MAT 530: Topology\&Geometry, I Fall 2005

Problem Set 5

Solution to Problem p200, \#9

Let

$$
A=\{x \times(-x): x \in \mathbb{Q}\} \subset \mathbb{R}_{l}^{2} \quad \text { and } \quad B=\{x \times(-x): x \in \mathbb{R}-\mathbb{Q}\} \subset \mathbb{R}_{l}^{2}
$$

If \mathcal{U} and V are open subsets of \mathbb{R}_{l}^{2} containing A and B, respectively, show that $\mathcal{U} \cap V \neq \emptyset$. Thus, \mathbb{R}_{l}^{2} is not normal.
(a) Let

$$
K_{n}=\{x \in[0,1]-\mathbb{Q}:[x, x+1 / n) \times[-x,-x+1 / n) \subset V\} .
$$

Show that $[0,1]$ is the union of the sets K_{n} and countably many one-point sets.
(b) Show that some set \bar{K}_{n} contains a nonempty open interval (a, b) of \mathbb{R}.
(c) Show that V contains the open parallelogram

$$
\{x \times(-x+\epsilon): x \in(a, b), \epsilon \in(0,1 / n)\}
$$

(d) Conclude that if $q \in(a, b) \cap \mathbb{Q}$, then $q \times(-q) \in \mathbb{R}_{l}^{2}$ is a limit point of V. Thus, any open subset \mathcal{U} of \mathbb{R}_{l}^{2} containing $q \times(-q)$ intersects V.
(a) We will show that

$$
[0,1]=\bigcup_{n \in \mathbb{Z}^{+}} K_{n} \cup \bigcup_{q \in[0,1] \cap \mathbb{Q}}\{q\}
$$

This is equivalent to saying that for every $x \in[0,1]-\mathbb{Q}$, there exists $n \in \mathbb{Z}^{+}$such that $x \in K_{n}$, i.e.

$$
[x, x+1 / n) \times[-x,-x+1 / n) \subset V
$$

The set V is open in \mathbb{R}_{l}^{2} and contains $x \times(-x)$, if $x \in[0,1]-\mathbb{Q}$. Since

$$
\left\{[x, x+1 / n) \times[-x,-x+1 / n): n \in \mathbb{R}_{l}^{2}\right\}
$$

is a basis for \mathbb{R}_{l}^{2} at $x \times(-x)$, it follows that

$$
[x, x+1 / n) \times[-x,-x+1 / n) \subset V
$$

for some $n \in \mathbb{Z}^{+}$, as needed.
(b) In the standard, i.e. order, topology, $[0,1]$ is a compact Hausdorff space. By part (a),

$$
[0,1]=\bigcup_{n \in \mathbb{Z}^{+}} \bar{K}_{n} \cup \bigcup_{q \in[0,1] \cap \mathbb{Q}}\{q\}
$$

where \bar{K}_{n} is the closure of K_{n} in the standard topology on $[0,1]$. The sets \bar{K}_{n}, with $n \in \mathbb{Z}^{+}$, and $\{q\}$, with $q \in[0,1] \cap \mathbb{Q}$, are closed in $[0,1]$, and there are countably many of them. Since the interior of
their union is $[0,1]$, and thus nonempty, the interior of one of these countably many sets is nonempty by Exercise 5 on p178, from PS4. The interior of $\{q\}$ is of course empty. Thus, for some $n \in \mathbb{Z}^{+}$, the interior of \bar{K}_{n} is nonempty, i.e. \bar{K}_{n} contains a nonempty open subset of $[0,1]$. Thus, \bar{K}_{n} contains a nonempty open interval (a, b).
(c) Let n, a, and b be as in part (b). Suppose $s \times t$ belongs to the open parallelogram corresponding to a, b, and n, i.e.

$$
a<s<b \quad \text { and } \quad-s<t<-s+1 / n
$$

Let $\delta=s+t \in(0,1 / n)$. Since \bar{K}_{n} contains (a, b), there exists $x \in K_{n}$ such that

$$
\begin{aligned}
& x \in(s-\delta, s) \quad \Longrightarrow \quad-t=s-\delta<x<s \quad \Longrightarrow \quad x<s<x+\delta, \quad-x<t<-x+1 / n \\
& \Longrightarrow s \in[x, x+1 / n), \quad t \in[-x,-x+1 / n) \quad \Longrightarrow \quad s \times t \in[x, x+1 / n) \times[-x,-x+1 / n) \subset V \text {. }
\end{aligned}
$$

Thus, entire open parallelogram is contained in V.
(d) Let n, a, and b be as in parts (b) and (c). If $q \in(a, b)$, a basis element for \mathbb{R}_{l}^{2} at $q \times(-q)$ is given by

$$
\mathcal{U}_{\delta}=[q, q+\delta) \times[-q,-q+\delta)
$$

for some $\delta>0$. Any such basis element intersects the above parallelogram. For example, let $s \in(a, b)$ be such that

$$
s \in(q, q+\min (\delta, 1 / n)) \cap(a, b)
$$

Then, $(s,-q)$ belongs to \mathcal{U}_{δ} and the parallelogram. Since every basis for \mathbb{R}_{l}^{2} at $q \times(-q)$ intersects V, so does the open set \mathcal{U}.

Solution to Problem p213, \#5

Theorem (Strong Form of the Urysohn Lemma): Suppose X is a normal topological space and A and B are subsets of X. There exists a continuous function $f: X \longrightarrow[0,1]$ such that $f(A)=\{0\} f(B)=\{1\}$, and $f(X-A-B) \subset(0,1)$ if and only if A and B are disjoint closed G_{δ}-sets in X.

Suppose $f: X \longrightarrow[0,1]$ is a continuous function such that

$$
f(A)=\{0\}, \quad f(B)=\{1\}, \quad \text { and } \quad f(X-A-B) \subset(0,1)
$$

By the first two assumptions on f, the sets A and B are disjoint. By the three assumptions on f,

$$
A=f^{-1}(\{0\})=f^{-1}\left(\bigcap_{n \in \mathbb{Z}^{+}}[0,1 / n)\right)=\bigcap_{n \in \mathbb{Z}^{+}} f^{-1}([0,1 / n))
$$

Since f is continuous and $\{0\}$ is closed in $[0,1], A$ is a closed subset of X. Since f is continuous and $[0,1 / n)$ is an open subset of $[0,1], f^{-1}([0,1 / n))$ is open in X. Thus, A is a G_{δ}-set in X. Similarly,

$$
B=f^{-1}(\{1\})=f^{-1}\left(\bigcap_{n \in \mathbb{Z}^{+}}(1-1 / n, 1]\right)=\bigcap_{n \in \mathbb{Z}^{+}} f^{-1}((1-1 / n, 1])
$$

and B is a closed G_{δ}-set in X.
Suppose A and B are disjoint closed G_{δ}-sets in X. We will show that there exists a continuous function

$$
g: X \longrightarrow[0,1] \quad \text { s.t. } \quad g(A)=\{0\}, \quad g(B)=\{1\}, \quad \text { and } \quad g(X-A-B) \subset(0,1] .
$$

By symmetry, there exists a continuous function

$$
h: X \longrightarrow[0,1] \quad \text { s.t. } \quad h(A)=\{0\}, \quad h(B)=\{1\}, \quad \text { and } \quad h(X-A-B) \subset[0,1) .
$$

The function $f=(g+h) / 2: X \longrightarrow[0,1]$ is continuous and

$$
f(A)=\{0\}, \quad f(B)=\{1\}, \quad \text { and } \quad f(X-A-B) \subset(0,1),
$$

as needed.
Since A is a G_{δ}-set in X, there exist open subsets $\mathcal{U}_{1}, \mathcal{U}_{2}, \ldots$ in X such that

$$
A=\bigcap_{n \in \mathbb{Z}^{+}} \mathcal{U}_{n} .
$$

Since B is closed and disjoint from A, we can assume that for every $n \in \mathbb{Z}^{+}$

$$
\mathcal{U}_{n} \cap B=\emptyset \quad \Longleftrightarrow \quad B \subset X-\mathcal{U}_{n}
$$

otherwise, we simply replace \mathcal{U}_{n} by $\mathcal{U}_{n}-B$. Since X is normal and the closed sets A and $X-\mathcal{U}_{n}$ are disjoint, by the Urysohn Lemma there exists a continuous function

$$
g_{n}: X \longrightarrow[0,1] \quad \text { s.t. } \quad g_{n}(A)=\{0\} \quad \text { and } \quad g_{n}\left(X-\mathcal{U}_{n}\right)=\{1\} .
$$

For each $x \in X$, let

$$
g(x)=\sum_{n=1}^{\infty} 2^{-n} g_{n}(x) .
$$

Since

$$
\sum_{n=1}^{\infty} 2^{-n}\left|g_{n}(x)\right| \leq \sum_{n=1}^{\infty} 2^{-n}=1,
$$

the first sum converges absolutely and uniformly. Thus, $g(x) \in \mathbb{R}$ is well-defined and $g: X \longrightarrow \mathbb{R}$ is continuous. Furthermore, $|g(x)| \leq 1$ for all $x \in X$. Since $g_{n}(x)$ is nonnegative for all $n, g(x) \geq 0$ for all $x \in X$. Thus, $g: X \longrightarrow[0,1]$ is a continuous map. Since $g_{n}(x)=0$ for all $x \in A$,

$$
g(x)=0 \quad \forall x \in A \quad \Longrightarrow \quad g(A)=\{0\}
$$

Since $B \subset X-\mathcal{U}_{n}$ for all n,

$$
g_{n}(x)=1 \quad \forall x \in B \quad \Longrightarrow \quad g(x)=\sum_{n=1}^{\infty} 2^{-n}=1 \quad \forall x \in B \quad \Longrightarrow \quad g(B)=\{1\}
$$

Finally, since $g_{n}(x) \geq 0$ for all $x \in X$,

$$
g^{-1}(0)=\bigcap_{n \in \mathbb{Z}^{+}} g_{n}^{-1}(0) \subset \bigcap_{n \in \mathbb{Z}^{+}} \mathcal{U}_{n}=A \quad \Longrightarrow \quad g(X-A-B) \subset g(X-A) \subset(0,1]
$$

as needed.

Solution to Problem p223, \#3

Suppose X is a metrizable topological space. Show that the following conditions on X are equivalent:
(i) X is bounded under every metric that gives the topology of X;
(ii) every continuous function $f: X \longrightarrow \mathbb{R}$ is bounded;
(iii) X is limit point compact.
(iii) \Longrightarrow (i), (ii): If X is metrizable and limit point compact, then X is compact. Since a product of compact spaces is compact, X^{n} is also compact. Thus, the image of X under every continuous function is compact. Since a compact subset of \mathbb{R}^{n} is bounded, in every metric, the image of X^{n} under every continuous function

$$
f: X^{n} \longrightarrow \mathbb{R}^{n}
$$

is bounded. Taking $n=1$ and $n=2$, we obtain (i) and (ii), respectively.
(i) \Longrightarrow (ii): Suppose X is bounded under every metric that gives the topology of X, d is a metric on X, and $f: X \longrightarrow \mathbb{R}$ is a continuous function. We will show that

$$
\tilde{d}: X \times X \longrightarrow \mathbb{R}, \quad \tilde{d}(x, y)=d(x, y)+|f(x)-f(y)|
$$

is also a metric on X that gives the topology of X. Since d and \tilde{d} are both bounded, it then follows that so is f.

First, we check that \tilde{d} is indeed a metric. Since d is a metric,

$$
\begin{aligned}
\tilde{d}(x, y) & =d(x, y)+|f(x)-f(y)| \geq 0+0=0 \\
\tilde{d}(x, y) & =d(x, y)+|f(x)-f(y)|=0 \Longleftrightarrow d(x, y)=0, \quad|f(x)-f(y)|=0 \quad \Longleftrightarrow \quad x=y \\
\tilde{d}(x, y) & =d(x, y)+|f(x)-f(y)|=d(y, x)+|f(y)-f(x)|=\tilde{d}(y, x) \\
\tilde{d}(x, z) & =d(x, z)+|f(x)-f(z)| \leq(d(x, y)+d(y, z))+(|f(x)-f(y)|+|f(y)-f(z)|) \\
& =(d(x, y)+|f(x)-f(y)|)+(d(y, z)+|f(y)-f(z)|)=\tilde{d}(x, y)+\tilde{d}(y, z)
\end{aligned}
$$

Since $|f(x)-f(y)|$ is never negative,

$$
d(x, y) \leq \tilde{d}(x, y) \quad \forall x, y \in X \quad \Longrightarrow \quad B_{\tilde{d}}(x, \delta) \subset B_{d}(x, \delta) \quad \forall x \in X, \delta \in \mathbb{R}
$$

Thus, the topology induced by the metric \tilde{d} is finer (or larger) than the topology induced by the metric d. The latter is the topology of X. On the other hand, since $f: X \longrightarrow \mathbb{R}$ is a continuous function by assumption and the function

$$
d: X \times X \longrightarrow \mathbb{R}
$$

is continuous by Exercise 3a on p126, from PS2, the function

$$
\tilde{d}: X \times X \longrightarrow \mathbb{R}
$$

is also continuous. Thus, the topology of X is finer than the topology of (X, \tilde{d}), by Exercise 3 b on p126. It follows that \tilde{d} induces the topology of X.
(ii) \Longrightarrow (iii): Suppose X is a metrizable space, every continuous function $f: X \longrightarrow \mathbb{R}$ is bounded, and $A \subset X$ has no limit points in X. Let $\phi: A \longrightarrow \mathbb{Z}$ be any map. We will show that the map ϕ must be bounded. Thus, A is a finite set, and every infinite subset of A must have a limit point.

Since A has no limit points in X, neither does any subset of A. Thus, every subset of A is closed in X and thus in A. In particular, if $B \subset \mathbb{Z}$ is any (closed) subset, then $\phi^{-1}(B)$ is closed in A. Thus, $\phi: A \longrightarrow \mathbb{Z}$ is continuous. Since X is metrizable, X is normal. Since $A \subset X$ is closed, by the Tietze Extension Theorem there exists a continuous function

$$
f: X \longrightarrow \mathbb{R} \quad \text { s.t. }\left.\quad f\right|_{A}=\phi
$$

Since f is bounded, so is ϕ, as claimed.

