MAT 530: Topology\&Geometry, I Fall 2005

Problem Set 2
Solution to Problem p127, \#8

Let X be the subset of \mathbb{R}^{ω} consisting of all sequences

$$
\mathbf{x} \equiv\left(x_{1}, x_{2}, \ldots\right)
$$

such that $\sum x_{i}^{2}$ converges. Then the formula

$$
d(\mathbf{x}, \mathbf{y})=\left[\sum_{i=1}^{\infty}\left(x_{i}-y_{i}\right)^{2}\right]^{1 / 2}
$$

defines a metric on X. On X we have the three topologies it inherits from the box, uniform, and product topologies on \mathbb{R}^{ω}. We also have the topology given by the metric d, which we call the ℓ^{2}-topology.
(a) Show that on X, we have the inclusions
box topology $\supset \ell^{2}$-topology \supset uniform topology.
(b) The set \mathbb{R}^{∞} of all sequences that are eventually zero is contained in X. Show that the four topologies that \mathbb{R}^{∞} inherits as subspace of X are all distinct.
(c) Compare the four topologies the Hilbert cube,

$$
H \equiv \prod_{n=1}^{\infty}[0,1 / n]
$$

inherits as a subspace of X.
(a) Recall that the uniform metric is given by

$$
\bar{\rho}(\mathbf{x}, \mathbf{y})=\sup \left\{\bar{d}\left(x_{i}, y_{i}\right): i \in \mathbb{Z}^{+}\right\}, \quad \text { where } \quad \bar{d}\left(x_{i}, y_{i}\right)=\min \left(1,\left|x_{i}-y_{i}\right|\right) .
$$

Since $\left|x_{i}-y_{i}\right| \leq d(\mathbf{x}, \mathbf{y})$ for all $i \in \mathbb{Z}^{+}$, it follows that

$$
\bar{\rho}(\mathbf{x}, \mathbf{y}) \leq d(\mathbf{x}, \mathbf{y}) \quad \forall \mathbf{x}, \mathbf{y} \in X \quad \Longrightarrow \quad B_{d}(\mathbf{x}, \delta) \subset B_{\bar{\rho}}(\mathbf{x}, \delta) \forall \mathbf{x} \in X, \delta \in \mathbb{R} \quad \Longrightarrow \quad \mathcal{T}_{\bar{\rho}} \subset \mathcal{T}_{d} .
$$

This proves the second inclusion.
On the other hand, if $\mathbf{x} \in X$ and $\delta \in \mathbb{R}^{+}$,

$$
\mathbf{x} \in \prod_{i=1}^{\infty}\left(x_{i}-2^{-i} \delta, x_{i}+2^{-i} \delta\right) \subset B_{d}(\mathbf{x}, \delta)
$$

Since the set on the right is a general basis element for the ℓ^{2}-topology and the set in middle is open in the box topology, it follows that the box topology is finer than the ℓ^{2}-topology.

Remark: A priori, we need to show that given any element $\mathbf{y} \in B_{d}(\mathbf{x}, \delta)$, there exists a subset \mathcal{U} open in the box topology such that

$$
\mathbf{y} \in \mathcal{U} \subset B_{d}(\mathbf{x}, \delta)
$$

Similarly, given any $\mathbf{y} \in B_{\bar{\rho}}(\mathbf{x}, \delta)$, we need to show that there exists $\epsilon>0$ such that

$$
\mathbf{y} \in B_{d}(\mathbf{y}, \epsilon) \subset B_{\bar{\rho}}(\mathbf{x}, \delta)
$$

However, given any metric space $(X, d), x \in X, \delta \in \mathbb{R}^{+}$, and $y \in B_{d}(x, \delta)$, there exists $\epsilon \in \mathbb{R}^{+}$such that

$$
y \in B_{d}(y, \epsilon) \subset B_{d}(x, \delta)
$$

Why? Thus, finding open sets around the centers of open balls as we have done above suffices. Why?
(b) By part (a) and Theorem 20.4,

$$
\text { product topology } \subset \text { uniform topology } \subset \ell^{2} \text {-topology } \subset \text { box topology }
$$

on X and thus on $\mathbb{R}^{\infty} \subset X$. Thus, in order to show that
product topology \subsetneq uniform topology $\subsetneq \ell^{2}$-topology \subsetneq box topology,
it suffices to find a subset \mathcal{U} of \mathbb{R}^{∞} containing $\mathbf{0}$ such that \mathcal{U} is open in the uniform $/ \ell^{2}$-/box topology, but no basis element for the product/uniform/ ℓ^{2}-topology containing $\mathbf{0}$ is contained in \mathcal{U}.

The ball $B_{\bar{\rho}}(\mathbf{0}, 1 / 2)$ contains no point \mathbf{x} of X such that $x_{i}=1$ for some $i \in \mathbb{Z}^{+}$. On the other hand, if

$$
V \equiv \prod_{i=1}^{\infty} V_{i}
$$

is a basis element for the product topology on \mathbb{R}^{ω}, then $V_{i}=\mathbb{R}$ for some $i \in \mathbb{Z}^{+}$(in fact, for all but finitely many i 's). Then,

$$
\left(0, \ldots, 0, x_{i}=1,0,0, \ldots\right) \in V \cap \mathbb{R}^{\infty} \quad \Longrightarrow \quad V \cap \mathbb{R}^{\infty} \not \subset B_{\bar{\rho}}(\mathbf{0}, 1 / 2) \supset B_{\bar{\rho}}(\mathbf{0}, 1 / 2) \cap \mathbb{R}^{\infty}
$$

This shows that the first inclusion above cannot be an equality.
We next show that for all $\delta>0$

$$
B_{\bar{\rho}}(\mathbf{0}, \delta) \cap \mathbb{R}^{\infty} \not \subset B_{d}(\mathbf{0}, 1 / 2)
$$

Choose $N \in \mathbb{Z}^{+}$such that $N>1 / \delta^{2}$. Let

$$
\mathbf{x}=\left(\delta / 2, \delta / 2, \ldots, x_{N}=\delta / 2,0,0, \ldots\right) \in B_{\bar{\rho}}(\mathbf{0}, \delta) \cap \mathbb{R}^{\infty}
$$

Then,

$$
d(\mathbf{0}, \mathbf{x})=\left(N(\delta / 2)^{2}\right)^{1 / 2}=N^{1 / 2}(\delta / 2)>1 / 2 \quad \Longrightarrow \quad \mathbf{x} \notin B_{d}(\mathbf{0}, 1 / 2)
$$

Finally, we show that for all $\delta>0$

$$
B_{d}(\mathbf{0}, \delta) \cap \mathbb{R}^{\infty} \not \subset \mathcal{U} \equiv \prod_{i=1}^{\infty}(-1 / i, 1 / i)
$$

Choose $N>2 / \delta$. Then,

$$
\mathbf{x}=\left(0, \ldots, 0, x_{N}=\delta / 2,0,0, \ldots\right) \in B_{d}(\mathbf{0}, \delta) \cap \mathbb{R}^{\infty}
$$

However, $\mathbf{x} \notin \mathcal{U}$, since $x_{N}>1 / N$.
(c) We will show that on H

$$
\text { product topology }=\text { uniform topology }=\ell^{2} \text {-topology } \subsetneq \text { box topology. }
$$

By (a) and Theorem 20.4, it is sufficient to show that the product topology contains the ℓ^{2}-topology and is different from the box topology.

Suppose $\mathbf{x} \in H$ and $\delta \in \mathbb{R}^{+}$. Choose $N \in \mathbb{Z}^{+}$and then $\epsilon \in \mathbb{R}^{+}$so that

$$
\sum_{i=N+1}^{\infty} 1 / i^{2}<(\delta / 2)^{2} \quad \text { and } \quad N \epsilon<\delta / 2
$$

The set

$$
V \equiv\left(\prod_{i=1}^{i=N}\left(x_{i}-\epsilon, x_{i}+\epsilon\right) \times \prod_{i=N+1}^{\infty} \mathbb{R}\right) \cap H=\prod_{i=1}^{i=N}\left(\left(x_{i}-\epsilon, x_{i}+\epsilon\right) \cap[0,1 / i]\right) \times \prod_{i=N+1}^{\infty}[0,1 / i]
$$

contains \mathbf{x} and is open in H in the product topology. If $\mathbf{y} \in V$, then

$$
\begin{aligned}
d(\mathbf{x}, \mathbf{y}) & \equiv\left[\sum_{i=1}^{\infty}\left(x_{i}-y_{i}\right)^{2}\right]^{1 / 2} \leq\left[N \epsilon^{2}+\sum_{i=N+1}^{\infty} 1 / i^{2}\right]^{1 / 2} \leq N \epsilon+\delta / 2<\delta \\
& \Longrightarrow \quad \mathbf{y} \in B_{d}(\mathbf{x}, \delta) \quad \Longrightarrow \quad \mathbf{x} \in V \subset B_{d}(\mathbf{x}, \delta)
\end{aligned}
$$

We have now verified the first claim.
If V is a nonempty basis element for the product topology on H,

$$
V=\prod_{i=1}^{i=N} V_{i} \times \prod_{i=N+1}^{\infty}[0,1 / i]
$$

for some $N \in \mathbb{Z}^{+}$and V_{i} nonempty and open in $[0,1 / i]$. In particular, V must contain a point \mathbf{x} such that $x_{i}=1 / i$ for some i. On the other hand, the set

$$
\mathcal{U}=\prod_{i=1}^{\infty}\left[0,2^{-i}\right]
$$

is open in the box topology on H and contains no such point. Thus, \mathcal{U} contains no subset which is nonempty and open in the product topology. Since \mathcal{U} is nonempty, we conclude that the box topology is different from the product topology on H.

