MAT 530: Topology&Geometry, I Fall 2005

Problem Set 2 Solution to Problem p127, #8

Let X be the subset of \mathbb{R}^{ω} consisting of all sequences

$$\mathbf{x} \equiv (x_1, x_2, \ldots)$$

such that $\sum x_i^2$ converges. Then the formula

$$d(\mathbf{x}, \mathbf{y}) = \left[\sum_{i=1}^{\infty} (x_i - y_i)^2\right]^{1/2}$$

defines a metric on X. On X we have the three topologies it inherits from the box, uniform, and product topologies on \mathbb{R}^{ω} . We also have the topology given by the metric d, which we call the ℓ^2 -topology. (a) Show that on X, we have the inclusions

box topology $\supset \ell^2$ -topology \supset uniform topology.

(b) The set R[∞] of all sequences that are eventually zero is contained in X. Show that the four topologies that R[∞] inherits as subspace of X are all distinct.
(c) Compare the four topologies the Hilbert cube,

$$H \equiv \prod_{n=1}^{\infty} [0, 1/n],$$

inherits as a subspace of X.

(a) Recall that the uniform metric is given by

$$\bar{\rho}(\mathbf{x}, \mathbf{y}) = \sup \left\{ \bar{d}(x_i, y_i) : i \in \mathbb{Z}^+ \right\}, \quad \text{where} \quad \bar{d}(x_i, y_i) = \min \left(1, |x_i - y_i| \right).$$

Since $|x_i - y_i| \leq d(\mathbf{x}, \mathbf{y})$ for all $i \in \mathbb{Z}^+$, it follows that

$$\bar{\rho}(\mathbf{x},\mathbf{y}) \leq d(\mathbf{x},\mathbf{y}) \quad \forall \, \mathbf{x},\mathbf{y} \in X \quad \Longrightarrow \quad B_d(\mathbf{x},\delta) \subset B_{\bar{\rho}}(\mathbf{x},\delta) \quad \forall \, \mathbf{x} \in X, \, \delta \in \mathbb{R} \quad \Longrightarrow \quad \mathcal{T}_{\bar{\rho}} \subset \mathcal{T}_d.$$

This proves the second inclusion.

On the other hand, if $\mathbf{x} \in X$ and $\delta \in \mathbb{R}^+$,

$$\mathbf{x} \in \prod_{i=1}^{\infty} \left(x_i - 2^{-i}\delta, x_i + 2^{-i}\delta \right) \subset B_d(\mathbf{x}, \delta).$$

Since the set on the right is a general basis element for the ℓ^2 -topology and the set in middle is open in the box topology, it follows that the box topology is finer than the ℓ^2 -topology. *Remark:* A priori, we need to show that given any element $\mathbf{y} \in B_d(\mathbf{x}, \delta)$, there exists a subset \mathcal{U} open in the box topology such that

$$\mathbf{y} \in \mathcal{U} \subset B_d(\mathbf{x}, \delta)$$

Similarly, given any $\mathbf{y} \in B_{\bar{\rho}}(\mathbf{x}, \delta)$, we need to show that there exists $\epsilon > 0$ such that

$$\mathbf{y} \in B_d(\mathbf{y}, \epsilon) \subset B_{\bar{\rho}}(\mathbf{x}, \delta).$$

However, given any metric space $(X, d), x \in X, \delta \in \mathbb{R}^+$, and $y \in B_d(x, \delta)$, there exists $\epsilon \in \mathbb{R}^+$ such that

$$y \in B_d(y,\epsilon) \subset B_d(x,\delta).$$

Why? Thus, finding open sets around the centers of open balls as we have done above suffices. Why?

(b) By part (a) and Theorem 20.4,

product topology
$$\subset$$
 uniform topology $\subset \ell^2$ -topology \subset box topology

on X and thus on $\mathbb{R}^{\infty} \subset X$. Thus, in order to show that

product topology \subsetneq uniform topology $\subsetneq \ell^2$ -topology \subsetneq box topology,

it suffices to find a subset \mathcal{U} of \mathbb{R}^{∞} containing **0** such that \mathcal{U} is open in the uniform/ ℓ^2 -/box topology, but no basis element for the product/uniform/ ℓ^2 -topology containing **0** is contained in \mathcal{U} .

The ball $B_{\bar{\rho}}(\mathbf{0}, 1/2)$ contains no point **x** of X such that $x_i = 1$ for some $i \in \mathbb{Z}^+$. On the other hand, if

$$V \equiv \prod_{i=1}^{\infty} V_i$$

is a basis element for the product topology on \mathbb{R}^{ω} , then $V_i = \mathbb{R}$ for some $i \in \mathbb{Z}^+$ (in fact, for all but finitely many *i*'s). Then,

$$(0,\ldots,0,x_i=1,0,0,\ldots)\in V\cap\mathbb{R}^{\infty}\qquad\Longrightarrow\qquad V\cap\mathbb{R}^{\infty}\not\subset B_{\bar{\rho}}(\mathbf{0},1/2)\supset B_{\bar{\rho}}(\mathbf{0},1/2)\cap\mathbb{R}^{\infty}$$

This shows that the first inclusion above cannot be an equality.

We next show that for all $\delta > 0$

$$B_{\bar{\rho}}(\mathbf{0},\delta) \cap \mathbb{R}^{\infty} \not\subset B_d(\mathbf{0},1/2).$$

Choose $N \in \mathbb{Z}^+$ such that $N > 1/\delta^2$. Let

$$\mathbf{x} = (\delta/2, \delta/2, \dots, x_N = \delta/2, 0, 0, \dots) \in B_{\bar{\rho}}(\mathbf{0}, \delta) \cap \mathbb{R}^{\infty}.$$

Then,

$$d(\mathbf{0}, \mathbf{x}) = \left(N(\delta/2)^2 \right)^{1/2} = N^{1/2}(\delta/2) > 1/2 \implies \mathbf{x} \notin B_d(\mathbf{0}, 1/2).$$

Finally, we show that for all $\delta > 0$

$$B_d(\mathbf{0},\delta) \cap \mathbb{R}^\infty \not\subset \mathcal{U} \equiv \prod_{i=1}^\infty (-1/i,1/i).$$

Choose $N > 2/\delta$. Then,

$$\mathbf{x} = (0, \ldots, 0, x_N = \delta/2, 0, 0, \ldots) \in B_d(\mathbf{0}, \delta) \cap \mathbb{R}^{\infty}.$$

However, $\mathbf{x} \notin \mathcal{U}$, since $x_N > 1/N$.

(c) We will show that on H

product topology = uniform topology =
$$\ell^2$$
-topology \subsetneq box topology.

By (a) and Theorem 20.4, it is sufficient to show that the product topology contains the ℓ^2 -topology and is different from the box topology.

Suppose $\mathbf{x} \in H$ and $\delta \in \mathbb{R}^+$. Choose $N \in \mathbb{Z}^+$ and then $\epsilon \in \mathbb{R}^+$ so that

$$\sum_{i=N+1}^{\infty} 1/i^2 < (\delta/2)^2 \quad \text{and} \quad N\epsilon < \delta/2.$$

The set

$$V \equiv \left(\prod_{i=1}^{i=N} (x_i - \epsilon, x_i + \epsilon) \times \prod_{i=N+1}^{\infty} \mathbb{R}\right) \cap H = \prod_{i=1}^{i=N} \left((x_i - \epsilon, x_i + \epsilon) \cap [0, 1/i] \right) \times \prod_{i=N+1}^{\infty} [0, 1/i]$$

contains **x** and is open in H in the product topology. If $\mathbf{y} \in V$, then

$$d(\mathbf{x}, \mathbf{y}) \equiv \left[\sum_{i=1}^{\infty} (x_i - y_i)^2\right]^{1/2} \leq \left[N\epsilon^2 + \sum_{i=N+1}^{\infty} 1/i^2\right]^{1/2} \leq N\epsilon + \delta/2 < \delta$$
$$\implies \mathbf{y} \in B_d(\mathbf{x}, \delta) \implies \mathbf{x} \in V \subset B_d(\mathbf{x}, \delta).$$

We have now verified the first claim.

If V is a nonempty basis element for the product topology on H,

$$V = \prod_{i=1}^{i=N} V_i \times \prod_{i=N+1}^{\infty} [0, 1/i]$$

for some $N \in \mathbb{Z}^+$ and V_i nonempty and open in [0, 1/i]. In particular, V must contain a point **x** such that $x_i = 1/i$ for some *i*. On the other hand, the set

$$\mathcal{U} = \prod_{i=1}^{\infty} [0, 2^{-i}]$$

is open in the box topology on H and contains no such point. Thus, \mathcal{U} contains no subset which is nonempty and open in the product topology. Since \mathcal{U} is nonempty, we conclude that the box topology is different from the product topology on H.