] = [µ∗
1g] ∈ Ȟ1(M ;O(k)),
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it is sufficient to consider trivializations of isomorphic vector bundles over a common cover (other-
wise we can simply take the intersections of open sets in the two covers). Suppose

ϕ : V −→ V ′

is an isomorphism of vector bundles over M . It can be assumed that ϕ is an isometry (see the
next paragraph). For each α∈A, let h′α be a metric-preserving trivialization of V ′|Uα . Denote by
g′∈ Č1(U ;O(k)) the corresponding transition data. Then,

f̃α≡h′α◦ϕ◦h
−1
α : Uα×R

k −→ Uα×R
k

is a diffeomorphism commuting with the projection map π1 and restricting to an orthogonal trans-
formation. Therefore,

f̃α(p, v) =
(

p, fα(p) · v
)

∀(p, v)∈Uα×R
k for some fα ∈ C∞(Uα;O(k)),

i.e. f ∈ Č0(U ;O(k)). We claim that

g′ = f ∗g =⇒ [g′] = [g] ∈ Č1(U ;O(k)) =⇒ [gV ′ ] = [gV ] ∈ Ȟ1(M ;O(k)).

For, if α, β∈A and (p, v)∈Uαβ, by definition of gαβ and g′αβ

(

p, {f ∗g}αβ(p) · v
)

=
(

p, {fα(p)gαβ(p)f
−1
β (p)} · v

)

= f̃α
(

p, {gαβ(p)f
−1
β (p)} · v

)

=
{

h′α◦ϕ◦h
−1
α

}(

{hα◦h
−1
β }(p, f

−1
β (p) · v)

)

=
{

h′α◦ϕ◦h
−1
β

}(

f̃−1
β (p, v)

)

=
{

h′α◦ϕ◦h
−1
β

}(

{hβ◦ϕ
−1◦h′−1

β }(p, v)
)

=
{

h′α◦h
′−1
β

}

(p, v) =
(

p, g′αβ(p) · v
)

.

We now show that if 〈·, ·〉 and 〈·, ·〉′ are two metrics on a vector bundle V , there exists a vector
bundle isomorphism ϕ : V −→ V which is an isometry from the first metric to the second. This
implies that isomorphic vector bundles endowed with Riemannian metrics are isometric as vector
bundles. Let {(Uα, hα)}α∈A be a system of trivializations which are orthogonal with respect to 〈·, ·〉.
For each α∈A, define

Pα : Uα −→ GLkR by vt · Pα(p) · w =
〈

h−1
α (p, v), h−1

α (p, w)
〉′
∀ p∈Uα, v, w∈Rk

=⇒ Pβ = gtαβ · Pα · gαβ = g−1
αβ · Pα · gαβ ∀ α, β∈A.

Since Pα(p) is a positive-definite symmetric matrix, it has a well-defined square root, i.e. a positive-
definite symmetric matrix fα(p) such that

Pα(p) = fα(p) · fα(p) = f t
α(p) · fα(p).

Since Pα is smooth, so is fα. By the above,

f2
β = Pβ = gtαβ · Pα · gαβ = gtαβ · fα · fα · gαβ = gtαβfαgαβ · g

t
αβfαgαβ

=
(

gtαβfαgαβ
)2
.

5



Since fα is a positive-definite symmetric matrix, so is gtαβfαgαβ . Since fβ is also a positive-definite
symmetric matrix, by the uniqueness of the square root

fβ = gtαβfαgαβ = g−1
αβfαgαβ =⇒ gαβ = f−1

α gαβfβ ∀ α, β∈A.

We define a bundle map

ϕ : V −→ V by ϕ
(

h−1
α (p, v)

)

= h−1
α

(

p, f−1
α (p) · v

)

∀ α∈A, p∈Uα, v∈Rk.

This map is well-defined because

h−1
α (p, v) = h−1

β (p, w) =⇒ v = gαβ(p) · w =⇒

h−1
β

(

p, f−1
β (p) · w

)

= h−1
β

(

p, g−1
αβ (p)f

−1
α (p)gαβ(p) · w

)

= h−1
β

(

p, g−1
αβ (p) · f

−1
α (p) · v

)

= h−1
α

(

p, f−1
α (p) · v

)

.

It is an isomorphism of vector bundles because it restricts to isomorphisms of vector bundles on
trivializations. Furthermore,

〈

ϕ(h−1
α (p, v)), ϕ(h−1

α (p, w))
〉′

=
〈

h−1
α (p, f−1

α (p) · v), h−1
α (p, f−1

α (p) · w)
〉′

= (f−1
α (p)v)tPα(p)(f

−1
α (p)w) = vt · f−1

α (p)tfα(p)
tfα(p)f

−1
α (p) · w

= vt · w =
〈

h−1
α (p, v)), h−1

α (p, w)
〉

.

The last equality holds because hα is an isometry from 〈·, ·〉 to the standard metric on R
k. By the

above equality, ϕ is an isometry from (V, 〈·, ·〉) to (V, 〈·, ·〉′).

Conversely, given [g]∈Ȟ1(M ;O(k)), let g∈ Č1(U ;O(k)) be a representative for [g]. Since g∈ker d1,
by part (b) and Section 9 in Lecture Notes, g determines a vector bundle

Vg =
(

⊔

α∈A

{α}×Uα×R
k
)/

∼g,
(

α, p, gαβv
)

∼g

(

β, p, v
)

∀ α, β∈A,

with transition data g. We need to see that the isomorphism class [Vg] of Vg depends only on [g].
First, if U ′={U ′

α}α∈A′ is a refinement of U={Uα}α∈A and µ : A′−→A is a refining map, then the
vector bundles Vg and Vµ∗g as constructed in Section 9 are isomorphic. An isomorphism is given by

ϕ : Vµ∗g=
(

⊔

α∈A′

{α}×U ′
α×R

k
)/

∼µ∗g−→ Vg=
(

⊔

α∈A

{α}×Uα×R
k
)/

∼g, [α, p, v] −→
[

µ(α), p, v
]

.

This map is well-defined because

(α, p, v) ∼µ∗g (β, p, v′) =⇒
(

µ(α), p, v
)

∼g

(

µ(β), p, v′
)

.

It is an isomorphism of vector bundles, since it is smooth, commutes with the projection maps,
and its restriction to each fiber is an isomorphism. Thus, it is sufficient to show that if

g, g′∈ Č1(U ;O(k)) and [g] = [g′] ∈ Ȟ1(U ;O(k)),

the vector bundles Vg and Vg′ are isomorphic. By definition, there exists

f ∈ Č0(U ;O(k)) s.t. g′ = f ∗g.
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Define

ϕ : Vg=
(

⊔

α∈A

{α}×U ′
α×R

k
)/

∼g−→ Vg′ =
(

⊔

α∈A

{α}×Uα×R
k
)/

∼g′ by

ϕ
(

[α, p, v]
)

=
[

α, p, fα(p) · v
]

.

This map is well-defined, since

(α, p, v) ∼g (β, p, v′) =⇒ v = gαβ(p) · v
′

=⇒ fα(p) · v = fα(p) · gαβ(p) · v
′ =

{

(f ∗g)αβ(p)
}

· fβ(p) · v
′

=⇒
(

α, p, fα(p) · v
)

∼g′
(

β, p, fβ(p) · v
′
)

.

Since ϕ is smooth, commutes with the projection maps, and its restriction to each fiber is an iso-
morphism, ϕ is an isomorphism of vector bundles.

It remains to observe that the two maps

{

isomorphism classes of rank k real vector bundles over M
}

−→ Ȟ1
(

M ;O(k)
)

, [V ] −→ [gV ],

Ȟ1
(

M ;O(k)
)

−→
{

isomorphism classes of rank k real vector bundles over M
}

, [g] −→ [Vg],

are mutual inverses. For, g is transition data for the vector bundle Vg and any vector bundle V is
isomorphic to Vg if g is transition data for V ; Section 9 in Lecture Notes.

(f) If V is a complex vector bundle, we can choose a Hermitian metric on V . If hα and hβ
are trivializations of V over Uα and Uβ preserving the metric, the corresponding transition map
gαβ∈C

∞(Uαβ ; GLkC) is metric-preserving, i.e.

gαβ ∈ C∞(Uαβ ;U(k)).

The rest of the argument in part (d) goes through, with O(k) replaced by U(k) and R by C. So,
we obtain a natural correspondence

{

isomorphism classes of rank k complex vector bundles over M
}

←→ Ȟ1
(

M ;U(k)
)

,

[V ]←→ [gV ], [Vg]←→ [g].

Problem 2 (15pts)

(a) Show that the set of isomorphism classes of line bundles on M forms an abelian group under
the tensor product (i.e. satisfies 3 properties for a group and another for abelian). Show that
in the real case all nontrivial elements are of order two.

(b) Show that the correspondence

{

isomorphism classes of real line bundles over M
}

←→ Ȟ1(M ;Z2)

of the previous problem is a group isomorphism.
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(c) Show that there is a natural group isomorphism
{

isomorphism classes of complex line bundles over M
}

←→ Ȟ2(M ;Z).

Note: The groups Ȟ1
(

M ;Z2

)

and Ȟ2
(

M ;Z
)

are naturally isomorphic to the singular cohomology
groups H1

(

M ;Z2

)

and H2
(

M ;Z
)

. The image of a real line bundle L

w1(L) ∈ H1(M ;Z2)

is the first Stiefel-Whitney class of L; the image of a complex line bundle

c1(L) ∈ H2(M ;Z)

is the first Chern class of L. However, this is not how these characteristic classes are normally
defined.

(a) We need to show that the tensor product operation descends to isomorphism classes of line
bundles, is associative and commutative, there is an identity element, and every element has an
inverse. For the first property, we need to show that if L1 is isomorphic to L′

1 and L2 is isomorphic
to L′

2, then L1⊗L2 is isomorphic to L′
1⊗L

′
2. This is the case because if ϕ1 is an isomorphism from

L1 to L′
1 and ϕ2 is an isomorphism from L2 to L′

2, then ϕ1⊗ϕ2 is an isomorphism from L1⊗L2 to
L′
1⊗L

′
2. For the next two properties, define isomorphisms

L1 ⊗ (L2⊗L3) −→ (L1⊗L2)⊗ L3 and L1⊗L2 −→ L2⊗L1 by
[

v1, [v2, v3]
]

−→
[

[v1, v2], v3
]

and [v1, v2] −→ [v2, v1].

These bundle maps are smooth and isomorphisms on each fiber because they induce smooth maps
on trivializations that are isomorphisms on every fiber. The identity element is represented by the
trivial line bundle τ1. If s is a nowhere-zero section of τ1 (e.g. s(p)=(p, 1)), the bundle map

L −→ L⊗τ1, v −→
[

v, s(π(v))],

is an isomorphism since it is injective. The inverse of [L] is [L∗], since the map

L∗⊗L −→ τ1=M×R, [v, α] −→
(

π(v), α(v)
)

,

is an isomorphism because it is surjective.

If L is a real line bundle and 〈·, ·〉 is a Riemannian metric on L, the bundle map

ϕ : L −→ L∗,
{

ϕ(v)
}

(w) = 〈v, w〉,

is a vector bundle isomorphism because it induces smooth maps on trivializations that restrict to
non-zero maps on every fiber. Since L⊗L∗ is also isomorphic to τ1, L⊗L is isomorphic to τ1. This
means that [L]⊗[L] is the identity element in the group of isomorphism classes of line bundles and
therefore every nontrivial element is of order two.

Remark: This argument does not generalize to complex line bundles because the corresponding
map ϕ would be C-antilinear, instead of C-linear. Complex line bundles are generally not of or-
der two.
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(b) By part (e) of the previous problem, there is a correspondence

{

isomorphism classes of real line bundles over M
}

←→ Ȟ1
(

M ;O(1)
)

=Ȟ1
(

M ;Z2

)

, [L]←→ [gL].

We need to show that this map is a group homomorphism, i.e.

[L]⊗[L′]←→ [gL] · [gL′ ];

here Z2 is viewed as the multiplicative group {±1}. By definition, if g={gαβ} and g′={g′αβ} are
transition data for L and L′, then transition data for L⊗L′ is given by

(g⊗g′)αβ = gαβ⊗g
′
αβ = gαβ ·g

′
αβ .

Thus,
[L]⊗[L′] = [L⊗L′]←→ [g · g′] = [g] · [g′],

i.e. this correspondence is a group isomorphism.

(c) Analogously to part (b), by part (f) of the previous problem there is a correspondence

{

isomorphism classes of complex line bundles over M
}

←→ Ȟ1
(

M ;U(1)
)

=Ȟ1
(

M ;S1
)

, [L]←→ [gL],

which is a group isomorphism. Recall from the statement of the previous problem that Ȟ1(M ;S1)
is the first Čech cohomology for the sheaf C∞(M ;S1) of germs of smooth functions to S1. We have
a short exact sequence of sheafs

0 −→ C
∞(M ;Z)=M×Z −→ C

∞(M ;R) −→ C
∞(M ;S1) −→ 0.

The first map is the inclusion of locally constant functions, while the second map is induced by the
standard covering map

q : R −→ S1, q(t) = e2πit.

Thus, we obtain a long exact sequence in cohomology

Ȟ1
(

M ;C∞(M ;R)
)

−→ Ȟ1
(

M ;C∞(M ;S1)
) δ
−→ Ȟ2

(

M ;C∞(M ;Z)
)

−→ Ȟ2
(

M ;C∞(M ;R)
)

.

Since C
∞(M ;R) is a fine sheaf, the two outer groups vanish and therefore

δ : Ȟ1
(

M ;S1
)

=Ȟ1
(

M ;C∞(M ;S1)
)

−→ Ȟ2
(

M ;C∞(M ;Z)
)

=Ȟ2
(

M ;Z
)

is an isomorphism. Combining with the above correspondence, we obtain a group isomorphism

{

isomorphism classes of complex line bundles over M
}

−→ Ȟ2
(

M ;Z
)

, [L] −→ δ
(

[gL]
)

.
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Problem 3: Chapter 2, #13 (10pts)

Let (V, 〈 〉) be an n-dimensional real inner-product space. Extend 〈 〉 to all of ΛV by

〈

v1∧. . .vk, w1∧. . .wm

〉

=

{

det(〈vi, wj〉)i,j=1,...,k, if k=m;

0, otherwise.

Since V is n-dimensional, ΛnV is one-dimensional. An orientation on V is a choice of a component
of ΛnV−0. Given such an orientation on V , a basis {e1, . . . , en} for V is called oriented if e1∧. . .∧en
lies in the chosen component of ΛnV −{0}. Define

∗ : ΛV −→ ΛV

by requiring that for every oriented orthonormal basis {e1, . . . , en} for V

∗1 = e1∧. . .∧en, ∗
(

e1∧. . .∧en
)

= 1, ∗
(

e1∧. . .∧ek
)

= ek+1∧. . .∧en.

Show that

(a) if e1, . . . , en is an orthonormal basis for V , then

{

eI
}

≡ {1} ∪
{

ei1∧. . .∧eik : 1≤ i1<. . .<ik≤n
}

is an orthonormal basis for ΛV ;

(b) ∗∗ = (−1)k(n−k) on ΛkV ;

(c) 〈v, w〉 = ∗(v ∧ ∗w) = ∗(w ∧ ∗v) for all v, w∈V,W .

We can assume that the inner-product is positive-definite; otherwise, there is no orthonormal basis.

(a) First, all basis vectors are of unit length, since

〈

ei1∧. . .eik , ei1∧. . .eik
〉

= det(〈eir , eis〉)r,s=1,...,k

= det(δiris)r,s=1,...,k = det(δrs)r,s=1,...,k = det Ik = 1.

Second, if two basis vectors are of different degree, their inner-product is zero by definition. On
the other hand,

〈

ei1∧. . .eik , ej1∧. . .ejk
〉

= det(〈eir , ejs〉)r,s=1,...,k = det(δirjs)r,s=1,...,k.

If (i1, . . . , ik) 6=(j1, . . ., jk), let r be the smallest number such that ir 6= jr. If ir<jr, then δirjs =0
for all s, since

js = is < ir if s < r and ir < jr ≤ js if r ≥ s.

Thus, all entries in the r-th row of the matrix (δirjs)r,s=1,...,k are zero. Similarly, if ir>jr, then all
entries in the r-th column of the matrix (δirjs)r,s=1,...,k are zero. In either case,

〈

ei1∧. . .eik , ej1∧. . .ejk
〉

= det(δirjs)r,s=1,...,k = 0.
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Thus, the basis for ΛV is orthonormal.

We next show that the homomorphism ∗, as defined on the orthonormal basis vectors, exists (it
then must be well-defined). We will show that it agrees with the values of a certain self-isomorphism
of ΛV . Let µ be the unique unit vector in the chosen component of ΛnV . Define bilinear map

A : ΛV ×ΛV −→ R by A(v, w) = 0 if v ∧ w 6∈ ΛnV, v ∧ w = A(v, w)µ if v ∧ w ∈ ΛnV.

This pairing is non-singular, since if {e1, . . . , en} is an orthonormal basis for V , then

eI ∧ (∗eJ) = ±δIJµ =⇒ A
(

eI , ∗eJ
)

= ±δIJ .

Thus, by 2.7, A induces an isomorphism

TA : ΛV −→ (ΛV )∗, (TAw)(v) = A(v, w) ∀ v, w ∈ ΛV.

Since the inner-product on ΛV is nondegenerate, the pairing

B : ΛV ×ΛV −→ R, B(v, w) = 〈v, w〉,

is non-singular as well and induces an isomorphism

TB : ΛV −→ (ΛV )∗, (TBw)(v) = B(v, w) ∀ v, w ∈ ΛV.

We claim that the isomorphism T−1
A ◦ TB : ΛV −→ ΛV satisfies

T−1
A ◦ TB

(

eI
)

= ∗eI

for every oriented orthonormal basis e1, . . . , en. We need to show that

TA(∗eI) = TB(eI) ∈ (ΛV )∗ ⇐⇒ TA(∗eI)(eJ) = TB(eI)(eJ)

⇐⇒ A(eJ , ∗eI) =
〈

eJ , eI
〉

.

for all basis vectors eI and eJ for ΛV . Suppose I =(i1, . . . , ik)= (1, . . . , k), which we can assume
after reordering the basis elements and possibly changing the sign of one of them. If eJ 6∈ ΛkV ,
then

〈

eJ , eI
〉

= 0; eJ∧ (∗eI) 6∈ Λn =⇒ A(eJ , ∗eI) = 0.

On other hand, if eJ =ej1 ∧. . .∧ ejk , then

eJ∧ (∗eI) = δ(j1,...,jk),(1,...,k)e1 ∧ . . . ∧ en = δIJµ =⇒ A(eJ , ∗eI) = δIJ ,

while 〈eJ , eI〉 = δIJ by part (a). We have thus verified the claim.

(c) By the above, for all v, w∈ΛV ,

∗(v ∧ ∗w) = A(v, ∗w) =
{

TA(∗w)
}

(v) = (TBw)(v) = B(v, w) = 〈v, w〉

= 〈w, v〉 = B(w, v) = ∗(w ∧ ∗v),

by symmetry.

(b) Suppose {e1, . . . , en} is an oriented orthonormal basis for V . Then,

µ = e1∧ . . .∧ en =
(

ek+1∧ . . .∧ en
)

∧
(

(−1)k(n−k)e1∧ . . .∧ ek
)

=⇒ ∗ ∗ e1∧ . . .∧ ek = ∗
(

ek+1∧ . . .∧ en
)

= (−1)k(n−k)e1∧ . . .∧ ek

=⇒ ∗∗ = (−1)k(n−k) : ΛkV −→ ΛkV.
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