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Spring 2011

Solutions to Problem Set 9
Problem 1 (20pts)

We have defined Cech cohomology for sheaves or presheaves of K-modules. All such objects are
abelian. The sets H® and H' can be defined for sheaves or presheaves of non-abelian groups as
well. The main example of interest is the sheaf S of germs of smooth (or continuous) functions to
a Lie group G over a smooth manifold (or topological space) M .*

Let U={Uqy}aeca be an open cover of M. Analogously to the abelian case, the set C’k(g; S) of Cech
k-cocycles is a group under pointwise multiplication of sections:

S CHULS) x CHU;S) — CHU;S),
{f : g}aoal-..ak(p) = faoa1...ak(p) : gaoal...ak(p) Vag,a,...,a5 €A, PEUayNUay N.. 'mUa’“ ’

where fopay..ans Gagor..an © UagNUay N...NUy, —> G are smooth (or continuous) functions (or
equivalently sections of S). The identity element ec C*(U;S) is given by

€apar..ar(P) = 1dg Vag,ar,...,o, €A, p€UsNUy, N...NU,, .
Define the two bottom boundary maps by

do: C(U3 ) — CH(U5S), (dof)avar = faoly, ava, * Far vy,
di: CHU; ) — CAU;S), (d19)avancs = ooz, (01, (0, a0 |y 1070y 1070, Io001 |1 70, A,
for all ag, a1, 0 € A. We also define an action of C°(U;S) on CY(U;S) by

#: COUU )X CHU; 8) — CHU5S), {Fg}avan = faolu, vy, Gavar far |, 7, € T (Ua W3 S)-
Show that

(a) I:IO(Q;S) =kerdy = dal(e) s a subgroup of C’O(Q; S);

(b) for every Cech 1-cocycle g (i.e. g€kerdy) for an open cover U={Us}ucA,

Joa = €lU,s  Gapdsa = €|lUanUs>  9aBIpryIrva = €lu.nusnus, Va,B,7 € A

(c) * is a left action of C°(U;S) on C*(U;S) that restricts to an action on kerd; and

Imdy ¢ CO(U; S)e.

LA Lie group G is a smooth manifold and a group so that the group operations are smooth. Examples include

O(k), SO(k), U(k), SU(k).



By part (c), we can define
HY(U;S) =kerd; /C°(U; S);

this is a pointed set (a set with a distinguished element).
If U ={U!}Yoen is a refinement of U= {Uqs}aca, any refining map p: A — A induces group

homomorphisms

i CF(U; S) — CHU%S),

which commute with dy, dy, and the action of C°(-;S) on C'(-;S), similarly to Section 5.33. Thus,
i induces a group homomorphism and a map

R}y HY(U;8) — HO(U';S)  and  Rpy: H'(U;8) — H'(U;S).
(d) Show that these maps are independent of the choice of p.

Thus, we can again define HO(M;S) and H'(M;S) by taking the direct limit of all H(U;S) and
HI(Q;S) over open covers of M. The first set is a group, while the second need not be (unless S
is a sheaf of abelian groups). These sets will be denoted by HO(M;G) and H'(M;G) if S is the
sheaf of germs of smooth (or continuous) functions into a Lie group G. As in the abelian case,
HO(M;S) is the space of global sections of S.

(e) Show that there is a natural correspondence

{isomorphism classes of rank k real vector bundles over M} +— H' (M;0(k)).

(f) What are the analogues of these statements for complex vector bundles? (state them and
indicate the changes in the argument; do not re-write the entire solution).

For ag, a1, ...,ar €A, let Uyga,...ap = UagNUa; N.. NUq, -
(a) If fekerdy,

— _ — —1
(dof l)aoal = faolanoal . fal}Uaoal = (qul‘Uaoal ’ fO‘O‘Uaoal)

—1 —1
= ((dOf)Ollao) = (e|Uala0) =€ Uaoal ;
so f~lekerdy. If f, f €kerdy,

3 —(fF A1 _ 7 i1 ~1
(do(ff))aoal = (ff)oéo ‘Uaof)q (ff)al |Uo¢0a1 - fao }Uaom ’ fao ‘Uﬂtom ’ fal ‘Uﬂtom ’ fal ‘UO‘OO‘I
3 -1 -1
- fa0|Uao(x1 ) (dOf)aooq ’ fa1 ‘Uaoal - fa0|Uao(x1 ) e|U°‘0a1 ’ fal ‘Uuoal

= (dof)agar = €|Unya,
so ffekerdy. Thus, kerdy C CO(U;S) is a subgroup.
(b) If gekerd,,

oL } . ‘ _ _
Jaian ’Ua0a1a2 gagag UO‘OO‘1Q2 Jaga U&0a1a2 — (dlg)aooqag =e Ua0a1a2 \v/a07 aq, 2.



Plugging in (ag, a1, @2) = (o, @, ), we obtain g, =e|y,. Plugging in (ag, a1, as) = (8, «, 5) and
using ggg = e[y,, we obtain gaggsa = elu,,. Finally, plugging in (ap, a1, a2) = (v, @, B) and using
gg,yl =g-3, we obtain

90B|Unps * 98v|Uap. * GrvalUns, = €luag,-

(¢) If f, feCO%U;S) and g C*(U;S), then

((ff)*g)aoal E ff O‘O}Ua o *Japan * (ff }Ua oy fO‘O‘Ua va fOé0|Ua o *Yagar foél‘Ua Oq'
= fozo‘UaOa1 ) (f*g)aoalfa1|[]a0a1 = (f*(f*g))aoal ;

Jorlvage,

s0, * is indeed a left action of C°(U;S) on C1(U;S). If f€C(U;S) and g€kerdy, then

(dl (f*g))aoa1a2 = (f*9) a1z (f*g)aoag (f*9)apa

}UO‘OOQO‘? ‘UQOO‘IO‘Q {UaOalﬁ‘Q

= (faily,, o, 90102 fa ‘UalaQ)}Uaoalaz( 0|17y, 92002 Fa |Ua0a2) [Uagars

(fao ‘Ua()o‘l Yapay qul ‘UD‘OO‘I )

‘Ua0a1a2

Jou ‘Uaoa1a2 (d19)aparas * [, a1 }Uaoalw
= e . =e )
fal‘Ua0a1a2 ‘Ua0a1a2 fal Ua0a1a2 |Uoz0aloc2

Thus, f*gc€kerd; whenever g€kerd;. Since dof = fxe for all feCO(U;S), Imdy C CO(U; S)e.
(d) If pu: A" — A'is a refining map, U/, CU, () for every a€ A". The group homomorphisms
pi: CHU;8) — CHU'; S)

are defined by

!/
o Vag,a1,...,a,cA.

{MSf}aoal...ak fu(ao (o1)...p(ous)

Suppose pi': A'— A is another refining map, U}, CU,,(q)(a) for every ac A" If f ckerdg, then

. =(d -
f“(“O)}Uumow (ag) I(O‘O)‘Uu(ao)u’(ao) (dof)utao (o) = ‘Uu(ao)u (a)
_ * _ ()%
f“(QO)‘Uwom'(ao) = Jw(eo) ‘Umaom (ap) - (Hof)ao = Fu(oo) Uby — Uso (0 F)avo

= ps=pg: HO(U; S)=kerdy — HO(U;S) c C°(U';S).

We next verify that R v is independent of y. For each geCY(U;S), define

hig € C°(U;S) by (h19)a = 9w (@)p(a)lu,-



We will show that

1g = (hig) * (1*g) VYV gekerds
= wi=pt HI(Q; S):kerdl/éo(g; S) — HI(Q';S):kerdl/C'O(Q';S).

If gckerd; cCY(U;S), then

—1 -1
Iu(ao)u(a) ’Uwal)u(aom(al) Iyt (o) (o) ‘Uu’<a1>u<ao>u<a1> I (an)(e) ‘Uu’(al)u(ao)u(aﬁ ’
It (ao)u(oo) |y '9_/} utao) U :9_/% (e U
w () (ag)pag)  ~H AL TY W (aq) ! (ag) plag) KA1 HAQ0) Yl (aq) ! (g lag)

* -1
= ((M9)*(179)) 4ya, = I (@0)u(00) ULy, * In(ao)u(an) Ul G (o i(on) Vb

= 9 (0000 Usgay * Itanutan vz o,

Ul = (M/*g)aoal'

@l

= 9 (an) ' (o) }U&Oal = 9p' (a0)p/ (1)

The second-to-last equality follows from part (b).

(e) Suppose V. — M is a real vector bundle of rank k. By Problem 5a on PS6, V' admits a
Riemannian metric; see also Section 11 in Lecture Notes. If

he: V]p, — Uy xRF

is a trivialization, by applying the Gramm-Schmidt procedure we can modify h, so that it is
metric-preserving with respect to the standard metric on RF. If hg: Vg, — Ugx R* is another
metric-preserving trivialization, the corresponding transition map

Japs: Uaﬁ — GLkR

is an orthogonal transformation, i.e. go3€ C>(Uqg; O(k)).

Suppose U = {Uq}aeca is a cover of M such that V|y, is trivial for every o € A. Choose an
orthogonal trivialization h, of V|y,. The corresponding transition data

{gag €C®(Uqnp; O(k)): o, B GA}
then determines an element g€ C''(U; O(k)). By Section 9 in Lecture Notes,
Yoo = €|uy, Gapgpa = €|Uass 9aBlUas, * 98v|Uas, * GralUes, = €lU.s, Yo, 8,7 € A
Therefore, g €kerd; defines an element
lgv] € H'(M;O(k)).

We will show that this element depends only on the isomorphism class of V.

If U ={U!}oc is a refinement of U={U,}aeca and p: A'— A is a refining map, then by,
is a trivialization of V¢, . The corresponding transition data is gu(a)u(ﬁ)’Ung’ i.e. ujg. Since

9] = [uig] € H'(M;O(k)),



it is sufficient to consider trivializations of isomorphic vector bundles over a common cover (other-
wise we can simply take the intersections of open sets in the two covers). Suppose

o:V—V

is an isomorphism of vector bundles over M. It can be assumed that ¢ is an isometry (see the
next paragraph). For each o€ A, let h!, be a metric-preserving trivialization of V|, . Denote by
g €CY(U; O(k)) the corresponding transition data. Then,

fa=hlopoh l: Uy xRF — U, xRF

is a diffeomorphism commuting with the projection map 7y and restricting to an orthogonal trans-
formation. Therefore,

fa(pa U) = (p, fa(p) : 1)) V(p,U)EUaXRk for some foz € COO(Ua§ O(k))v
ie. feCYU;0(k)). We claim that
d=rxg = [=lgeCU:0k) = lgv]=I[gv] € H (M;0(k)).

For, if o, B€ A and (p,v) € Ung, by definition of gos and g,

(P, {f*9}as®) - v) = (0. {fa(P)9as®) 5 ()} - ) = fa (P, {9as () f5 ' (P)} - V)
= {hiyopohy '} ({haohy Y (p, f5(p) - v)) = {hopohy '} (f5 ! (p,v))
= {hiyopohy'} ({hgow™ o)y }(p,v))
= {hiyohly '} (p,v) = (p, ghs(p) - v)-

We now show that if (-,-) and (-,-)’ are two metrics on a vector bundle V', there exists a vector
bundle isomorphism ¢ : V — V which is an isometry from the first metric to the second. This
implies that isomorphic vector bundles endowed with Riemannian metrics are isometric as vector
bundles. Let {(Uq, ha)}aca be a system of trivializations which are orthogonal with respect to (-, -).
For each a€ A, define
P,:U, — GL;R by V' Py(p) - w = <h;1(p, U),hgl(p,w)y V pelU,, v,weRF
—>  Ps=glp Pa-9op=0o5 Po-9ap Y a,BEA

Since P,(p) is a positive-definite symmetric matrix, it has a well-defined square root, i.e. a positive-
definite symmetric matrix f,(p) such that

Pa(p) = fa(p) - fa(p) = fa(p) - fa(p).
Since P, is smooth, so is f,. By the above,

fg =Pg = géﬁ “Po+ gap = géﬁ “fa fa gap = gfxﬁfoagaﬂ 'ggﬁfagaﬂ
2
= (ggﬁfaga,@) .



Since f, is a positive-definite symmetric matrix, so is g/, 3 fagap- Since fg is also a positive-definite
symmetric matrix, by the uniqueness of the square root

f3 = 9hpfadop = Gug fadap = 9o = fo ' Gapfs Y a,BEA
We define a bundle map
p:V—V by  o(hg'(pv) =hy'(p, fa () -v) YV a€A, pela, veRM

This map is well-defined because

hy' (0 5" (0) - w) = b3 (0, 925 (P) fo ' (D) gap (p) - w) = 5" (P, g0 (0) - fo' () - 0)
=yt (p, £ (p) - v).

It is an isomorphism of vector bundles because it restricts to isomorphisms of vector bundles on
trivializations. Furthermore,

{p(hg (p,v)), o(hg (0, w))) = (hy (p. £ () - v), b (b, fi (p) - w))
= (£ (p)0) Pa(p)(fo (p)w) = 0" - £ (D) falp) fa(P) fo ' (P) - w
o (p.v), by (p,w)).

The last equality holds because h, is an isometry from (-, -) to the standard metric on R¥. By the
above equality, ¢ is an isometry from (V, (-,-)) to (V, (-,-)’).

h_l(p7v) = hgl(p7w) g U= gaﬁ(p) " w =

=t w:<

Conversely, given [g] € H'(M;O(k)), let g€ C1(U; O(k)) be a representative for [g]. Since g€ kerdy,
by part (b) and Section 9 in Lecture Notes, g determines a vector bundle

Vg = (alzlA{Oé}X Uaka)/Ng’ (a,p, gagv) ~g (ﬂ,p,v) Va,B€A,

with transition data g. We need to see that the isomorphism class [V}] of V;, depends only on [g].
First, if U'={U/ }aca is a refinement of U={U,}nc4 and p: A'— A is a refining map, then the
vector bundles V; and V4 as constructed in Section 9 are isomorphic. An isomorphism is given by

P Vu*g:( |_| {a}xU&ka)/Nu*gH Vg:< |_| {a}anka)/Ng, [, p,v] — [u(a),p, v].
acA

ac A’

This map is well-defined because

(avpv U) ~uxg (ﬁap7 U/) = (,u(a),p,v) ~g (M(/B)apavl)'

It is an isomorphism of vector bundles, since it is smooth, commutes with the projection maps,
and its restriction to each fiber is an isomorphism. Thus, it is sufficient to show that if

9.9 €CY(U;0(k))  and  [g] =[¢] € H'(U; O(k)),
the vector bundles V;; and V are isomorphic. By definition, there exists

feC'U;0(k) st g =fxg



Define

o ng( || {a}XU&XRk)/NgH vgfz( || {a}anka)/Ng, by
acA

acA
90([0‘71777)]) = [avpa fa(p) : U]-

This map is well-defined, since

(Oé,p, U) ~g (B?p’ U/) g v = gaﬁ(p) v
—  fa®) v =fa®) gap(p) -V = {(f*9)ap(P)} - fa(p) - V'
—  (,p, fap)-v) ~¢ (B.p, fs(p) - V).

Since ¢ is smooth, commutes with the projection maps, and its restriction to each fiber is an iso-
morphism, ¢ is an isomorphism of vector bundles.

It remains to observe that the two maps

{isomorphism classes of rank k real vector bundles over M} — H*(M;O(k)), V] — [gv],
H'(M;O(k)) — {isomorphism classes of rank k real vector bundles over M }, lg] — [V,

are mutual inverses. For, g is transition data for the vector bundle V, and any vector bundle V is
isomorphic to Vj if g is transition data for V'; Section 9 in Lecture Notes.

(f) If V' is a complex vector bundle, we can choose a Hermitian metric on V. If h, and hg
are trivializations of V over U, and Up preserving the metric, the corresponding transition map
9o € C®(Uyp; GLEC) is metric-preserving, i.e.

gap € C(Uap; U(k)).

The rest of the argument in part (d) goes through, with O(k) replaced by U(k) and R by C. So,
we obtain a natural correspondence

{isomorphism classes of rank k complex vector bundles over M } «— H? (M ;U (k:)),
Vli<—lgv],  [Vg]l +—lgl.

Problem 2 (15pts)

(a) Show that the set of isomorphism classes of line bundles on M forms an abelian group under
the tensor product (i.e. satisfies 3 properties for a group and another for abelian). Show that
i the real case all nontrivial elements are of order two.

(b) Show that the correspondence
{isomorphism classes of real line bundles over M} «+— HY(M:Zs)

of the previous problem is a group isomorphism.



(¢) Show that there is a natural group isomorphism

{isomorphism classes of complex line bundles over M } s H? (M; 7).

Note: The groups H' (M ; Zg) and H? (M ; Z) are naturally isomorphic to the singular cohomology
groups H'! (M; Zg) and H? (M; Z). The image of a real line bundle L

wi(L) € H'(M;Zs)
is the first Stiefel-Whitney class of L; the image of a complex line bundle
c1(L) € H*(M;Z)
is the first Chern class of L. However, this is not how these characteristic classes are normally

defined.

(a) We need to show that the tensor product operation descends to isomorphism classes of line
bundles, is associative and commutative, there is an identity element, and every element has an
inverse. For the first property, we need to show that if L is isomorphic to L} and Ls is isomorphic
to LY, then L1®Ls is isomorphic to Lj ®L4. This is the case because if ¢; is an isomorphism from
Ly to L) and @9 is an isomorphism from Ly to L), then ¢1®ps is an isomorphism from L1 ®Ls to
Li®LY. For the next two properties, define isomorphisms

L1 ® (La®L3) — (L1®Lg) ® L3 and Li®Ly — Lo®I14 by
[1)1, [02703]] — [[01702]7113] and [v1, v2] — [v2, v1].

These bundle maps are smooth and isomorphisms on each fiber because they induce smooth maps
on trivializations that are isomorphisms on every fiber. The identity element is represented by the
trivial line bundle 7;. If s is a nowhere-zero section of 71 (e.g. s(p)=(p,1)), the bundle map

L— L®Tm, v — [v, s(m(v))],
is an isomorphism since it is injective. The inverse of [L] is [L*], since the map
L*®L — =M xR, [v,a] — (7(v), a(v)),

is an isomorphism because it is surjective.

If L is a real line bundle and (-, -) is a Riemannian metric on L, the bundle map

p:L— L {e@)}(w) = (v,uw),

is a vector bundle isomorphism because it induces smooth maps on trivializations that restrict to
non-zero maps on every fiber. Since LR L* is also isomorphic to 71, L& L is isomorphic to 7. This
means that [L]®[L] is the identity element in the group of isomorphism classes of line bundles and
therefore every nontrivial element is of order two.

Remark: This argument does not generalize to complex line bundles because the corresponding
map ¢ would be C-antilinear, instead of C-linear. Complex line bundles are generally not of or-
der two.



(b) By part (e) of the previous problem, there is a correspondence
{isomorphism classes of real line bundles over M } «— H'(M;0(1))=H"(M;Zs), [L] +— [g1]-
We need to show that this map is a group homomorphism, i.e.

[LI@[L'] +— [gc] - lgv];

here Zj is viewed as the multiplicative group {£1}. By definition, if g={gas} and ¢'={g s} are
transition data for L and L’, then transition data for L& L’ is given by

(999)aB = Gap®@Yns = Jap* Jas-

Thus,
[L@[L] = [LoL] < [g-¢'| = [g] - 4],

i.e. this correspondence is a group isomorphism.
(c) Analogously to part (b), by part (f) of the previous problem there is a correspondence
{isomorphism classes of complex line bundles over M} «+— H'(M;U(1))=H"(M;S"), [L]<—[gz],

which is a group isomorphism. Recall from the statement of the previous problem that H Y St
is the first Cech cohomology for the sheaf € (M; S) of germs of smooth functions to S*. We have
a short exact sequence of sheafs

0 — €°(M;Z) =M xZ — €°(M;R) — €>°(M;S) — 0.

The first map is the inclusion of locally constant functions, while the second map is induced by the

standard covering map ‘
¢:R— S, q(t) = ¥,

Thus, we obtain a long exact sequence in cohomology
H'(M;&>*(M;R)) — H'(M;€®(M;SY)) LN H?(M; € (M;Z)) — H?*(M;€>(M;R)).
Since € (M;R) is a fine sheaf, the two outer groups vanish and therefore
5: H'(M;S8")=H"(M;€>(M;S")) — H*(M; €™ (M;Z))=H?(M;Z)
is an isomorphism. Combining with the above correspondence, we obtain a group isomorphism

{isomorphism classes of complex line bundles over M} — H?(M;Z), [L] — 6([gL])-



Problem 3: Chapter 2, #13 (10pts)

Let (V,()) be an n-dimensional real inner-product space. Extend () to all of AV by

det((vi, wy))ij=1,..k» if k=m;

VIN. Vg, WA . Wy, ) = .
< m> {0, otherwise.

Since V is n-dimensional, A"V is one-dimensional. An orientation onV is a choice of a component
of A"V—0. Given such an orientation on 'V, a basis {e1,...,en} for V is called oriented if e1/. . Ney,
lies in the chosen component of A"V —{0}. Define

x: AV — AV
by requiring that for every oriented orthonormal basis {e1,...,e,} for V
x1 = e A...Ney, *(el/\.../\en) =1, *(61/\.../\6k) = eg+1N. . . Nep.
Show that
(a) if e1,..., e, is an orthonormal basis for V', then

{61} = {1} U {ei1/\- VAN 1< <.. <lk§n}
is an orthonormal basis for AV;
(b) #x = (71)k(n—k) on AV ;

(¢) (v,w) = *(v A *xw) =*x(w A x*v) for allv,weV,W.

We can assume that the inner-product is positive-definite; otherwise, there is no orthonormal basis.

(a) First, all basis vectors are of unit length, since

<€i1 AN 7 N TRAYE .eik> = det((eiw €i5>)r,s:1,.“,k
- det((siris)r,szl,...,k - det(érs)r,szl,...,k = det Ik =1

Second, if two basis vectors are of different degree, their inner-product is zero by definition. On
the other hand,

<€i1 A.. e, €4, A.. .€jk> = det((eir, ejs>)r,3:1w.7k = det(diTjS)r,szL,“’k.

If (i1,...,i) # (j1,- .-, Jk), let r be the smallest number such that 4, # j,. If i, <j,, then §; ;, =0
for all s, since
Js =g <ty if s<7r and Iy < Jp < js if > s.

Thus, all entries in the r-th row of the matrix (d;,j,)r s=1,.. x are zero. Similarly, if 4, > j,, then all
entries in the r-th column of the matrix (6;,j,)r s=1,. r are zero. In either case,

<6i1 A.. €, €4, A.. .€jk> = det(éirjs)r,szl,...,k = 0.

10



Thus, the basis for AV is orthonormal.

We next show that the homomorphism x, as defined on the orthonormal basis vectors, exists (it
then must be well-defined). We will show that it agrees with the values of a certain self-isomorphism
of AV. Let u be the unique unit vector in the chosen component of A”V. Define bilinear map

A: AVXAV — R by A(w,w)=0 if vAwg A"V, vAw=AWw,w)p if vAweA"V.
This pairing is non-singular, since if {ej,...,e,} is an orthonormal basis for V', then
er N (xey) = £ — A(eI,*eJ) = +677.

Thus, by 2.7, A induces an isomorphism

Tp: AV — (AV)*, (Taw)(v) = A(v,w) Yov,we AV.
Since the inner-product on AV is nondegenerate, the pairing

B: AVxAV — R, B(v,w) = (v, w),

is non-singular as well and induces an isomorphism

Tp: AV — (AV)*, (Tpw)(v) = B(v,w) Yv,w e AV.
We claim that the isomorphism Tglo Tp: AV — AV satisfies

Tglo Tg (6[) = xeg

for every oriented orthonormal basis eq,...,e,. We need to show that
Ta(xer) =Tg(er) € (AV)" <= Tu(xer)(es) = Tg(er)(es)
— Aley,xey) = <eJ,e[>.
for all basis vectors ey and ey for AV. Suppose I =(i1,...,it)=(1,...,k), which we can assume

after reordering the basis elements and possibly changing the sign of one of them. If e; & AFV,
then
<€J,€[> =0; ejN (xer) ¢ A" = A(ej,*er) =0.

On other hand, if e;=e¢;, A...A¢j,, then
ejN (xer) = (5(]'17.”7%)7(17”“]6)61 AN.o..Ney =011 - A(ey,xer) =917,

while (e, er) = 77 by part (a). We have thus verified the claim.
(c) By the above, for all v,we AV,

(v A\ *xw) = A(v, *xw) = {TA(*w)}(U) = (Tpw)(v) = B(v,w) = (v, w)
by symmetry.

(b) Suppose {ei,...,e,} is an oriented orthonormal basis for V. Then,
p=eiN...Nep=(epy1A...Aen) A ((—1)k("_k)elA S Neg)
- xxelN...Nep = *(€k+1/\ A en) = (—1)k(”_k)elA AN eg
— *ok = (—1)k("7k): APV — ARV
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