MAT 530: Topology& Geometry, 1
Fall 2005

Problem Set 5

Solution to Problem p200, #9

Let
A={zx(-z):2€Q} CR? and  B={rx(-z):reR-Q} C R}.

IfU and V' are open subsets of ]Rl? containing A and B, respectively, show that UNV #(. Thus, RIQ 18
not normal.
(a) Let

K, ={z€[0,1]-Q: [z,z+1/n)x [z, —z+1/n)CV}.

Show that [0,1] is the union of the sets K, and countably many one-point sets.
(b) Show that some set K,, contains a nonempty open interval (a,b) of R.
(c) Show that V' contains the open parallelogram

{zx(—z+e€): z€(a,b), e€(0,1/n)}.

(d) Conclude that if g € (a,b)NQ, then ¢x(—q) ER% s a limit point of V.. Thus, any open subset U of
RIQ containing qx (—q) intersects V.

(a) We will show that
[Oa 1] = U K, U U{Q}

neZ+ g€[0,1]NQ

This is equivalent to saying that for every x€[0,1]—Q, there exists n€Z" such that x € K,,, i.e.
[x,z+1/n)x[—z,—xz+1/n) C V.
The set V is open in R? and contains z x (—z), if z€[0,1]—Q. Since
{[z,2+1/n)x[~z,~z+1/n) : n€R?}
is a basis for R} at zx (—z), it follows that
[z, x+1/n)X[—z,—z+1/n) CV

for some n€Z™, as needed.

(b) In the standard, i.e. order, topology, [0, 1] is a compact Hausdorff space. By part (a),

[07 1] = U Kn U U{Q}7

neZ+ g€[0,1]NQ

where K, is the closure of K,, in the standard topology on [0,1]. The sets K,,, with n€Z*, and {q},
with ¢ € [0,1]NQ, are closed in [0, 1], and there are countably many of them. Since the interior of



their union is [0, 1], and thus nonempty, the interior of one of these countably many sets is nonempty
by Exercise 5 on p178, from PS4. The interior of {q} is of course empty. Thus, for some n€Z™, the
interior of K, is nonempty, i.e. K, contains a nonempty open subset of [0,1]. Thus, K, contains a
nonempty open interval (a,b).

(c) Let n, a, and b be as in part (b). Suppose sxt belongs to the open parallelogram corresponding
to a, b, and n, i.e.
a<s<b and —s<t<—s+1/n.

Let 6=s+t€(0,1/n). Since K, contains (a,b), there exists x € K,, such that

x € (s—0,s) = —t=s—d<x<s = r<s<z+d, —zrz<t<-—-z+1/n
= sé€[zr,xz+1/n), te[-z,—z+1/n) = sxte[z,z+1/n)x[—z,—2x+1/n)C V.

Thus, entire open parallelogram is contained in V.

(d) Let n, a, and b be as in parts (b) and (c). If g€ (a,b), a basis element for R? at gx(—q) is given by
Us = (g, q+0) x [—q, —q+0)

for some § >0. Any such basis element intersects the above parallelogram. For example, let s € (a,b)
be such that

s € (¢,q +min(é,1/n)) N (a,b).

Then, (s,—q) belongs to Us and the parallelogram. Since every basis for Rf at ¢x (—q) intersects V,
so does the open set U.

Solution to Problem p213, #5

Theorem (Strong Form of the Urysohn Lemma): Suppose X is a normal topological space and A and B
are subsets of X. There exists a continuous function f: X —[0,1] such that f(A)={0} f(B)={1},
and f(X—A—B)C(0,1) if and only if A and B are disjoint closed Gs-sets in X .

Suppose f: X — [0, 1] is a continuous function such that

fA)=A{o},  f(B)={1}, and f(X-A-B)c(0,1).
By the first two assumptions on f, the sets A and B are disjoint. By the three assumptions on f,
({0} = f—l( () [0,1/n) ) () £7'(0,1/n)).
nezZ+t nezZ+t

Since f is continuous and {0} is closed in [0, 1], A is a closed subset of X. Since f is continuous and
[0,1/n) is an open subset of [0,1], f~1([0,1/n)) is open in X. Thus, A is a Gs-set in X. Similarly,

“1({1}) :f1< ﬂ (1—1/n, 1]) = ﬂ FH((1-1/n,1]),

neZ* neZt



and B is a closed Gs-set in X.

Suppose A and B are disjoint closed Gg-sets in X. We will show that there exists a continuous function
g: X —[0,1] s.t. g(A)={0}, g¢g(B)={1}, and g(X—-A-B)C(0,1].
By symmetry, there exists a continuous function
h: X —[0,1] s.t. h(A) ={0}, h(B)={1}, and h(X—A-B)C]0,1).
The function f= (g+h)/2: X — 0, 1] is continuous and
fA) = {0}, f(B)={1}, and f(X-A-B)cC (0,1),
as needed.

Since A is a Gg-set in X, there exist open subsets Uy,Us, ... in X such that

A= ﬂun.

nezt
Since B is closed and disjoint from A, we can assume that for every nc€Z™
U,NB =10 — B C X —Uy;

otherwise, we simply replace U,, by U, —B. Since X is normal and the closed sets A and X —U,, are
disjoint, by the Urysohn Lemma there exists a continuous function

gn: X — [0,1] s.t. gn(A) ={0} and ¢, (X-U,)={1}.
For each z€ X, let

g(z) = Z 27"gp ().
n=1

Since
(oo} o
D2 gn(@) <> 27 =1,
n=1 n=1

the first sum converges absolutely and uniformly. Thus, g(z) € R is well-defined and g: X — R is
continuous. Furthermore, |g(z)| <1 for all z€ X. Since g,(z) is nonnegative for all n, g(z)>0 for all
x€X. Thus, g: X — [0, 1] is a continuous map. Since g,(z)=0 for all z€ A,

g(z) =0 VzeA = g(A) = {0}.

Since BC X —U,, for all n,

gn(z) =1 VzeEB = g(m):i2*":1 VzeB = g(B) = {1}.

n=1



Finally, since gy (z) >0 for all z€ X,
= (o' c Nth=4 = gX-A-B)Cg(X-4)c (1],
nezZ+ nezt

as needed.

Solution to Problem p223, #3

Suppose X is a metrizable topological space. Show that the following conditions on X are equivalent:
(i) X is bounded under every metric that gives the topology of X;
(ii) every continuous function f: X — R is bounded;
(iii) X s limit point compact.

(iii) = (i), (ii): If X is metrizable and limit point compact, then X is compact. Since a product
of compact spaces is compact, X™ is also compact. Thus, the image of X under every continuous
function is compact. Since a compact subset of R™ is bounded, in every metric, the image of X™ under
every continuous function

f: X" —R"
is bounded. Taking n=1 and n=2, we obtain (i) and (ii), respectively.

(i) = (ii): Suppose X is bounded under every metric that gives the topology of X, d is a metric
on X, and f: X — R is a continuous function. We will show that

CZ:XXX—>R, J(x,y):d(:v,y)Jr!f(J?)—f(y)\,

is also a metric on X that gives the topology of X. Since d and d are both bounded, it then follows
that so is f.

First, we check that d is indeed a metric. Since d is a metric,

d(z,y) = d(z,y) + | f(z)— f(y)] = 0+0=0;
d(z,y) = d(z,y) + | f(x)— fy)}=0 = dz,y) =0, [f@)-fy)|=0 <= z=uy;
d(z,y) = d(z,y) + |f(x)— f(y)] = d(y,2) + | f ()~ f(2)] = d(y, 2);
d(z,2) = d(z,2) + | f(x)— f(2)| < (d xy+dy, ) + (|f ()= fly \+\f f))
)+ d(z,y) +d

= (d(z,y)+[f(2) = f(y) +d(y, 2).

Since |f(z)— f(y)| is never negative,

(dy, 2)+[f W)= G)]) =

d(z,y) < d(z,y) Yz,yeX = Bj(x,0) C Bg(x,0) VzeX,deR.

Thus, the topology induced by the metric d is finer (or larger) than the topology induced by the
metric d. The latter is the topology of X. On the other hand, since f: X — R is a continuous
function by assumption and the function

d: XxX —R



is continuous by Exercise 3a on p126, from PS2, the function

d: XxX —R
is also continuous. Thus, the topology of X is finer than the topology of (X, J), by Exercise 3b
on pl26. It follows that d induces the topology of X.

(ii) = (iii): Suppose X is a metrizable space, every continuous function f: X — R is bounded, and
A C X has no limit points in X. Let ¢: A——Z be any map. We will show that the map ¢ must be
bounded. Thus, A is a finite set, and every infinite subset of A must have a limit point.

Since A has no limit points in X, neither does any subset of A. Thus, every subset of A is closed
in X and thus in A. In particular, if BC Z is any (closed) subset, then ¢~1(B) is closed in A. Thus,
¢: A— 7 is continuous. Since X is metrizable, X is normal. Since A C X is closed, by the Tietze
Extension Theorem there exists a continuous function

f: X—R s.t. fla = o.

Since f is bounded, so is ¢, as claimed.



