MAT 530: Topology&Geometry, I Fall 2005

Problem Set 11

Solution to Problem p433, #2

Suppose $\mathcal{U}, V \subset X$ are open, $X = \mathcal{U} \cap V$, U, V, and $\mathcal{U} \cap V$ are path-connected, $x_0 \in \mathcal{U} \cap V$, and

$$\pi_1(\mathcal{U}\cap V, x_0) \underbrace{i_1}_{i_2} \underbrace{\pi_1(\mathcal{U}, x_0)}_{\pi_1(V, x_0)} \underbrace{j_1}_{j_2} \\ \pi_1(X, x_0)$$

Figure 1: Van Kampen's Theorem Setting

are the homomorphisms induced by inclusions. Suppose in addition that i_2 is surjective. Let $M \subset \pi_1(X, x_0)$ be the least normal subgroup containing $i_1(\ker i_2)$. (a) Show that j_1 induces a surjective homomorphism

$$h: \pi_1(\mathcal{U}, x_0)/M \longrightarrow \pi_1(X, x_0).$$

(b) Show that h is an isomorphism.

(a) By (the weak version of) van Kampen's Theorem, the homomorphism

 $j_1 * j_2 : \pi_1(\mathcal{U}, x_0) * \pi_1(V, x_0) \longrightarrow \pi_1(X, x_0)$

is surjective. Since

$$j_1 \circ i_1 = j_2 \circ i_2 \colon \pi_1(\mathcal{U} \cap V, x_0) \longrightarrow \pi_1(X, x_0)$$

i.e. the diagram in Figure ?? is commutative, and i_2 is surjective in this case,

$$\operatorname{Im} j_2 = \operatorname{Im} j_2 \circ i_2 = \operatorname{Im} j_1 \circ i_1 \subset \operatorname{Im} i_1 \subset \pi_1(X, x_0)$$

Thus, the homomorphism j_1 is surjective. In addition, since the diagram in Figure ?? is commutative

$$\ker i_2 \subset \ker i_2 \circ j_2 = \ker i_1 \circ j_1 \implies i_1(\ker i_2) \subset \ker j_1$$

Since ker j_1 is a normal subgroup of $\pi_1(\mathcal{U}, x_0)$ and contains $i_1(\ker i_2)$, it must contain M as well. Thus, j_1 induces a homomorphism

$$h: \pi_1(\mathcal{U}, x_0)/M \longrightarrow \pi_1(X, x_0).$$

Since j_1 is surjective, so is h.

(b) Define homomorphisms

$$\phi_1 \colon \pi_1(\mathcal{U}, x_0) \longrightarrow \pi_1(\mathcal{U}, x_0) / M \quad \text{and} \quad \phi_2 \colon \pi_1(V, x_0) \longrightarrow \pi_1(\mathcal{U}, x_0) / M \qquad \text{by} \\ \phi_1(\alpha) = \alpha M \quad \text{and} \quad \phi_2(i_2(\alpha)) = \phi_1(i_1(\alpha)).$$

Since i_2 is surjective and $i_1(\ker i_2) \subset M$, ϕ_2 is well-defined. It is immediate that

$$\phi_1 \circ i_1 = \phi_2 \circ i_2 \colon \pi_1(\mathcal{U} \cap V, x_0) \longrightarrow \pi_1(\mathcal{U}, x_0) / M,$$

i.e. the diagram

$$\pi_{1}(\mathcal{U}\cap V, x_{0}) \underbrace{\stackrel{i_{1}}{\underbrace{\qquad}}_{i_{2}}}_{\pi_{1}(V, x_{0})} \underbrace{\stackrel{\phi_{1}}{\underbrace{\qquad}}_{j_{1}}}_{\pi_{1}(X, x_{0})} \underbrace{\stackrel{\phi_{1}}{\underbrace{\qquad}}_{\phi_{2}}}_{\phi_{2}} \pi_{1}(\mathcal{U}, x_{0})/M$$

Figure 2: Amalgated Product Setting

of solid lines is commutative. Since Figure **??** is an amalgated product by van Kampen's Theorem, there exists a (unique) homomorphism

$$\varphi \colon \pi_1(X, x_0) \longrightarrow \pi_1(\mathcal{U}, x_0) / M$$
 s.t. $\phi_1 = \varphi \circ j_1$ and $\phi_2 = \varphi \circ j_2$.

In particular,

$$\varphi(h(\alpha M)) = \varphi(j_1(\alpha)) = \phi_1(\alpha) = \alpha M \quad \forall \alpha M \in \pi_1(\mathcal{U}, x_0)/M \qquad \Longrightarrow \qquad \varphi \circ h = \mathrm{id}_{\pi_1(\mathcal{U}, x_0)/M}.$$

Thus, h is an injective homomorphism. On the other hand, it is surjective by part (a). We conclude that h is an isomorphism (and its inverse is φ).

Solution to Problem p438, #5

Let $S_n \subset \mathbb{R}^2$ be the circle with center at (n, 0) and of radius n. Let Y be the subspace of \mathbb{R}^2 consisting of the circles S_n , with $n \in \mathbb{Z}^+$. Denote the common point of the circles by p.

Figure 3: Some Circles S_n

(a) Show that Y is not homeomorphic to either a countably infinite wedge X of circles or the infinite earring Z of Example 1 on p436.

(b) Show that $\pi_1(Y,p)$ is a free abelian group with $\{[f_n]\}\$ as a system of free generators, where f_n is a loop representing a generator of $\pi_1(S_n,p)$.

(a) Since Y is an unbounded (in the standard metric) subset of \mathbb{R}^2 , Y is not compact and is second countable. Since Z is closed and bounded with respect to the standard metric on \mathbb{R}^2 , Z is compact. On the other hand, if $q \in X$ is the point common to all of the circles in $X, X - \{q\}$ is homeomorphic to $\mathbb{Z}^+ \times (S^1 - \{q\})$. Since $X - \{q\}$ is not second countable, neither is X. Thus, Y is homeomorphic to neither X not Z.

Remark: In fact, X does not have a countable basis at p. So, X is not even first countable.

(b) For each $n \in \mathbb{Z}^+$, let

$$i_n : \pi_1(S_n, p) \longrightarrow \pi_1(Y, p)$$

be the homomorphism induced by the inclusion $(S_n, p) \longrightarrow (Y, p)$. We will show that the homomorphism

$$\prod_{n \in \mathbb{Z}^+} i_n \colon \prod_{n \in \mathbb{Z}^+} \pi_1(S_n, p) \longrightarrow \pi_1(Y, p)$$

is an isomorphism. First, let

$$r_N \colon Y \longrightarrow Y_N \equiv \bigcup_{n=1}^{n=N} S_n$$

be the retraction obtained by collapsing the circles S_n with n > N to the point p. By the existence of such a retraction, the homomorphism

$$j_N \colon \pi_1(Y_N, p) \longrightarrow \pi_1(Y, p)$$

induced by the inclusion $(Y_N, p) \longrightarrow (Y, p)$ is injective. If $n \leq N$, let

$$i_{N,n} \colon \pi_1(S_n, p) \longrightarrow \pi_1(Y_N, p)$$

be the homomorphism induced by the inclusion $(S_n, p) \longrightarrow (Y_N, p)$. By Theorem 71.1, the homomorphism

$$\prod_{n=1}^{n=N} i_{N,n} \colon \prod_{n=1}^{n=N} \pi_1(S_n, p) \longrightarrow \pi_1(Y_N, p)$$

is an isomorphism. Thus, the homomorphism

$$\prod_{n=1}^{n=N} i_n = j_N \circ \prod_{n=1}^{n=N} i_{N,n} \colon \prod_{n=1}^{n=N} \pi_1(S_n, p) \longrightarrow \pi_1(Y, p)$$

is injective, and so is $\prod_{n=1}^{\infty} i_n$.

It remains to show that every element $[\alpha]$ of $\pi_1(Y, p)$ lies in the image of the homomorphism j_N for some $N \in \mathbb{Z}^+$. Let

$$\alpha \colon (I, \{0, 1\}) \longrightarrow (Y, p)$$

be a loop in Y based at p. Since $\alpha(I)$ is compact, $\alpha(I)$ is bounded and thus

$$\alpha(I) \subset Y_N^* \equiv Y - \bigcup_{n=N+1}^{\infty} \{(2n,0)\}$$

for some $N \in \mathbb{Z}^+$. Let

$$H: Y_N^* \times I \longrightarrow Y_N^*$$

be a deformation retraction of Y_N^* onto Y_N , i.e. a homotopy from $\operatorname{id}_{Y_N^*}$ to $r_N|_{Y_N^*}$ such that H(x,t) = xfor all $x \in Y_n$. Such a homotopy is obtained by retracting the open upper and lower semicircles of S_n , with n > N, to p. Then, $H \circ \{\alpha \times \operatorname{id}_I\}$ is a path homotopy from the loop α in Y to the loop $r_N \circ \alpha$ in Y_N . In particular,

$$[\alpha] = [r_N \circ \alpha] \in \pi_1(Y, p)$$
 and $[r_N \circ \alpha] \in \operatorname{Im} j_N,$

as needed.

Solution to Problem p441, #3

Suppose G is a group, $h \in G$, and N is the least normal subgroup of G containing h. Show that if $\pi_1(X) \approx G$ for some (compact) path-connected normal topological space X, then $\pi_1(Y) \approx G$ for some (compact) path-connected normal topological space Y.

Let $p: I \longrightarrow S^1$, $p(s) = e^{2\pi i s}$, be the usual quotient map. Choose a representative

 $\alpha \colon (I, \{0, 1\}) \longrightarrow (X, x_0)$

for $h \in \pi_1(X, x_0)$. Since $\alpha(0) = \alpha(1)$, α induces a continuous map $f: S^1 \longrightarrow X$ such that $\alpha = f \circ p$, i.e. the diagram

Figure 4: A Commutative Diagram

commutes. Let

$$X_{\alpha} = \left(X \sqcup B^2 \right) / \sim, \qquad x \sim f(x) \quad \forall x \in S^1 \subset B^2.$$

Let $q: X \sqcup B^2 \longrightarrow X_{\alpha}$ be the quotient map. If X is compact, then so are $X \sqcup B^2$ and thus X_{α} . Since X is path-connected and B^2 are path-connected, so are q(X) and $q(B^2)$. Since

$$X_{\alpha} = q(X) \cup q(B^2)$$
 and $q(X) \cap q(B^2) \neq \emptyset$,

it follows that X_{α} is path-connected. It is shown in the next paragraphs that X_{α} is normal. Finally, by Figure ??, $f_*\pi_1(S^1, 1) \subset \pi_1(X, x_0)$ is generated by $h = [\alpha]$. Since the map

$$q|_{B^2-S^1} \colon B^2 - S^1 \longrightarrow X_c$$

is a homeomorphism, Theorem 72.1 implies that

$$\pi_1(X_\alpha, q(x_0)) \approx \pi_1(X, \alpha)/N.$$

We now show that X_{α} is normal, i.e. X_{α} is T1 (one-point sets are closed) and disjoint closed sets can be separated by continuous functions. We begin by showing that the map q is closed. If $A \subset X$ is closed, then

$$q^{-1}(q(A)) = q^{-1}(q(A)) \cap X \cup q^{-1}(q(A)) \cap B^2 = q|_X^{-1}(q(A)) \cup q|_{B^2}^{-1}(q(A)) = A \cup f^{-1}(A),$$

since $q|_A$ is injective and $q(X) \cap q(B^2 - S^1) = \emptyset$. Since f is continuous, $f^{-1}(A)$ is closed in S^1 . Since S^1 is closed in B^2 , it follows that $f^{-1}(A)$ is closed in B^2 and thus $q^{-1}(q(A))$ is closed in $X \sqcup B^2$. Since q is a quotient map, q(A) is then closed in X_{α} . On the other hand, if $A \subset B^2$, then

$$q^{-1}(q(A)) = q^{-1}(q(A)) \cap X \cup q^{-1}(q(A)) \cap B^2 = q|_X^{-1}(q(A)) \cup q|_{B^2}^{-1}(q(A)) = f(A \cap S^1) \cup A.$$

Since A is closed in B^2 and S^1 is compact, $A \cap S^1$ is closed in S^1 and thus compact. It follows that $f(A \cap S^1)$ is a compact subset of X. Since X is Hausdorff, $f(A \cap S^1)$ is a closed subset of X. Thus, $q^{-1}(q(A))$ is closed in $X \sqcup B^2$ and q(A) is closed in X_{α} . We conclude that the quotient map is closed and the space X_{α} is Hausdorff.

It remains to show that closed subsets of X_{α} can be separated by continuous functions. First note that the map

$$q|_X \colon X \longrightarrow q(X) \subset X_\alpha$$

is continuous, bijective, and closed. Thus, it is a homeomorphism. Since X is normal, so is q(X). Suppose that $A, B \subset X_{\alpha}$ are disjoint closed subsets. Then, $A \cap q(X)$ and $B \cap q(X)$ are disjoint closed subsets of q(X). Since q(X) is normal, by Urysohn Lemma there exists a continuous function

$$g_X: q(X) \longrightarrow [0,1]$$
 s.t. $g_X(A \cap q(X)) = \{0\}$ and $g_X(B \cap q(X)) = \{1\}.$

Then,

$$g_X \circ q \colon S^1 \longrightarrow [0,1]$$

is continuous function such that

$$g_X \circ q(q^{-1}(A) \cap S^1) = \{0\}$$
 and $g_X \circ q(q^{-1}(B) \cap S^1) = \{1\}.$

Define

$$g: S^{1} \cup (q^{-1}(A) \cap B^{2}) \cup (q^{-1}(B) \cap B^{2}) \longrightarrow [0,1] \quad \text{by} \quad g(x) = \begin{cases} g_{X} \circ q(x), & \text{if } x \in S^{1}; \\ 0, & \text{if } x \in q^{-1}(A) \cap B^{2}; \\ 1, & \text{if } x \in q^{-1}(B) \cap B^{2}. \end{cases}$$

These definitions agree on the overlap and define a continuous function on each of the three closed sets. By the pasting lemma, g is continuous. Since B^2 is normal and

$$S^1 \cup \left(q^{-1}(A) \cap B^2\right) \cup \left(q^{-1}(B) \cap B^2\right) \subset B^2$$

is closed, by Tietze's Extension Theorem g extends to a continuous function

$$h_{B^2} \colon B^2 \longrightarrow [0,1], \quad \text{ i.e. } \quad h_{B^2}(x) = g(x) = \begin{cases} g_X \circ q(x), & \text{if } x \in S^1; \\ 0, & \text{if } x \in q^{-1}(A) \cap B^2; \\ 1, & \text{if } x \in q^{-1}(B) \cap B^2. \end{cases}$$

Let $h_X = g_X \circ q$. Then, the function

$$h_X \sqcup h_{B^2} \colon X \sqcup B^2 \longrightarrow [0,1]$$

is continuous and

$$h_X(f(x)) = g_X(q(f(x))) = g_X(q(x)) = h_{B_2}(x) \quad \forall x \in S^1 \subset B^2,$$

$$h_X \sqcup h_{B^2}(q^{-1}(A)) = g_X(A \cap q(X)) \cup g_{B^2}(q^{-1}(A) \cap B^2) = \{0\}, \text{ and }$$

$$h_X \sqcup h_{B^2}(q^{-1}(B)) = g_X(B \cap q(X)) \cup g_{B^2}(q^{-1}(B) \cap B^2) = \{1\}.$$

By the first property, $h_X \sqcup h_{B^2}$ induces a map $h: X_{\alpha} \longrightarrow [0,1]$ such that $h_X \sqcup h_{B^2} = h \circ q$, i.e. the diagram

Figure 5: Construction of Separating Map

commutes. The function h is continuous, because q is a quotient map. By the other two properties,

$$h(A) = h_X \sqcup h_{B^2}(q^{-1}(A)) = \{0\}$$
 and $h(B) = h_X \sqcup h_{B^2}(q^{-1}(B)) = \{1\},\$

as needed.

Solution to Problem p445, #2

Show that for every finitely presentable group G, there exists a compact Hausdorff path-connected space X such that $\pi_1(X) \approx G$.

Suppose

$$G = \langle \alpha_1, \dots, \alpha_n | r_1, \dots, r_n \rangle, \quad \text{i.e.} \quad G = \mathbb{Z}[\alpha_1] * \dots * \mathbb{Z}[\alpha_n] / N(r_1, \dots, r_m),$$

where $N(r_1, \ldots, r_m)$ is the smallest normal subgroup of $\mathbb{Z}[\alpha_1] * \ldots * \mathbb{Z}[\alpha_n]$ containing

$$\{r_1,\ldots,r_m\}\subset\mathbb{Z}[\alpha_1]*\ldots*\mathbb{Z}[\alpha_n].$$

For each $k = 0, \ldots, m$, let

$$H_k = N(r_1, \dots, r_k), \qquad G_k = G/H_k, \qquad h_k = r_k H_{k-1} \in G_{k-1} \text{ if } k > 0.$$

We note that the smallest normal subgroup N_k of G_{k-1} containing h_k is

$$H_k H_{k-1} \equiv \bigcup_{h \in H_k} h H_{k-1} \subset G_{k-1}.$$

Thus, $G_k \approx G_{k-1}/N_k$.

Let X_0 be the wedge of n circles. Let p be the point common to all of the circles. By Theorem 71.1,

$$\pi_1(X,p) \approx \mathbb{Z}[\alpha_1] * \ldots * \mathbb{Z}[\alpha_n] = G_0,$$

where α_i is the homotopy class of a loop going around the *i*th circle once. The space X_0 is compact Hausdorff and path-connected. Suppose $k \in \mathbb{Z}^+$, $k \leq n$, and there exists a compact Hausdorff pathconnected space X_{n-1} such that $\pi_1(X_{k-1}) \approx G_{k-1}$. Then, by Problem p441, #3, there exists a compact Hausdorff path-connected space X_k such that

$$\pi_1(X_k) \approx G_{k-1}/N_k \approx G_k.$$

After applying this construction m times, we obtain a compact Hausdorff path-connected space $X \equiv X_m$ such that

$$\pi_1(X) = \pi_1(X_m) \approx G_m \equiv G.$$

Remark: In brief, in order to obtain a compact Hausdorff path-connected space whose fundamental group is G we begin with the wedge of n circles and then make the elements r_1, \ldots, r_m null-homotopic by attaching m disks B^2 . The *j*th disk is attached by wrapping its boundary, S^1 , along a representative for r_j , which can be taken to be a path going around some of the circles, possibly multiple times.