
MAT 530: Topology&Geometry, I
Fall 2005

Problem Set 5

Solution to Problem p200, #9

Let
A =

{
x×(−x) : x∈Q

}
⊂ R2

l and B =
{
x×(−x) : x∈R−Q

}
⊂ R2

l .

If U and V are open subsets of R2
l containing A and B, respectively, show that U∩V 6=∅. Thus, R2

l is
not normal.
(a) Let

Kn =
{
x∈ [0, 1]−Q : [x, x+1/n)×[−x,−x+1/n)⊂V

}
.

Show that [0, 1] is the union of the sets Kn and countably many one-point sets.
(b) Show that some set K̄n contains a nonempty open interval (a, b) of R.
(c) Show that V contains the open parallelogram{

x×(−x+ε) : x∈(a, b), ε∈(0, 1/n)
}
.

(d) Conclude that if q∈(a, b)∩Q, then q×(−q)∈R2
l is a limit point of V . Thus, any open subset U of

R2
l containing q×(−q) intersects V .

(a) We will show that
[0, 1] =

⋃
n∈Z+

Kn ∪
⋃

q∈[0,1]∩Q

{q}.

This is equivalent to saying that for every x∈ [0, 1]−Q, there exists n∈Z+ such that x∈Kn, i.e.

[x, x+1/n)×[−x,−x+1/n) ⊂ V.

The set V is open in R2
l and contains x×(−x), if x∈ [0, 1]−Q. Since{

[x, x+1/n)×[−x,−x+1/n) : n∈R2
l

}
is a basis for R2

l at x×(−x), it follows that

[x, x+1/n)×[−x,−x+1/n) ⊂ V

for some n∈Z+, as needed.

(b) In the standard, i.e. order, topology, [0, 1] is a compact Hausdorff space. By part (a),

[0, 1] =
⋃

n∈Z+

K̄n ∪
⋃

q∈[0,1]∩Q

{q},

where K̄n is the closure of Kn in the standard topology on [0, 1]. The sets K̄n, with n∈Z+, and {q},
with q ∈ [0, 1]∩Q, are closed in [0, 1], and there are countably many of them. Since the interior of



their union is [0, 1], and thus nonempty, the interior of one of these countably many sets is nonempty
by Exercise 5 on p178, from PS4. The interior of {q} is of course empty. Thus, for some n∈Z+, the
interior of K̄n is nonempty, i.e. K̄n contains a nonempty open subset of [0, 1]. Thus, K̄n contains a
nonempty open interval (a, b).

(c) Let n, a, and b be as in part (b). Suppose s×t belongs to the open parallelogram corresponding
to a, b, and n, i.e.

a < s < b and − s < t < −s + 1/n.

Let δ=s+t∈(0, 1/n). Since K̄n contains (a, b), there exists x∈Kn such that

x ∈ (s−δ, s) =⇒ −t=s−δ < x < s =⇒ x < s < x+δ, −x < t < −x + 1/n

=⇒ s ∈ [x, x+1/n), t ∈ [−x,−x+1/n) =⇒ s×t ∈ [x, x+1/n)×[−x,−x+1/n) ⊂ V.

Thus, entire open parallelogram is contained in V .

(d) Let n, a, and b be as in parts (b) and (c). If q∈(a, b), a basis element for R2
l at q×(−q) is given by

Uδ = [q, q+δ)× [−q,−q+δ)

for some δ>0. Any such basis element intersects the above parallelogram. For example, let s∈ (a, b)
be such that

s ∈
(
q, q + min(δ, 1/n)

)
∩ (a, b).

Then, (s,−q) belongs to Uδ and the parallelogram. Since every basis for R2
l at q×(−q) intersects V ,

so does the open set U .

Solution to Problem p213, #5

Theorem (Strong Form of the Urysohn Lemma): Suppose X is a normal topological space and A and B
are subsets of X. There exists a continuous function f : X−→ [0, 1] such that f(A)={0} f(B)={1},
and f(X−A−B)⊂(0, 1) if and only if A and B are disjoint closed Gδ-sets in X.

Suppose f : X−→ [0, 1] is a continuous function such that

f(A) = {0}, f(B) = {1}, and f(X−A−B) ⊂ (0, 1).

By the first two assumptions on f , the sets A and B are disjoint. By the three assumptions on f ,

A = f−1
(
{0}

)
= f−1

( ⋂
n∈Z+

[0, 1/n)
)

=
⋂

n∈Z+

f−1
(
[0, 1/n)

)
.

Since f is continuous and {0} is closed in [0, 1], A is a closed subset of X. Since f is continuous and
[0, 1/n) is an open subset of [0, 1], f−1([0, 1/n)) is open in X. Thus, A is a Gδ-set in X. Similarly,

B = f−1
(
{1}

)
= f−1

( ⋂
n∈Z+

(1−1/n, 1]
)

=
⋂

n∈Z+

f−1
(
(1−1/n, 1]

)
,



and B is a closed Gδ-set in X.

Suppose A and B are disjoint closed Gδ-sets in X. We will show that there exists a continuous function

g : X −→ [0, 1] s.t. g(A) = {0}, g(B) = {1}, and g(X−A−B) ⊂ (0, 1].

By symmetry, there exists a continuous function

h : X −→ [0, 1] s.t. h(A) = {0}, h(B) = {1}, and h(X−A−B) ⊂ [0, 1).

The function f = (g+h)/2: X−→ [0, 1] is continuous and

f(A) = {0}, f(B) = {1}, and f(X−A−B) ⊂ (0, 1),

as needed.

Since A is a Gδ-set in X, there exist open subsets U1,U2, . . . in X such that

A =
⋂

n∈Z+

Un.

Since B is closed and disjoint from A, we can assume that for every n∈Z+

Un ∩B = ∅ ⇐⇒ B ⊂ X − Un;

otherwise, we simply replace Un by Un−B. Since X is normal and the closed sets A and X−Un are
disjoint, by the Urysohn Lemma there exists a continuous function

gn : X −→ [0, 1] s.t. gn(A) = {0} and gn(X−Un) = {1}.

For each x∈X, let

g(x) =
∞∑

n=1

2−ngn(x).

Since
∞∑

n=1

2−n|gn(x)| ≤
∞∑

n=1

2−n = 1,

the first sum converges absolutely and uniformly. Thus, g(x) ∈R is well-defined and g : X −→R is
continuous. Furthermore, |g(x)|≤1 for all x∈X. Since gn(x) is nonnegative for all n, g(x)≥0 for all
x∈X. Thus, g : X−→ [0, 1] is a continuous map. Since gn(x)=0 for all x∈A,

g(x) = 0 ∀x∈A =⇒ g(A) = {0}.

Since B⊂X−Un for all n,

gn(x) = 1 ∀x∈B =⇒ g(x) =
∞∑

n=1

2−n = 1 ∀x∈B =⇒ g(B) = {1}.



Finally, since gn(x)≥0 for all x∈X,

g−1(0) =
⋂

n∈Z+

g−1
n (0) ⊂

⋂
n∈Z+

Un = A =⇒ g(X−A−B) ⊂ g(X−A) ⊂ (0, 1],

as needed.

Solution to Problem p223, #3

Suppose X is a metrizable topological space. Show that the following conditions on X are equivalent:
(i) X is bounded under every metric that gives the topology of X;

(ii) every continuous function f : X−→R is bounded;
(iii) X is limit point compact.

(iii) =⇒ (i), (ii): If X is metrizable and limit point compact, then X is compact. Since a product
of compact spaces is compact, Xn is also compact. Thus, the image of X under every continuous
function is compact. Since a compact subset of Rn is bounded, in every metric, the image of Xn under
every continuous function

f : Xn −→ Rn

is bounded. Taking n=1 and n=2, we obtain (i) and (ii), respectively.

(i) =⇒ (ii): Suppose X is bounded under every metric that gives the topology of X, d is a metric
on X, and f : X−→R is a continuous function. We will show that

d̃ : X×X −→ R, d̃(x, y) = d(x, y) +
∣∣f(x)−f(y)

∣∣,
is also a metric on X that gives the topology of X. Since d and d̃ are both bounded, it then follows
that so is f .

First, we check that d̃ is indeed a metric. Since d is a metric,

d̃(x, y) = d(x, y) +
∣∣f(x)−f(y)

∣∣ ≥ 0 + 0 = 0;

d̃(x, y) = d(x, y) +
∣∣f(x)−f(y)

∣∣ = 0 ⇐⇒ d(x, y) = 0,
∣∣f(x)−f(y)

∣∣ = 0 ⇐⇒ x = y;

d̃(x, y) = d(x, y) +
∣∣f(x)−f(y)

∣∣ = d(y, x) +
∣∣f(y)−f(x)

∣∣ = d̃(y, x);

d̃(x, z) = d(x, z) +
∣∣f(x)−f(z)

∣∣ ≤ (
d(x, y)+d(y, z)

)
+

(∣∣f(x)−f(y)
∣∣+∣∣f(y)−f(z)

∣∣)
=

(
d(x, y)+

∣∣f(x)−f(y)
∣∣) +

(
d(y, z)+

∣∣f(y)−f(z)
∣∣) = d̃(x, y) + d̃(y, z).

Since |f(x)−f(y)| is never negative,

d(x, y) ≤ d̃(x, y) ∀x, y∈X =⇒ Bd̃(x, δ) ⊂ Bd(x, δ) ∀x∈X, δ∈R.

Thus, the topology induced by the metric d̃ is finer (or larger) than the topology induced by the
metric d. The latter is the topology of X. On the other hand, since f : X −→ R is a continuous
function by assumption and the function

d : X×X −→ R



is continuous by Exercise 3a on p126, from PS2, the function

d̃ : X×X −→ R

is also continuous. Thus, the topology of X is finer than the topology of (X, d̃), by Exercise 3b
on p126. It follows that d̃ induces the topology of X.

(ii) =⇒ (iii): Suppose X is a metrizable space, every continuous function f : X−→R is bounded, and
A⊂X has no limit points in X. Let φ : A−→Z be any map. We will show that the map φ must be
bounded. Thus, A is a finite set, and every infinite subset of A must have a limit point.

Since A has no limit points in X, neither does any subset of A. Thus, every subset of A is closed
in X and thus in A. In particular, if B⊂ Z is any (closed) subset, then φ−1(B) is closed in A. Thus,
φ : A−→Z is continuous. Since X is metrizable, X is normal. Since A⊂X is closed, by the Tietze
Extension Theorem there exists a continuous function

f : X −→ R s.t. f |A = φ.

Since f is bounded, so is φ, as claimed.


