MAT 530: Topology\&Geometry, I Fall 2005

Problem Set 11

Solution to Problem p433, \#2

Suppose $\mathcal{U}, V \subset X$ are open, $X=\mathcal{U} \cap V, U, V$, and $\mathcal{U} \cap V$ are path-connected, $x_{0} \in \mathcal{U} \cap V$, and

Figure 1: Van Kampen's Theorem Setting
are the homomorphisms induced by inclusions. Suppose in addition that i_{2} is surjective. Let $M \subset$ $\pi_{1}\left(X, x_{0}\right)$ be the least normal subgroup containing $i_{1}\left(\operatorname{ker} i_{2}\right)$.
(a) Show that j_{1} induces a surjective homomorphism

$$
h: \pi_{1}\left(\mathcal{U}, x_{0}\right) / M \longrightarrow \pi_{1}\left(X, x_{0}\right) .
$$

(b) Show that h is an isomorphism.
(a) By (the weak version of) van Kampen's Theorem, the homomorphism

$$
j_{1} * j_{2}: \pi_{1}\left(\mathcal{U}, x_{0}\right) * \pi_{1}\left(V, x_{0}\right) \longrightarrow \pi_{1}\left(X, x_{0}\right)
$$

is surjective. Since

$$
j_{1} \circ i_{1}=j_{2} \circ i_{2}: \pi_{1}\left(\mathcal{U} \cap V, x_{0}\right) \longrightarrow \pi_{1}\left(X, x_{0}\right),
$$

i.e. the diagram in Figure ?? is commutative, and i_{2} is surjective in this case,

$$
\operatorname{Im} j_{2}=\operatorname{Im} j_{2} \circ i_{2}=\operatorname{Im} j_{1} \circ i_{1} \subset \operatorname{Im} i_{1} \subset \pi_{1}\left(X, x_{0}\right)
$$

Thus, the homomorphism j_{1} is surjective. In addition, since the diagram in Figure ?? is commutative

$$
\operatorname{ker} i_{2} \subset \operatorname{ker} i_{2} \circ j_{2}=\operatorname{ker} i_{1} \circ j_{1} \quad \Longrightarrow \quad i_{1}\left(\operatorname{ker} i_{2}\right) \subset \operatorname{ker} j_{1} .
$$

Since ker j_{1} is a normal subgroup of $\pi_{1}\left(\mathcal{U}, x_{0}\right)$ and contains $i_{1}\left(\operatorname{ker} i_{2}\right)$, it must contain M as well. Thus, j_{1} induces a homomorphism

$$
h: \pi_{1}\left(\mathcal{U}, x_{0}\right) / M \longrightarrow \pi_{1}\left(X, x_{0}\right) .
$$

Since j_{1} is surjective, so is h.
(b) Define homomorphisms

$$
\begin{gathered}
\phi_{1}: \pi_{1}\left(\mathcal{U}, x_{0}\right) \longrightarrow \pi_{1}\left(\mathcal{U}, x_{0}\right) / M \quad \text { and } \quad \phi_{2}: \pi_{1}\left(V, x_{0}\right) \longrightarrow \pi_{1}\left(\mathcal{U}, x_{0}\right) / M \quad \text { by } \\
\phi_{1}(\alpha)=\alpha M \quad \text { and } \quad \phi_{2}\left(i_{2}(\alpha)\right)=\phi_{1}\left(i_{1}(\alpha)\right) .
\end{gathered}
$$

Since i_{2} is surjective and $i_{1}\left(\operatorname{ker} i_{2}\right) \subset M, \phi_{2}$ is well-defined. It is immediate that

$$
\phi_{1} \circ i_{1}=\phi_{2} \circ i_{2}: \pi_{1}\left(\mathcal{U} \cap V, x_{0}\right) \longrightarrow \pi_{1}\left(\mathcal{U}, x_{0}\right) / M,
$$

i.e. the diagram

Figure 2: Amalgated Product Setting
of solid lines is commutative. Since Figure ?? is an amalgated product by van Kampen's Theorem, there exists a (unique) homomorphism

$$
\varphi: \pi_{1}\left(X, x_{0}\right) \longrightarrow \pi_{1}\left(\mathcal{U}, x_{0}\right) / M \quad \text { s.t. } \quad \phi_{1}=\varphi \circ j_{1} \quad \text { and } \quad \phi_{2}=\varphi \circ j_{2} .
$$

In particular,

$$
\varphi(h(\alpha M))=\varphi\left(j_{1}(\alpha)\right)=\phi_{1}(\alpha)=\alpha M \quad \forall \alpha M \in \pi_{1}\left(\mathcal{U}, x_{0}\right) / M \quad \Longrightarrow \quad \varphi \circ h=\operatorname{id}_{\pi_{1}\left(\mathcal{U}, x_{0}\right) / M}
$$

Thus, h is an injective homomorphism. On the other hand, it is surjective by part (a). We conclude that h is an isomorphism (and its inverse is φ).

Solution to Problem p438, \#5

Let $S_{n} \subset \mathbb{R}^{2}$ be the circle with center at $(n, 0)$ and of radius n. Let Y be the subspace of \mathbb{R}^{2} consisting of the circles S_{n}, with $n \in \mathbb{Z}^{+}$. Denote the common point of the circles by p.

Figure 3: Some Circles S_{n}
(a) Show that Y is not homeomorphic to either a countably infinite wedge X of circles or the infinite earring Z of Example 1 on $p 436$.
(b) Show that $\pi_{1}(Y, p)$ is a free abelian group with $\left\{\left[f_{n}\right]\right\}$ as a system of free generators, where f_{n} is a loop representing a generator of $\pi_{1}\left(S_{n}, p\right)$.
(a) Since Y is an unbounded (in the standard metric) subset of \mathbb{R}^{2}, Y is not compact and is second countable. Since Z is closed and bounded with respect to the standard metric on \mathbb{R}^{2}, Z is compact. On the other hand, if $q \in X$ is the point common to all of the circles in $X, X-\{q\}$ is homeomorphic to $\mathbb{Z}^{+} \times\left(S^{1}-\{q\}\right)$. Since $X-\{q\}$ is not second countable, neither is X. Thus, Y is homeomorphic to neither X not Z.

Remark: In fact, X does not have a countable basis at p. So, X is not even first countable.
(b) For each $n \in \mathbb{Z}^{+}$, let

$$
i_{n}: \pi_{1}\left(S_{n}, p\right) \longrightarrow \pi_{1}(Y, p)
$$

be the homomorphism induced by the inclusion $\left(S_{n}, p\right) \longrightarrow(Y, p)$. We will show that the homomorphism

$$
\prod_{n \in \mathbb{Z}^{+}} i_{n}: \prod_{n \in \mathbb{Z}^{+}} \pi_{1}\left(S_{n}, p\right) \longrightarrow \pi_{1}(Y, p)
$$

is an isomorphism. First, let

$$
r_{N}: Y \longrightarrow Y_{N} \equiv \bigcup_{n=1}^{n=N} S_{n}
$$

be the retraction obtained by collapsing the circles S_{n} with $n>N$ to the point p. By the existence of such a retraction, the homomorphism

$$
j_{N}: \pi_{1}\left(Y_{N}, p\right) \longrightarrow \pi_{1}(Y, p)
$$

induced by the inclusion $\left(Y_{N}, p\right) \longrightarrow(Y, p)$ is injective. If $n \leq N$, let

$$
i_{N, n}: \pi_{1}\left(S_{n}, p\right) \longrightarrow \pi_{1}\left(Y_{N}, p\right)
$$

be the homomorphism induced by the inclusion $\left(S_{n}, p\right) \longrightarrow\left(Y_{N}, p\right)$. By Theorem 71.1, the homomorphism

$$
\prod_{n=1}^{n=N} i_{N, n}: \prod_{n=1}^{n=N} \pi_{1}\left(S_{n}, p\right) \longrightarrow \pi_{1}\left(Y_{N}, p\right)
$$

is an isomorphism. Thus, the homomorphism

$$
\prod_{n=1}^{n=N} i_{n}=j_{N} \circ \prod_{n=1}^{n=N} i_{N, n}: \prod_{n=1}^{n=N} \pi_{1}\left(S_{n}, p\right) \longrightarrow \pi_{1}(Y, p)
$$

is injective, and so is $\prod_{n=1}^{\infty} i_{n}$.
It remains to show that every element $[\alpha]$ of $\pi_{1}(Y, p)$ lies in the image of the homomorphism j_{N} for some $N \in \mathbb{Z}^{+}$. Let

$$
\alpha:(I,\{0,1\}) \longrightarrow(Y, p)
$$

be a loop in Y based at p. Since $\alpha(I)$ is compact, $\alpha(I)$ is bounded and thus

$$
\alpha(I) \subset Y_{N}^{*} \equiv Y-\bigcup_{n=N+1}^{\infty}\{(2 n, 0)\}
$$

for some $N \in \mathbb{Z}^{+}$. Let

$$
H: Y_{N}^{*} \times I \longrightarrow Y_{N}^{*}
$$

be a deformation retraction of Y_{N}^{*} onto Y_{N}, i.e. a homotopy from $\operatorname{id}_{Y_{N}^{*}}$ to $\left.r_{N}\right|_{Y_{N}^{*}}$ such that $H(x, t)=x$ for all $x \in Y_{n}$. Such a homotopy is obtained by retracting the open upper and lower semicircles of S_{n}, with $n>N$, to p. Then, $H \circ\left\{\alpha \times \mathrm{id}_{I}\right\}$ is a path homotopy from the loop α in Y to the loop $r_{N} \circ \alpha$ in Y_{N}. In particular,

$$
[\alpha]=\left[r_{N} \circ \alpha\right] \in \pi_{1}(Y, p) \quad \text { and } \quad\left[r_{N} \circ \alpha\right] \in \operatorname{Im} j_{N}
$$

as needed.

Solution to Problem p441, \#3

Suppose G is a group, $h \in G$, and N is the least normal subgroup of G containing h. Show that if $\pi_{1}(X) \approx G$ for some (compact) path-connected normal topological space X, then $\pi_{1}(Y) \approx G$ for some (compact) path-connected normal topological space Y.

Let $p: I \longrightarrow S^{1}, p(s)=e^{2 \pi i s}$, be the usual quotient map. Choose a representative

$$
\alpha:(I,\{0,1\}) \longrightarrow\left(X, x_{0}\right)
$$

for $h \in \pi_{1}\left(X, x_{0}\right)$. Since $\alpha(0)=\alpha(1), \alpha$ induces a continuous map $f: S^{1} \longrightarrow X$ such that $\alpha=f \circ p$, i.e. the diagram

Figure 4: A Commutative Diagram
commutes. Let

$$
X_{\alpha}=\left(X \sqcup B^{2}\right) / \sim, \quad x \sim f(x) \forall x \in S^{1} \subset B^{2} .
$$

Let $q: X \sqcup B^{2} \longrightarrow X_{\alpha}$ be the quotient map. If X is compact, then so are $X \sqcup B^{2}$ and thus X_{α}. Since X is path-connected and B^{2} are path-connected, so are $q(X)$ and $q\left(B^{2}\right)$. Since

$$
X_{\alpha}=q(X) \cup q\left(B^{2}\right) \quad \text { and } \quad q(X) \cap q\left(B^{2}\right) \neq \emptyset,
$$

it follows that X_{α} is path-connected. It is shown in the next paragraphs that X_{α} is normal. Finally, by Figure ??, $f_{*} \pi_{1}\left(S^{1}, 1\right) \subset \pi_{1}\left(X, x_{0}\right)$ is generated by $h=[\alpha]$. Since the map

$$
\left.q\right|_{B^{2}-S^{1}}: B^{2}-S^{1} \longrightarrow X_{\alpha}
$$

is a homeomorphism, Theorem 72.1 implies that

$$
\pi_{1}\left(X_{\alpha}, q\left(x_{0}\right)\right) \approx \pi_{1}(X, \alpha) / N
$$

We now show that X_{α} is normal, i.e. X_{α} is $T 1$ (one-point sets are closed) and disjoint closed sets can be separated by continuous functions. We begin by showing that the map q is closed. If $A \subset X$ is closed, then

$$
q^{-1}(q(A))=q^{-1}(q(A)) \cap X \cup q^{-1}(q(A)) \cap B^{2}=\left.\left.q\right|_{X} ^{-1}(q(A)) \cup q\right|_{B^{2}} ^{-1}(q(A))=A \cup f^{-1}(A),
$$

since $\left.q\right|_{A}$ is injective and $q(X) \cap q\left(B^{2}-S^{1}\right)=\emptyset$. Since f is continuous, $f^{-1}(A)$ is closed in S^{1}. Since S^{1} is closed in B^{2}, it follows that $f^{-1}(A)$ is closed in B^{2} and thus $q^{-1}(q(A))$ is closed in $X \sqcup B^{2}$. Since q is a quotient map, $q(A)$ is then closed in X_{α}. On the other hand, if $A \subset B^{2}$, then

$$
q^{-1}(q(A))=q^{-1}(q(A)) \cap X \cup q^{-1}(q(A)) \cap B^{2}=\left.\left.q\right|_{X} ^{-1}(q(A)) \cup q\right|_{B^{2}} ^{-1}(q(A))=f\left(A \cap S^{1}\right) \cup A .
$$

Since A is closed in B^{2} and S^{1} is compact, $A \cap S^{1}$ is closed in S^{1} and thus compact. It follows that $f\left(A \cap S^{1}\right)$ is a compact subset of X. Since X is Hausdorff, $f\left(A \cap S^{1}\right)$ is a closed subset of X. Thus, $q^{-1}(q(A))$ is closed in $X \sqcup B^{2}$ and $q(A)$ is closed in X_{α}. We conclude that the quotient map is closed and the space X_{α} is Hausdorff.

It remains to show that closed subsets of X_{α} can be separated by continuous functions. First note that the map

$$
\left.q\right|_{X}: X \longrightarrow q(X) \subset X_{\alpha}
$$

is continuous, bijective, and closed. Thus, it is a homeomorphism. Since X is normal, so is $q(X)$. Suppose that $A, B \subset X_{\alpha}$ are disjoint closed subsets. Then, $A \cap q(X)$ and $B \cap q(X)$ are disjoint closed subsets of $q(X)$. Since $q(X)$ is normal, by Urysohn Lemma there exists a continuous function

$$
g_{X}: q(X) \longrightarrow[0,1] \quad \text { s.t. } \quad g_{X}(A \cap q(X))=\{0\} \quad \text { and } \quad g_{X}(B \cap q(X))=\{1\} .
$$

Then,

$$
g_{X} \circ q: S^{1} \longrightarrow[0,1]
$$

is continuous function such that

$$
g_{X} \circ q\left(q^{-1}(A) \cap S^{1}\right)=\{0\} \quad \text { and } \quad g_{X} \circ q\left(q^{-1}(B) \cap S^{1}\right)=\{1\} .
$$

Define

$$
g: S^{1} \cup\left(q^{-1}(A) \cap B^{2}\right) \cup\left(q^{-1}(B) \cap B^{2}\right) \longrightarrow[0,1] \quad \text { by } \quad g(x)= \begin{cases}g_{X} \circ q(x), & \text { if } x \in S^{1} ; \\ 0, & \text { if } x \in q^{-1}(A) \cap B^{2} ; \\ 1, & \text { if } x \in q^{-1}(B) \cap B^{2} .\end{cases}
$$

These definitions agree on the overlap and define a continuous function on each of the three closed sets. By the pasting lemma, g is continuous. Since B^{2} is normal and

$$
S^{1} \cup\left(q^{-1}(A) \cap B^{2}\right) \cup\left(q^{-1}(B) \cap B^{2}\right) \subset B^{2}
$$

is closed, by Tietze's Extension Theorem g extends to a continuous function

$$
h_{B^{2}}: B^{2} \longrightarrow[0,1], \quad \text { i.e. } \quad h_{B^{2}}(x)=g(x)= \begin{cases}g_{X} \circ q(x), & \text { if } x \in S^{1} ; \\ 0, & \text { if } x \in q^{-1}(A) \cap B^{2} ; \\ 1, & \text { if } x \in q^{-1}(B) \cap B^{2} .\end{cases}
$$

Let $h_{X}=g_{X} \circ q$. Then, the function

$$
h_{X} \sqcup h_{B^{2}}: X \sqcup B^{2} \longrightarrow[0,1]
$$

is continuous and

$$
\begin{gathered}
h_{X}(f(x))=g_{X}(q(f(x)))=g_{X}(q(x))=h_{B_{2}}(x) \quad \forall x \in S^{1} \subset B^{2}, \\
h_{X} \sqcup h_{B^{2}}\left(q^{-1}(A)\right)=g_{X}(A \cap q(X)) \cup g_{B^{2}}\left(q^{-1}(A) \cap B^{2}\right)=\{0\}, \quad \text { and } \\
h_{X} \sqcup h_{B^{2}}\left(q^{-1}(B)\right)=g_{X}(B \cap q(X)) \cup g_{B^{2}}\left(q^{-1}(B) \cap B^{2}\right)=\{1\} .
\end{gathered}
$$

By the first property, $h_{X} \sqcup h_{B^{2}}$ induces a map $h: X_{\alpha} \longrightarrow[0,1]$ such that $h_{X} \sqcup h_{B^{2}}=h \circ q$, i.e. the diagram

Figure 5: Construction of Separating Map
commutes. The function h is continuous, because q is a quotient map. By the other two properties,

$$
h(A)=h_{X} \sqcup h_{B^{2}}\left(q^{-1}(A)\right)=\{0\} \quad \text { and } \quad h(B)=h_{X} \sqcup h_{B^{2}}\left(q^{-1}(B)\right)=\{1\},
$$

as needed.

Solution to Problem p445, \#2

Show that for every finitely presentable group G, there exists a compact Hausdorff path-connected space X such that $\pi_{1}(X) \approx G$.

Suppose

$$
G=\left\langle\alpha_{1}, \ldots, \alpha_{n} \mid r_{1}, \ldots, r_{n}\right\rangle, \quad \text { i.e. } \quad G=\mathbb{Z}\left[\alpha_{1}\right] * \ldots * \mathbb{Z}\left[\alpha_{n}\right] / N\left(r_{1}, \ldots, r_{m}\right),
$$

where $N\left(r_{1}, \ldots, r_{m}\right)$ is the smallest normal subgroup of $\mathbb{Z}\left[\alpha_{1}\right] * \ldots * \mathbb{Z}\left[\alpha_{n}\right]$ containing

$$
\left\{r_{1}, \ldots, r_{m}\right\} \subset \mathbb{Z}\left[\alpha_{1}\right] * \ldots * \mathbb{Z}\left[\alpha_{n}\right] .
$$

For each $k=0, \ldots, m$, let

$$
H_{k}=N\left(r_{1}, \ldots, r_{k}\right), \quad G_{k}=G / H_{k}, \quad h_{k}=r_{k} H_{k-1} \in G_{k-1} \quad \text { if } k>0 .
$$

We note that the smallest normal subgroup N_{k} of G_{k-1} containing h_{k} is

$$
H_{k} H_{k-1} \equiv \bigcup_{h \in H_{k}} h H_{k-1} \subset G_{k-1}
$$

Thus, $G_{k} \approx G_{k-1} / N_{k}$.
Let X_{0} be the wedge of n circles. Let p be the point common to all of the circles. By Theorem 71.1,

$$
\pi_{1}(X, p) \approx \mathbb{Z}\left[\alpha_{1}\right] * \ldots * \mathbb{Z}\left[\alpha_{n}\right]=G_{0}
$$

where α_{i} is the homotopy class of a loop going around the i th circle once. The space X_{0} is compact Hausdorff and path-connected. Suppose $k \in \mathbb{Z}^{+}, k \leq n$, and there exists a compact Hausdorff pathconnected space X_{n-1} such that $\pi_{1}\left(X_{k-1}\right) \approx G_{k-1}$. Then, by Problem p441, \#3, there exists a compact Hausdorff path-connected space X_{k} such that

$$
\pi_{1}\left(X_{k}\right) \approx G_{k-1} / N_{k} \approx G_{k}
$$

After applying this construction m times, we obtain a compact Hausdorff path-connected space $X \equiv$ X_{m} such that

$$
\pi_{1}(X)=\pi_{1}\left(X_{m}\right) \approx G_{m} \equiv G .
$$

Remark: In brief, in order to obtain a compact Hausdorff path-connected space whose fundamental group is G we begin with the wedge of n circles and then make the elements r_{1}, \ldots, r_{m} null-homotopic by attaching m disks B^{2}. The j th disk is attached by wrapping its boundary, S^{1}, along a representative for r_{j}, which can be taken to be a path going around some of the circles, possibly multiple times.

