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Fall 2005

Problem Set 11

Solution to Problem p433, #2

Suppose U , V ⊂X are open, X =U∩V , U , V , and U∩V are path-connected, x0∈U∩V , and
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Figure 1: Van Kampen’s Theorem Setting

are the homomorphisms induced by inclusions. Suppose in addition that i2 is surjective. Let M ⊂
π1(X,x0) be the least normal subgroup containing i1(ker i2).
(a) Show that j1 induces a surjective homomorphism

h : π1(U , x0)
/

M −→ π1(X,x0).

(b) Show that h is an isomorphism.

(a) By (the weak version of) van Kampen’s Theorem, the homomorphism

j1∗j2 : π1(U , x0)∗π1(V, x0) −→ π1(X,x0)

is surjective. Since
j1◦i1 = j2◦i2 : π1(U∩V, x0) −→ π1(X,x0),

i.e. the diagram in Figure ?? is commutative, and i2 is surjective in this case,

Im j2 = Im j2◦i2 = Im j1◦i1 ⊂ Im i1 ⊂ π1(X,x0).

Thus, the homomorphism j1 is surjective. In addition, since the diagram in Figure ?? is commutative

ker i2 ⊂ ker i2◦j2 = ker i1◦j1 =⇒ i1(ker i2)⊂ker j1.

Since ker j1 is a normal subgroup of π1(U , x0) and contains i1(ker i2), it must contain M as well. Thus,
j1 induces a homomorphism

h : π1(U , x0)
/

M −→ π1(X,x0).

Since j1 is surjective, so is h.

(b) Define homomorphisms

φ1 : π1(U , x0) −→ π1(U , x0)/M and φ2 : π1(V, x0) −→ π1(U , x0)/M by

φ1(α) = αM and φ2

(

i2(α)
)

= φ1

(

i1(α)
)

.

Since i2 is surjective and i1(ker i2)⊂M , φ2 is well-defined. It is immediate that

φ1◦i1 = φ2◦i2 : π1(U∩V, x0) −→ π1(U , x0)/M,



i.e. the diagram
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Figure 2: Amalgated Product Setting

of solid lines is commutative. Since Figure ?? is an amalgated product by van Kampen’s Theorem,
there exists a (unique) homomorphism

ϕ : π1(X,x0) −→ π1(U , x0)/M s.t. φ1 = ϕ ◦ j1 and φ2 = ϕ ◦ j2.

In particular,

ϕ
(

h(αM)
)

= ϕ
(

j1(α)
)

= φ1(α) = αM ∀αM ∈ π1(U , x0)/M =⇒ ϕ ◦ h = idπ1(U ,x0)/M .

Thus, h is an injective homomorphism. On the other hand, it is surjective by part (a). We conclude
that h is an isomorphism (and its inverse is ϕ).

Solution to Problem p438, #5

Let Sn⊂R
2 be the circle with center at (n, 0) and of radius n. Let Y be the subspace of R

2 consisting
of the circles Sn, with n∈Z

+. Denote the common point of the circles by p.

S1
S2

S3

Figure 3: Some Circles Sn

(a) Show that Y is not homeomorphic to either a countably infinite wedge X of circles or the infinite
earring Z of Example 1 on p436.
(b) Show that π1(Y, p) is a free abelian group with {[fn]} as a system of free generators, where fn is
a loop representing a generator of π1(Sn, p).

(a) Since Y is an unbounded (in the standard metric) subset of R
2, Y is not compact and is second

countable. Since Z is closed and bounded with respect to the standard metric on R
2, Z is compact.

On the other hand, if q∈X is the point common to all of the circles in X, X−{q} is homeomorphic
to Z

+×(S1−{q}). Since X−{q} is not second countable, neither is X. Thus, Y is homeomorphic to
neither X not Z.

Remark: In fact, X does not have a countable basis at p. So, X is not even first countable.

(b) For each n∈Z
+, let

in : π1(Sn, p) −→ π1(Y, p)
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be the homomorphism induced by the inclusion (Sn, p)−→ (Y, p). We will show that the homomor-
phism

∏

n∈Z+

in :
∏

n∈Z+

π1(Sn, p) −→ π1(Y, p)

is an isomorphism. First, let

rN : Y −→ YN ≡
n=N
⋃

n=1

Sn

be the retraction obtained by collapsing the circles Sn with n>N to the point p. By the existence of
such a retraction, the homomorphism

jN : π1(YN , p) −→ π1(Y, p)

induced by the inclusion (YN , p)−→(Y, p) is injective. If n≤N , let

iN,n : π1(Sn, p) −→ π1(YN , p)

be the homomorphism induced by the inclusion (Sn, p)−→ (YN , p). By Theorem 71.1, the homomor-
phism

n=N
∏

n=1

iN,n :
n=N
∏

n=1

π1(Sn, p) −→ π1(YN , p)

is an isomorphism. Thus, the homomorphism

n=N
∏

n=1

in = jN ◦
n=N
∏

n=1

iN,n :

n=N
∏

n=1

π1(Sn, p) −→ π1(Y, p)

is injective, and so is
∏

∞

n=1in.

It remains to show that every element [α] of π1(Y, p) lies in the image of the homomorphism jN for
some N ∈Z

+. Let
α :

(

I, {0, 1}
)

−→ (Y, p)

be a loop in Y based at p. Since α(I) is compact, α(I) is bounded and thus

α(I) ⊂ Y ∗
N ≡ Y −

∞
⋃

n=N+1

{(2n, 0)}

for some N ∈Z
+. Let

H : Y ∗
N×I −→ Y ∗

N

be a deformation retraction of Y ∗
N onto YN , i.e. a homotopy from idY ∗

N
to rN |Y ∗

N
such that H(x, t)=x

for all x∈Yn. Such a homotopy is obtained by retracting the open upper and lower semicircles of Sn,
with n>N , to p. Then, H ◦{α×idI} is a path homotopy from the loop α in Y to the loop rN ◦α in
YN . In particular,

[α] =
[

rN ◦α
]

∈ π1(Y, p) and
[

rN ◦α
]

∈ Im jN ,

as needed.
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Solution to Problem p441, #3

Suppose G is a group, h ∈ G, and N is the least normal subgroup of G containing h. Show that if
π1(X)≈G for some (compact) path-connected normal topological space X, then π1(Y )≈G for some
(compact) path-connected normal topological space Y .

Let p : I−→S1, p(s)=e2πis, be the usual quotient map. Choose a representative

α :
(

I, {0, 1}
)

−→ (X,x0)

for h ∈ π1(X,x0). Since α(0) = α(1), α induces a continuous map f : S1 −→ X such that α = f ◦p,
i.e. the diagram

(I, {0, 1})

(S1, 1) (X,x0)

p α

f

Figure 4: A Commutative Diagram

commutes. Let
Xα =

(

XtB2)
/

∼, x ∼ f(x) ∀x ∈ S1 ⊂ B2.

Let q : XtB2−→Xα be the quotient map. If X is compact, then so are XtB2 and thus Xα. Since
X is path-connected and B2 are path-connected, so are q(X) and q(B2). Since

Xα = q(X) ∪ q(B2) and q(X) ∩ q(B2) 6= ∅,

it follows that Xα is path-connected. It is shown in the next paragraphs that Xα is normal. Finally,
by Figure ??, f∗π1(S

1, 1)⊂π1(X,x0) is generated by h=[α]. Since the map

q|B2−S1 : B2−S1 −→ Xα

is a homeomorphism, Theorem 72.1 implies that

π1

(

Xα, q(x0)
)

≈ π1(X,α)
/

N.

We now show that Xα is normal, i.e. Xα is T1 (one-point sets are closed) and disjoint closed sets can
be separated by continuous functions. We begin by showing that the map q is closed. If A ⊂ X is
closed, then

q−1
(

q(A)
)

= q−1
(

q(A)
)

∩X ∪ q−1
(

q(A)
)

∩B2 = q|−1
X

(

q(A)
)

∪ q|−1
B2

(

q(A)
)

= A ∪ f−1(A),

since q|A is injective and q(X)∩q(B2−S1)=∅. Since f is continuous, f−1(A) is closed in S1. Since S1

is closed in B2, it follows that f−1(A) is closed in B2 and thus q−1
(

q(A)
)

is closed in XtB2. Since q
is a quotient map, q(A) is then closed in Xα. On the other hand, if A⊂B2, then

q−1
(

q(A)
)

= q−1
(

q(A)
)

∩X ∪ q−1
(

q(A)
)

∩B2 = q|−1
X

(

q(A)
)

∪ q|−1
B2

(

q(A)
)

= f(A∩S1) ∪ A.
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Since A is closed in B2 and S1 is compact, A∩S1 is closed in S1 and thus compact. It follows that
f(A∩S1) is a compact subset of X. Since X is Hausdorff, f(A∩S1) is a closed subset of X. Thus,
q−1

(

q(A)
)

is closed in XtB2 and q(A) is closed in Xα. We conclude that the quotient map is closed
and the space Xα is Hausdorff.

It remains to show that closed subsets of Xα can be separated by continuous functions. First note
that the map

q|X : X −→ q(X) ⊂ Xα

is continuous, bijective, and closed. Thus, it is a homeomorphism. Since X is normal, so is q(X).
Suppose that A,B⊂Xα are disjoint closed subsets. Then, A∩q(X) and B∩q(X) are disjoint closed
subsets of q(X). Since q(X) is normal, by Urysohn Lemma there exists a continuous function

gX : q(X) −→ [0, 1] s.t. gX

(

A∩q(X)
)

= {0} and gX

(

B∩q(X)
)

= {1}.

Then,
gX ◦q : S1 −→ [0, 1]

is continuous function such that

gX ◦q
(

q−1(A)∩S1
)

= {0} and gX ◦q
(

q−1(B)∩S1
)

= {1}.

Define

g : S1 ∪
(

q−1(A)∩B2
)

∪
(

q−1(B)∩B2
)

−→ [0, 1] by g(x) =











gX ◦q(x), if x∈S1;

0, if x∈q−1(A)∩B2;

1, if x∈q−1(B)∩B2.

These definitions agree on the overlap and define a continuous function on each of the three closed
sets. By the pasting lemma, g is continuous. Since B2 is normal and

S1 ∪
(

q−1(A)∩B2
)

∪
(

q−1(B)∩B2
)

⊂ B2

is closed, by Tietze’s Extension Theorem g extends to a continuous function

hB2 : B2 −→ [0, 1], i.e. hB2(x) = g(x) =











gX ◦q(x), if x∈S1;

0, if x∈q−1(A)∩B2;

1, if x∈q−1(B)∩B2.

Let hX =gX ◦q. Then, the function

hXthB2 : XtB2 −→ [0, 1]

is continuous and

hX(f(x)) = gX

(

q(f(x))
)

= gX(q(x)) = hB2
(x) ∀x∈S1⊂B2,

hXthB2

(

q−1(A)
)

= gX

(

A∩q(X)
)

∪ gB2

(

q−1(A)∩B2
)

= {0}, and

hXthB2

(

q−1(B)
)

= gX

(

B∩q(X)
)

∪ gB2

(

q−1(B)∩B2
)

= {1}.

By the first property, hXthB2 induces a map h : Xα−→ [0, 1] such that hXthB2 =h◦q, i.e. the diagram
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XtB2

Xα [0, 1]

q
h

X th
B 2

h

Figure 5: Construction of Separating Map

commutes. The function h is continuous, because q is a quotient map. By the other two properties,

h(A) = hXthB2

(

q−1(A)
)

= {0} and h(B) = hXthB2

(

q−1(B)
)

= {1},

as needed.

Solution to Problem p445, #2

Show that for every finitely presentable group G, there exists a compact Hausdorff path-connected space
X such that π1(X)≈G.

Suppose

G =
〈

α1, . . . , αn|r1, . . . , rn

〉

, i.e. G = Z[α1]∗. . .∗Z[αn]
/

N(r1, . . . , rm),

where N(r1, . . . , rm) is the smallest normal subgroup of Z[α1]∗. . .∗Z[αn] containing

{r1, . . . , rm} ⊂ Z[α1]∗. . .∗Z[αn].

For each k=0, . . . ,m, let

Hk = N(r1, . . . , rk), Gk = G/Hk, hk = rkHk−1 ∈ Gk−1 if k > 0.

We note that the smallest normal subgroup Nk of Gk−1 containing hk is

HkHk−1 ≡
⋃

h∈Hk

hHk−1 ⊂ Gk−1.

Thus, Gk≈Gk−1/Nk.

Let X0 be the wedge of n circles. Let p be the point common to all of the circles. By Theorem 71.1,

π1(X, p) ≈ Z[α1]∗. . .∗Z[αn] = G0,

where αi is the homotopy class of a loop going around the ith circle once. The space X0 is compact
Hausdorff and path-connected. Suppose k ∈ Z

+, k ≤ n, and there exists a compact Hausdorff path-
connected space Xn−1 such that π1(Xk−1)≈Gk−1. Then, by Problem p441, #3, there exists a compact
Hausdorff path-connected space Xk such that

π1(Xk) ≈ Gk−1/Nk ≈ Gk.

After applying this construction m times, we obtain a compact Hausdorff path-connected space X≡
Xm such that

π1(X) = π1(Xm) ≈ Gm ≡ G.

Remark: In brief, in order to obtain a compact Hausdorff path-connected space whose fundamental
group is G we begin with the wedge of n circles and then make the elements r1, . . . , rm null-homotopic
by attaching m disks B2. The jth disk is attached by wrapping its boundary, S1, along a representative
for rj , which can be taken to be a path going around some of the circles, possibly multiple times.
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