MAT 530: Topology\&Geometry, I
 Fall 2005

Problem Set 8

Solution to Problem p335, \#4

Suppose $A \subset X$ and $r: X \longrightarrow A$ is a retraction, i.e. $\left.r\right|_{A}=\operatorname{id}_{A}$. Show that for any $a_{0} \in A$ the homomorphism

$$
r_{*}: \pi_{1}\left(X, a_{0}\right) \longrightarrow \pi_{1}\left(A, a_{0}\right)
$$

is surjective.

The condition on r means that

$$
r \circ \iota=\operatorname{id}_{A}: A \longrightarrow A,
$$

where $\iota: A \longrightarrow X$ is the inclusion map. Thus,

$$
r_{*} \circ \iota_{*}=(r \circ \iota)_{*}=\operatorname{id}_{A *}=\mathrm{Id}: \pi_{1}\left(A, a_{0}\right) \longrightarrow \pi_{1}\left(A, a_{0}\right) .
$$

Since the composition $r_{*} \circ \iota_{*}$ is surjective, so is r_{*}.

Solution to Problem p335, \#5

Suppose $A \subset \mathbb{R}^{n}$ and $h:\left(A, a_{0}\right) \longrightarrow\left(Y, y_{0}\right)$ is a continuous map that extends to a continuous map from \mathbb{R}^{n} to Y. Show that

$$
r_{*}: \pi_{1}\left(A, a_{0}\right) \longrightarrow \pi_{1}\left(X, x_{0}\right)
$$

is the trivial homomorphism.
Suppose $k: \mathbb{R}^{n} \longrightarrow Y$ is a continuous map such that

$$
\left.k\right|_{A}=h \quad \Longleftrightarrow \quad h=k \circ \iota,
$$

where $\iota: A \longrightarrow \mathbb{R}^{n}$ is the inclusion map. Then,

$$
h_{*}=(k \circ \iota)_{*}=k_{*} \circ \iota_{*}: \pi_{1}\left(A, a_{0}\right) \longrightarrow \pi_{1}\left(\mathbb{R}^{n}, a_{0}\right) \longrightarrow \pi_{1}\left(X, x_{0}\right) .
$$

Since $\pi_{1}\left(\mathbb{R}^{n}, a_{0}\right)$ is trivial (consists just of the identity), the homomorphism h_{*} is trivial (i.e. it image is the identity element in $\pi_{1}\left(X, x_{0}\right)$.

Solution to Problem p341, \#3

Let $p: E \longrightarrow B$ be a covering map. Suppose B is connected and $f^{-1}\left(b_{0}\right)$ has k-elements for some $b_{0} \in B$. Show that $p^{-1}(b)$ has k elements for every $b \in B$.

For each $n \in \mathbb{Z}^{+} \cup\{\infty\}$, let

$$
\mathcal{U}_{n}=\left\{b \in B:\left|p^{-1}(b)\right|=n\right\} .
$$

Since p is surjective,

$$
B=\bigcup_{n \in \mathbb{Z}^{+} \cup\{\infty\}} \mathcal{U}_{n}
$$

If $b \in \mathcal{U}_{n}$ and V is an evenly covered neighborhood of b, then

$$
\left|p^{-1}\left(b^{\prime}\right)\right|=n \quad \forall b^{\prime} \in V \quad \Longrightarrow \quad V \subset \mathcal{U}_{n}
$$

Thus, \mathcal{U}_{n} is an open subset of B. Let

$$
W=\bigcup_{n \in \mathbb{Z}^{+} \cup\{\infty\}, n \neq k} \mathcal{U}_{n}
$$

Then, $B=\mathcal{U}_{k} \sqcup W$. Since B is connected, \mathcal{U}_{n} and W are open, \mathcal{U}_{k} is non-empty (it contains b_{0}), W must be empty. Thus, $B=\mathcal{U}_{k}$, i.e. $p^{-1}(b)$ has k elements for every $b \in B$.

Solution to Problem p341, \#3

Let $g, h: S^{1} \longrightarrow S^{1}$ be the given maps by

$$
g(z)=z^{n} \quad \text { and } \quad h(z)=1 / z^{n}
$$

Determine the homomorphisms

$$
g_{*}, h_{*}: \pi_{1}\left(S^{1}, 1\right) \longrightarrow \pi_{1}\left(S^{1}, 1\right)
$$

Let $f: I \longrightarrow S^{1}$ be the loop based at 1 given by

$$
f(s)=e^{2 \pi i s}
$$

i.e. f goes around the circle counterclockwise once. Let

$$
\alpha=[f] \in \pi_{1}\left(S^{1}, 1\right)
$$

By the proof of Lemma 54.4,

$$
\pi_{1}\left(S^{1}, 1\right)=\mathbb{Z}[\alpha]
$$

i.e. α generates $\pi_{1}\left(S^{1}, 1\right)$. On the other hand,

$$
g_{*} \alpha=g_{*}[f]=[g \circ f]=[\underbrace{f * \ldots * f}_{n \text { times }}]=\underbrace{[f] * \ldots *[f]}_{n \text { times }}=n[f]=n \cdot \alpha .
$$

The third equality holds because $g \circ f$ "does f " on each of the n intervals $[(k-1) / n, k / n]$ with $k=1, \ldots, n$. Thus, the homomorphism

$$
g_{*}: \pi_{1}\left(S^{1}, 1\right) \longrightarrow \pi_{1}\left(S^{1}, 1\right)
$$

is the multiplication by n in the infinite cyclic group $\mathbb{Z}[\alpha]$.
Let $\eta: S^{1} \longrightarrow S^{1}$ be the map given by $\eta(z)=1 / z$. Then,

$$
\eta(f(s))=1 / e^{2 \pi i s}=e^{-2 \pi i s}=e^{2 \pi i(1-s)}=f(1-s) \quad \Longrightarrow \quad \eta \circ f=\bar{f} \quad \Longrightarrow \quad f_{*} \alpha=\bar{\alpha}=-\alpha
$$

Thus, the homomorphism

$$
\eta_{*}: \pi_{1}\left(S^{1}, 1\right) \longrightarrow \pi_{1}\left(S^{1}, 1\right)
$$

is the multiplication by -1 . Since $h=\eta \circ g$, the homomorphism

$$
h_{*}=(\eta \circ g)_{*}=\eta_{*} \circ g_{*}: \pi_{1}\left(S^{1}, 1\right) \longrightarrow \pi_{1}\left(S^{1}, 1\right)
$$

is the multiplication by $(-1) n=-n$ in the infinite cyclic group $\mathbb{Z}[\alpha]$.

