
MAT 530: Topology&Geometry, I
Fall 2005

Midterm Solutions

Note: These solutions are more detailed than solutions sufficient for full credit.

Problem 1 (5+5 pts)

Let X denote the set {a, b, c}. The collections

T1 =
{
∅, X, {a}, {a, b}

}
and T2 =

{
∅, X, {b, c}

}
are topologies on X.

(a) What is the largest topology on X which is smaller (coarser) than both T1 and T2?
(b) What is the smallest topology on X which is larger (finer) than both T1 and T2?

(a) T ={∅, X}, i.e. the trivial topology. By assumption,

T ⊂ T1 ∩ T2 = {∅, X}.

Since {∅, X} happens to be a topology on X, this is the largest topology contained in T1 and T2.
Note: The intersection of any collection of topologies on a set is again a topology.

(b) T =
{
∅, X, {a}, {b}, {a, b}, {b, c}

}
. By assumption,

T ⊃ T1 ∪ T2 =
{
∅, X, {a}, {a, b}, {b, c}

}
.

Since T is a topology and contains {a, b} and {b, c}, T must also contain their intersection, i.e. {b}.
Thus,

T ⊃
{
∅, X, {a}, {b}, {a, b}, {b, c}

}
.

Since the collection on the right is closed under (finite) intersections and (arbitrary) unions of its
elements, it is a topology on X. Thus, this is the smallest topology containing T1 and T2.



Problem 2 (20 pts)

Show that the subset
A = (0, 2)ω ≡

∏
k∈Z+

(0, 2)

of Rω is not open in the uniform topology on Rω.

Let ρ̄ denote the uniform metric on Rω. Let

x =
(
1/n)n∈Z+ ∈ A.

It is sufficient to show that no ball Bρ̄(x, δ) centered x is contained in A. Suppose δ > 0. Choose
n∈Z+ such that 1/n<δ. Then,

y ≡
(
1, 1/2, . . . , 1/n, 0, 0, . . .) ∈ Bρ̄(x, δ),

since
ρ̄(x,y) ≡ sup

{
min(|xk−yk|, 1) : k∈Z+

}
= 1/(n+1) < δ.

However, y 6∈A, since the (n+1)st coordinate of y does not lie in (0, 2)

Problem 3 (20 pts)

Suppose J is a set and Xα is a compact Hausdorff space for each α ∈ J . Show that the space∏
α∈JXα is normal in the product topology.

Since Xα is Hausdorff for every α∈J ,
∏

α∈JXα is also Hausdorff. Since Xα is compact for every
α ∈ J ,

∏
α∈JXα is also compact (in the product topology), by the Tychonoff Theorem. Since∏

α∈JXα is compact and Hausdorff, it is normal.
Note: Since Xα is compact Hausdorff, Xα is normal for every α∈J . However, since the product of
a collection of normal spaces may not be normal, it does not follow that

∏
α∈JXα is normal. Thus,

the order of the argument matters here.

Problem 4 (20 pts)

Suppose that X is a topological space and Y is a compact topological space. Show that the projection
map π1 : X×Y −→X is closed.

Let A be a closed subset of X×Y . We show that π1(A) is closed by showing that X−π1(A) is
open. Suppose x∈X−π1(A). Then

{x}×Y = π−1
1 (x) ⊂ X×Y − π−1

1

(
π1(A)

)
⊂ X×Y −A.

Since the slice {x}×Y is contained in the open subset X×Y −A of X×Y and Y is compact, by
the Tube Lemma there exists an open subset U of X such that

{x}×Y ⊂ U×Y ⊂ X×Y −A =⇒ A ⊂ X×Y − U×Y = (X−U)×Y =⇒ π1(A) ⊂ X−U.
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Thus, U is an open neighborhood of x in X which is contained in X −π1(A).

Problem 5 (15+15 pts)

Suppose X is a paracompact Hausdorff space and (Uα)α∈J is an indexed collection of open subsets
of X whose union covers X.

(a) Show that there exists a locally finite indexed collection (Vα)α∈J of open subsets of X
whose union covers X such that V̄α⊂Uα for all α∈J ;

(b) Show that there exists a partition of unity (φα)α∈J subordinate to (Uα)α∈J .

(a) Since X is paracompact and Hausdorff, X is normal. Three approaches to (a) are described
below. They all use the Axiom of Choice (or the Well-Ordering Theorem), explicitly and implicitly.

Approach 1: Let
A =

{
U⊂X open: Ū ⊂Uα for some α∈J

}
.

Since (Uα)α∈J covers X and X is regular, A also covers X. Thus, A is an open cover of X. Since
X is paracompact, A has a locally finite open refinement B covering X. In particular, for every
V ∈ B there exists U ∈ A such that V ⊂ U . Since for every U ∈ A, there exists α ∈ J such that
Ū ⊂Uα, it follows that for every V ∈B there exists f(V )∈J such that V̄ ⊂Uf(V ). For every α∈J ,
let

Vα =
⋃

f(V )=α

V.

Since the collection {V ∈B : f(V )=α}⊂B is locally finite and V̄ ⊂Uf(V ) for all V ∈B,

V̄α ≡
⋃

f(V )=α

V =
⋃

f(V )=α

V̄ ⊂ Uα.

Since the collection B is an open cover of X, so is the indexed collection (Vα)α∈J . Since B is locally
finite, so is (Vα)α∈J . In fact, if W is any subset of X, then{

α∈J : W∩Vα 6=∅
}

=
{
f(V ) : V ∈B; W∩V 6=∅

}
.

Approach 2: Well-order the set J . Since X is paracompact, there exists an indexed locally finite
open collection (Wα)α∈J that refines (Uα)α∈J , i.e. Wα⊂Uα for all α∈J , and covers X; see below.
We will now shrink the sets Wα. Suppose α∈J and for every β <α, we have constructed an open
subset Vβ of X such that V̄β⊂Wβ and

X =
⋃
β<α

Vβ ∪
⋃
β≥α

Wβ.

Thus,
X −

⋃
β<α

Vβ −
⋃
β>α

Wβ ⊂ Wα.
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Since X is normal, there exists an open subset Vα of X such that V̄α⊂Wα and

X −
⋃
β<α

Vβ −
⋃
β>α

Wβ ⊂ Vα =⇒ X =
⋃
β≤α

Vβ ∪
⋃
β>α

Wβ.

Thus, we can construct inductively an indexed collection {Vα}α∈J of open subset of X such that
for all α∈J

V̄α ⊂ Wα ⊂ Vα and X =
⋃
β≤α

Vβ ∪
⋃
β>α

Wβ.

Since (Wα)α∈J is locally finite, so is (Vα)α∈J . It remains to check that (Vα)α∈J covers X. Given
x∈X, let

Jx =
{
α∈J : x∈Wα

}
.

Since (Wα)α∈J is a locally finite cover of X, Jx is a finite non-empty subset of J . Let α be the
largest element of Jx. If

x ∈ X −
⋃
β<α

Vβ −
⋃
β>α

Wβ,

then x∈Vα. On the other hand, if

x 6∈ X −
⋃
β<α

Vβ −
⋃
β>α

Wβ,

then x∈Vβ for some β<α, since x 6∈Wβ for all β>α.

Note: The second sentence of the previous paragraph is not what the definition of paracompactness
says, but the two statements are equivalent. If X is paracompact, the open cover

A =
{
Uα : α∈J

}
has a locally finite open refinement B that covers X. In particular, for every V ∈ B there exists
f(V )∈J such that V ⊂Uf(V ). Let

Wα =
⋃

f(V )=α

V ⊂ Uα.

Then, (Wα)α∈J is an open cover of X, because B is. Similarly to end of Approach 1, (Wα)α∈J is
locally finite, because B is.

Approach 3: Since X is regular and paracompact, there exists an indexed locally finite closed col-
lection (Cα)α∈J that refines (Uα)α∈J , i.e. Cα⊂Uα for all α∈J , and covers X; see below. Since X
is normal, for every α∈J there exists an open subset Wα of X such that Cα⊂Wα and Wα⊂Uα.
Since (Cα)α∈J covers X, (Wα)α∈J is an open cover of X. Since X is paracompact, (Wα)α∈J has
a locally finite open refinement (Vα)α∈J that covers X; see the note above. Since Vα ⊂Wα and
Wα⊂Uα, V̄α⊂Uα for all α∈J , as needed.

Note: By the equivalence-of-covering-conditions Lemma 41.3 for regular spaces, the open cover

A =
{
Uα : α∈J

}
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has a locally finite closed refinement B that covers X. In particular, for every C ∈B there exists
f(C)∈J such that C⊂Uf(C). Let

Cα =
⋃

f(C)=α

C ⊂ Uα.

Similarly to the previous note, (Cα)α∈J is an indexed locally finite cover of X. Since B is a locally
finite closed collection,

C̄α =
⋃

f(C)=α

C =
⋃

f(C)=α

C̄ =
⋃

f(C)=α

C = Cα.

Thus, (Cα)α∈J is a closed collection.

(b) By (a), there exist indexed locally finite collections (Vα)α∈J and (Wα)α∈J that cover X such
that

Wα ⊂ Vα and V̄α ⊂ Uα ∀α ∈ J.

Since X is normal, by the Urysohn Lemma for every α∈J there exists a continuous function

fα : X −→ [0, 1] s.t. fα

(
Wα

)
= {1} and fα

(
X−Vα

)
= {0}.

Since (Vα)α∈J is point finite, for every x

Φ(x) =
∑
α∈J

fα(x)

is well-defined, being the sum of a finite collection of nonzero numbers. Since (Vα)α∈J is locally
finite,

Φ: X −→ R

is continuous, since on all sufficiently small opens sets Φ is the sum of a finitely collection of nonzero
functions. Since (Wα)α∈J covers X,

Φ(x) ≥ 1 ∀x ∈ X.

Thus, for every α∈J , the function

ϕα≡fα/Φ : X −→ [0, 1]

is continuous. Furthermore, for all x∈X∑
α∈J

φα(x) =
∑
α∈J

(
fα(x)/Φ(x)

)
=

( ∑
α∈J

(fα(x)
)/

Φ(x) = Φ(x)
/
Φ(x) = 1.
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