MAT 531: Topology&Geometry, II Spring 2011

Problem Set 5 Due on Thursday, 3/10, in class

Note: This problem set has two pages.

1. Let V be a vector space of dimension n and $\Omega \in \Lambda^n V^*$ a nonzero element. Show that the homomorphism

$$V \longrightarrow \Lambda^{n-1} V^*, \qquad v \longrightarrow i_v \Omega,$$

where i_v is the contraction map, is an isomorphism.

- 2. Suppose M is a smooth n-manifold.
 - (a) Let Ω be a nowhere-zero *n*-form on M. Show that for every $p \in M$ there exists a chart $(x_1, \ldots, x_n) : U \longrightarrow \mathbb{R}^n$ around p such that

$$\Omega|_U = \mathrm{d}x_1 \wedge \ldots \wedge \mathrm{d}x_n.$$

(b) Let α be a nowhere-zero closed (n-1)-form on M. Show that for every $p \in M$ there exists a chart $(x_1, \ldots, x_n) \colon U \longrightarrow \mathbb{R}^n$ around p such that

$$\alpha|_U = \mathrm{d} x_2 \wedge \mathrm{d} x_3 \wedge \ldots \wedge \mathrm{d} x_n.$$

3. Let M be a smooth manifold and $X, Y \in \Gamma(M; TM)$ smooth vector fields on M. Show that the Lie derivative satisfies

$$L_{[X,Y]} = [L_X, L_Y] \equiv L_X \circ L_Y - L_Y \circ L_X$$

as homomorphisms on $\Gamma(M;TM)$ and $E^k(M)$. Hint: use 1.44,1.45d, 2.25abe.

4. Let α be a k-form on a smooth manifold M and X_0, X_1, \ldots, X_k smooth vector fields on M. Show directly from the definitions that

$$d\alpha(X_0, X_1, \dots, X_k) = \sum_{i=0}^{i=k} (-1)^i X_i \left(\alpha(X_0, \dots, \widehat{X_i}, \dots, X_k) \right) + \sum_{i < j} (-1)^{i+j} \alpha \left([X_i, X_j], X_0, \dots, \widehat{X_i}, \dots, \widehat{X_j}, \dots, X_k \right).$$

Hint: first show that the values of LHS and RHS at any $p \in M$ depend only on the values of X_0, X_1, \ldots, X_k at p.

5. Let $V \longrightarrow M$ be a smooth vector bundle of rank k and $W \subset V$ a smooth subbundle of V of rank k'. Show that

$$\operatorname{Ann}(W) \equiv \left\{ \alpha \in V_p^* \colon \alpha(w) = 0 \,\forall \, w \in W, \, p \in M \right\}$$

is a smooth subbundle of V^* of rank k-k'.

- 6. Suppose M is a 3-manifold, α is a nowhere-zero one-form on M, and $p \in M$. Show that
 - (a) if there exists an embedded 2-dimensional submanifold $P \subset M$ such that $p \in P$ and $\alpha|_{TP} = 0$, then $(\alpha \wedge d\alpha)|_p = 0$.
 - (b) if there exists a neighborhood U of p in M such that $(\alpha \wedge d\alpha)|_U = 0$, then there exists an embedded 2-dimensional submanifold $P \subset M$ such that $p \in P$ and $\alpha|_{TP} = 0$.

Note: If the top form $\alpha \wedge d\alpha$ on M is nowhere-zero, α is called a **contact form**. In this case, it has no integrable submanifolds at all.

- 7. A two-form ω on a smooth manifold M is called symplectic if ω is closed (i.e. $d\omega = 0$) and everywhere nondegenerate¹. Suppose ω is a symplectic form on M.
 - (a) Show that the dimension of M is even and the map

$$TM \longrightarrow T^*M, \qquad X \longrightarrow i_X\omega,$$

is a vector bundle isomorphism $(i_X \text{ is the contraction w.r.t. } X, \text{ i.e. the dual of } X \wedge)$.

(b) If $H: M \longrightarrow \mathbb{R}$ is a smooth map, let $X_H \in \Gamma(M; TM)$ be the preimage of dH under this isomorphism. Assume that X_H is a complete vector field, so that the flow

$$\varphi \colon \mathbb{R} \times M \longrightarrow M, \qquad (t, p) \longrightarrow \varphi_t(p),$$

is globally defined. Show that for every $t \in \mathbb{R}$, the time-t flow $\varphi_t \colon M \longrightarrow M$ is a symplectomorphism, i.e. $\varphi_t^* \omega = \omega$.

Note: In such a situation, H is called a Hamiltonian and φ_t a Hamiltonian symplectomorphism.

¹This means that $\omega_p \in \Lambda^2 T_p^* M$ is nondegenerate for every $p \in M$, i.e. for every $v \in T_p M - 0$ there exists $v' \in T_p M$ such that $\omega_p(v, v') \neq 0$.