MAT 530: Topology&Geometry, I Fall 2005

Problem Set 6

Solution to Problem p260, #2

(a) Show that the product of a paracompact space and a compact space is paracompact.

(b) Conclude that S_{Ω} is not paracompact.

(a) Suppose X is a paracompact topological space and Y is a compact topological space. Let \mathcal{A} be an open cover of $X \times Y$. We will show that \mathcal{A} has a locally finite open refinement that covers X.

For every $x \in X$, \mathcal{A} is an open cover of the slice

$$Y_x \equiv \{x\} \times Y \subset X \times Y.$$

Since $\{x\} \times Y$ is homeomorphic to Y and Y is compact, there exists a finite open subcollection \mathcal{B}_x of \mathcal{A} that covers $\{x\} \times Y$. By the Tube Lemma, Lemma 26.8, there exists an open subset \mathcal{U}_x of X such that

$$x \in \mathcal{U}_x$$
 and $\mathcal{U}_x \times Y \subset \bigcup_{W \in \mathcal{B}_x} W.$ (1)

Since X is paracompact and

$$\mathcal{C} \equiv \left\{ \mathcal{U}_x \colon x \in X \right\}$$

is an open cover of X, there exists a locally finite open refinement \mathcal{D} of \mathcal{C} that covers X. For each $V \in \mathcal{D}$, choose $x(V) \in X$ such that $V \subset \mathcal{U}_{x(V)}$. Let

$$\mathcal{E} = \big\{ (V \times Y) \cap W \colon V \in \mathcal{D}, \ W \in \mathcal{B}_{x(V)} \big\}.$$

Since $\mathcal{B}_{x(V)} \subset \mathcal{A}$ for all $V \in \mathcal{D}$, \mathcal{E} is an open refinement of \mathcal{A} . Since $V \subset \mathcal{U}_{x(V)}$,

$$V \times Y \subset \bigcup_{W \in \mathcal{B}_{x(V)}} W \qquad \forall V \in \mathcal{C}$$

by (1). Since \mathcal{C} covers X, we find

$$\bigcup_{V \in \mathcal{C}} \bigcup_{W \in \mathcal{B}_{x(V)}} (V \times Y) \cap W = \bigcup_{V \in \mathcal{C}} \left((V \times Y) \cap \bigcup_{W \in \mathcal{B}_{x(V)}} W \right) = \bigcup_{V \in \mathcal{C}} (V \times Y) = \left(\bigcup_{V \in \mathcal{C}} V \right) \times Y = X \times Y.$$

Thus, \mathcal{E} covers $X \times Y$.

It remains to show that \mathcal{E} is locally finite. If $x \times y \in X \times Y$, choose an open subset \mathcal{U} of X such that $x \in \mathcal{U}$ and \mathcal{U} intersects only finitely many elements of \mathcal{C} . Then,

$$\left\{ (V \times Y) \cap W \in \mathcal{E} : (\mathcal{U} \times Y) \cap ((V \times Y) \cap W) \neq \emptyset \right\} \subset \left\{ (V \times Y) \cap W : \mathcal{U} \cap V \neq \emptyset, \ W \in \mathcal{B}_{x(V)} \right\}.$$

Since $\mathcal{B}_{x(V)}$ is finite for all $V \in \mathcal{C}, \mathcal{U} \times Y$ intersects only finitely many elements of \mathcal{E} .

(b) By Lemma 41.1, a paracompact Hausdorff space is normal. Since any space in the order topology is Hausdorff, S_{Ω} and \bar{S}_{Ω} are Hausdorff. Since any product of Hausdorff spaces is Hausdorff, $S_{\Omega} \times \bar{S}_{\Omega}$ is Hausdorff. On the other hand, by Example 2 in Section 32, $S_{\Omega} \times \bar{S}_{\Omega}$ is not normal and thus not paracompact. Since \bar{S}_{Ω} is well-ordered and thus has the least-upper property, every closed interval in \bar{S}_{Ω} , including \bar{S}_{Ω} , is compact by Theorem 27.1. Since $S_{\Omega} \times \bar{S}_{\Omega}$ is not paracompact, S_{Ω} is not paracompact by part (a).

Solution to Problem p260, #7

Let X be a regular space.

(a) If X is a finite union of closed paracompact subspaces of X, then X is paracompact.
(b) If X is a countable union of closed paracompact subspaces of X whose interiors cover X, then X is paracompact.

(a) We will show that if \mathcal{A} is an open cover of X, there exists a locally finite refinement \mathcal{D} of \mathcal{A} that covers X. Since X is regular, the equivalence of (2) and (4) in Lemma 41.3 then implies that X is paracompact.

Since a finite union of closed subsets is closed, it is sufficient to consider the case when $X = B \cup C$, where $B, C \subset X$ are closed subsets of X that are paracompact in the subspace topologies. Since A is an open cover of X,

$$\mathcal{A}_B \equiv \{ \mathcal{U} \cap B \colon \mathcal{U} \in \mathcal{A} \} \quad \text{and} \quad \mathcal{A}_C \equiv \{ \mathcal{U} \cap C \colon \mathcal{U} \in \mathcal{A} \}$$

are open covers of B and C, respectively. Since B and C are paracompact, there exist (open) refinements \mathcal{B} of \mathcal{A}_B and \mathcal{C} of \mathcal{A}_C that cover B and C, respectively, and are locally finite in B and C, respectively. Let

$$\mathcal{D}=\mathcal{B}\cup\mathcal{C}.$$

Since \mathcal{B} and \mathcal{C} cover B and C, \mathcal{D} covers X. Since \mathcal{B} and \mathcal{C} refine \mathcal{A}_B and \mathcal{A}_C , which in turn refine \mathcal{A} , \mathcal{D} also refines \mathcal{A} . Below we show that the collections \mathcal{B} and \mathcal{C} are locally finite in X. Thus, so is their union \mathcal{D} .

We show that \mathcal{B} is locally finite in X; by symmetry, so is \mathcal{C} . Let $x \in X$ be any point. If $x \in X - B$, the set $W \equiv X - B$ is open in X, since B is closed, and contains x. Since every element $D \in \mathcal{B}$ is a subset of B, W intersects no element of \mathcal{B} . Suppose next that $x \in B$. Since \mathcal{B} is locally finite in B, there exists an open subset W of X such that the set $W \cap B$ contains x and intersects only finitely many elements of \mathcal{B} . Since every element of $D \in \mathcal{B}$ is a subset of B,

$$(W \cap B) \cap D = W \cap D \quad \forall D \in \mathcal{B} \qquad \Longrightarrow \qquad \left\{ D \in \mathcal{B} \colon W \cap D \neq \emptyset \right\} = \left\{ D \in \mathcal{B} \colon (W \cap B) \cap D \neq \emptyset \right\}.$$

Thus, the open subset W of X contains x and intersects only finitely many elements of \mathcal{B} .

(b) We will show that if \mathcal{A} is an open cover of X, there exists a σ -locally finite open refinement \mathcal{D} of \mathcal{A} that covers X. Since X is regular, the equivalence of (1) and (4) in Lemma 41.3 then implies that X is paracompact.

Suppose $X = \bigcup_{n \in \mathbb{Z}^+} \text{Int } X_n$, where X_n is a closed subset of X which is paracompact in the subspace topology, for every $n \in \mathbb{Z}^+$. Since \mathcal{A} is an open cover of X, for every $n \in \mathbb{Z}^+$

$$\mathcal{A}_n \equiv \{\mathcal{U} \cap X_n \colon \mathcal{U} \in \mathcal{A}\}$$

is an open cover of X_n . Since X_n is paracompact, there exists a refinement \mathcal{B}_n of \mathcal{A}_n that covers X_n , is locally finite in X_n , and is open in X_n . For each $D \in \mathcal{B}_n$ in X_n , choose an open subset $V(D) \subset X$ such that

$$D = V(D) \cap X_n.$$

Let

$$\mathcal{D}_n = \left\{ V(D) \cap \operatorname{Int} X_n \colon D \in \mathcal{B}_n \right\} \quad \forall n \in \mathbb{Z}^+ \qquad \text{and} \qquad \mathcal{D} = \bigcup_{n \in \mathbb{Z}^+} \mathcal{D}_n$$

All elements of \mathcal{D} are open in X. Since \mathcal{B}_n refines \mathcal{A}_n (and thus \mathcal{A}) and

$$V(D) \cap \operatorname{Int} X_n \subset V(D) \cap X_n = D \qquad \forall \mathcal{D} \in \mathcal{B}_n$$

 \mathcal{D}_n refines \mathcal{A} . Since \mathcal{B}_n covers X_n and $X = \bigcup_{n \in \mathbb{Z}^+} \operatorname{Int} X_n$,

$$\bigcup_{n\in\mathbb{Z}^+}\bigcup_{D\in\mathcal{B}_n} \left(V(D)\cap\operatorname{Int} X_n\right) = \bigcup_{n\in\mathbb{Z}^+} \left(\left(\bigcup_{D\in\mathcal{B}_n}V(D)\right)\cap\operatorname{Int} X_n\right) \supset \bigcup_{n\in\mathbb{Z}^+} \left(\left(\bigcup_{D\in\mathcal{B}_n}D\right)\cap\operatorname{Int} X_n\right)$$
$$= \bigcup_{n\in\mathbb{Z}^+} \left(X_n\cap\operatorname{Int} X_n\right) = \bigcup_{n\in\mathbb{Z}^+}X_n = X.$$

Thus, \mathcal{D} is an open refinement of \mathcal{A} that covers X. By the last paragraph of part (a), the collection \mathcal{B}_n is locally finite in X. Since

$$V(D) \cap \operatorname{Int} X_n \subset V(D) \cap X_n = D \qquad \forall \mathcal{D} \in \mathcal{B}_n,$$

the collection \mathcal{D}_n is also locally finite in X. Thus, \mathcal{D} is σ -locally finite.