MAT 530: Topology&Geometry, I Fall 2005

Midterm Solutions

Note: These solutions are more detailed than solutions sufficient for full credit.

Problem 1 (5+5 pts)

Let X denote the set $\{a, b, c\}$. The collections

$$\mathcal{T}_1 = \left\{ \emptyset, X, \{a\}, \{a, b\} \right\} \quad and \quad \mathcal{T}_2 = \left\{ \emptyset, X, \{b, c\} \right\}$$

are topologies on X.

(a) What is the largest topology on X which is smaller (coarser) than both \mathcal{T}_1 and \mathcal{T}_2 ?

(b) What is the smallest topology on X which is larger (finer) than both \mathcal{T}_1 and \mathcal{T}_2 ?

(a) $\mathcal{T} = \{\emptyset, X\}$, i.e. the trivial topology. By assumption,

$$\mathcal{T} \subset \mathcal{T}_1 \cap \mathcal{T}_2 = \{\emptyset, X\}.$$

Since $\{\emptyset, X\}$ happens to be a topology on X, this is the largest topology contained in \mathcal{T}_1 and \mathcal{T}_2 . Note: The intersection of any collection of topologies on a set is again a topology.

(b) $\mathcal{T} = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}$. By assumption,

$$\mathcal{T} \supset \mathcal{T}_1 \cup \mathcal{T}_2 = \left\{ \emptyset, X, \{a\}, \{a, b\}, \{b, c\} \right\}.$$

Since \mathcal{T} is a topology and contains $\{a, b\}$ and $\{b, c\}$, \mathcal{T} must also contain their intersection, i.e. $\{b\}$. Thus,

$$\mathcal{T} \supset \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}.$$

Since the collection on the right is closed under (finite) intersections and (arbitrary) unions of its elements, it is a topology on X. Thus, this is the smallest topology containing \mathcal{T}_1 and \mathcal{T}_2 .

Problem 2 (20 pts)

Show that the subset

$$A = (0,2)^{\omega} \equiv \prod_{k \in \mathbb{Z}^+} (0,2)$$

of \mathbb{R}^{ω} is not open in the uniform topology on \mathbb{R}^{ω} .

Let $\bar{\rho}$ denote the uniform metric on \mathbb{R}^{ω} . Let

$$\mathbf{x} = (1/n)_{n \in \mathbb{Z}^+} \in A.$$

It is sufficient to show that no ball $B_{\bar{\rho}}(\mathbf{x}, \delta)$ centered \mathbf{x} is contained in A. Suppose $\delta > 0$. Choose $n \in \mathbb{Z}^+$ such that $1/n < \delta$. Then,

$$\mathbf{y} \equiv (1, 1/2, \dots, 1/n, 0, 0, \dots) \in B_{\bar{\rho}}(\mathbf{x}, \delta),$$

since

$$\bar{\rho}(\mathbf{x}, \mathbf{y}) \equiv \sup \left\{ \min(|x_k - y_k|, 1) \colon k \in \mathbb{Z}^+ \right\} = 1/(n+1) < \delta$$

However, $y \notin A$, since the (n+1)st coordinate of **y** does not lie in (0,2)

Problem 3 (20 pts)

Suppose J is a set and X_{α} is a compact Hausdorff space for each $\alpha \in J$. Show that the space $\prod_{\alpha \in J} X_{\alpha}$ is normal in the product topology.

Since X_{α} is Hausdorff for every $\alpha \in J$, $\prod_{\alpha \in J} X_{\alpha}$ is also Hausdorff. Since X_{α} is compact for every $\alpha \in J$, $\prod_{\alpha \in J} X_{\alpha}$ is also compact (in the product topology), by the Tychonoff Theorem. Since $\prod_{\alpha \in J} X_{\alpha}$ is compact and Hausdorff, it is normal.

Note: Since X_{α} is compact Hausdorff, X_{α} is normal for every $\alpha \in J$. However, since the product of a collection of normal spaces may not be normal, it does not follow that $\prod_{\alpha \in J} X_{\alpha}$ is normal. Thus, the order of the argument matters here.

Problem 4 (20 pts)

Suppose that X is a topological space and Y is a compact topological space. Show that the projection map $\pi_1: X \times Y \longrightarrow X$ is closed.

Let A be a closed subset of $X \times Y$. We show that $\pi_1(A)$ is closed by showing that $X - \pi_1(A)$ is open. Suppose $x \in X - \pi_1(A)$. Then

$$\{x\} \times Y = \pi_1^{-1}(x) \subset X \times Y - \pi_1^{-1}(\pi_1(A)) \subset X \times Y - A.$$

Since the slice $\{x\} \times Y$ is contained in the open subset $X \times Y - A$ of $X \times Y$ and Y is compact, by the Tube Lemma there exists an open subset \mathcal{U} of X such that

$$\{x\} \times Y \subset \mathcal{U} \times Y \subset X \times Y - A \implies A \subset X \times Y - \mathcal{U} \times Y = (X - U) \times Y \implies \pi_1(A) \subset X - U.$$

Thus, \mathcal{U} is an open neighborhood of x in X which is contained in $X - \pi_1(A)$.

Problem 5 (15+15 pts)

Suppose X is a paracompact Hausdorff space and $(\mathcal{U}_{\alpha})_{\alpha \in J}$ is an indexed collection of open subsets of X whose union covers X.

- (a) Show that there exists a locally finite indexed collection $(V_{\alpha})_{\alpha \in J}$ of open subsets of X whose union covers X such that $\bar{V}_{\alpha} \subset \mathcal{U}_{\alpha}$ for all $\alpha \in J$;
- (b) Show that there exists a partition of unity $(\phi_{\alpha})_{\alpha \in J}$ subordinate to $(\mathcal{U}_{\alpha})_{\alpha \in J}$.

(a) Since X is paracompact and Hausdorff, X is normal. Three approaches to (a) are described below. They all use the Axiom of Choice (or the Well-Ordering Theorem), explicitly and implicitly.

Approach 1: Let

$$\mathcal{A} = \{ \mathcal{U} \subset X \text{ open} : \overline{\mathcal{U}} \subset \mathcal{U}_{\alpha} \text{ for some } \alpha \in J \}.$$

Since $(\mathcal{U}_{\alpha})_{\alpha \in J}$ covers X and X is regular, \mathcal{A} also covers X. Thus, \mathcal{A} is an open cover of X. Since X is paracompact, \mathcal{A} has a locally finite open refinement \mathcal{B} covering X. In particular, for every $V \in \mathcal{B}$ there exists $\mathcal{U} \in \mathcal{A}$ such that $V \subset \mathcal{U}$. Since for every $\mathcal{U} \in \mathcal{A}$, there exists $\alpha \in J$ such that $\bar{\mathcal{U}} \subset \mathcal{U}_{\alpha}$, it follows that for every $V \in \mathcal{B}$ there exists $f(V) \in J$ such that $\bar{V} \subset \mathcal{U}_{f(V)}$. For every $\alpha \in J$, let

$$V_{\alpha} = \bigcup_{f(V)=\alpha} V.$$

Since the collection $\{V \in \mathcal{B}: f(V) = \alpha\} \subset \mathcal{B}$ is locally finite and $\overline{V} \subset \mathcal{U}_{f(V)}$ for all $V \in \mathcal{B}$,

$$\bar{V}_{\alpha} \equiv \bigcup_{f(V)=\alpha} V = \bigcup_{f(V)=\alpha} \bar{V} \subset \mathcal{U}_{\alpha}$$

Since the collection \mathcal{B} is an open cover of X, so is the indexed collection $(V_{\alpha})_{\alpha \in J}$. Since \mathcal{B} is locally finite, so is $(V_{\alpha})_{\alpha \in J}$. In fact, if W is any subset of X, then

$$\{\alpha \in J \colon W \cap V_{\alpha} \neq \emptyset\} = \{f(V) \colon V \in \mathcal{B}; W \cap V \neq \emptyset\}.$$

Approach 2: Well-order the set J. Since X is paracompact, there exists an indexed locally finite open collection $(W_{\alpha})_{\alpha \in J}$ that refines $(\mathcal{U}_{\alpha})_{\alpha \in J}$, i.e. $W_{\alpha} \subset U_{\alpha}$ for all $\alpha \in J$, and covers X; see below. We will now shrink the sets W_{α} . Suppose $\alpha \in J$ and for every $\beta < \alpha$, we have constructed an open subset V_{β} of X such that $\bar{V}_{\beta} \subset W_{\beta}$ and

$$X = \bigcup_{\beta < \alpha} V_{\beta} \cup \bigcup_{\beta \ge \alpha} W_{\beta}.$$

Thus,

$$X - \bigcup_{\beta < \alpha} V_{\beta} - \bigcup_{\beta > \alpha} W_{\beta} \subset W_{\alpha}.$$

Since X is normal, there exists an open subset V_{α} of X such that $\overline{V}_{\alpha} \subset W_{\alpha}$ and

$$X - \bigcup_{\beta < \alpha} V_{\beta} - \bigcup_{\beta > \alpha} W_{\beta} \subset V_{\alpha} \qquad \Longrightarrow \qquad X = \bigcup_{\beta \le \alpha} V_{\beta} \cup \bigcup_{\beta > \alpha} W_{\beta}$$

Thus, we can construct inductively an indexed collection $\{V_{\alpha}\}_{\alpha \in J}$ of open subset of X such that for all $\alpha \in J$

$$\bar{V}_{\alpha} \subset W_{\alpha} \subset V_{\alpha}$$
 and $X = \bigcup_{\beta \le \alpha} V_{\beta} \cup \bigcup_{\beta > \alpha} W_{\beta}$

Since $(W_{\alpha})_{\alpha \in J}$ is locally finite, so is $(V_{\alpha})_{\alpha \in J}$. It remains to check that $(V_{\alpha})_{\alpha \in J}$ covers X. Given $x \in X$, let

$$J_x = \big\{ \alpha \in J \colon x \in W_\alpha \big\}.$$

Since $(W_{\alpha})_{\alpha \in J}$ is a locally finite cover of X, J_x is a finite non-empty subset of J. Let α be the largest element of J_x . If

$$x \in X - \bigcup_{\beta < \alpha} V_{\beta} - \bigcup_{\beta > \alpha} W_{\beta},$$

then $x \in V_{\alpha}$. On the other hand, if

$$x \notin X - \bigcup_{\beta < \alpha} V_{\beta} - \bigcup_{\beta > \alpha} W_{\beta},$$

then $x \in V_{\beta}$ for some $\beta < \alpha$, since $x \notin W_{\beta}$ for all $\beta > \alpha$.

Note: The second sentence of the previous paragraph is not what the definition of paracompactness says, but the two statements are equivalent. If X is paracompact, the open cover

$$\mathcal{A} = \left\{ \mathcal{U}_{\alpha} \colon \alpha \in J \right\}$$

has a locally finite open refinement \mathcal{B} that covers X. In particular, for every $V \in \mathcal{B}$ there exists $f(V) \in J$ such that $V \subset U_{f(V)}$. Let

$$W_{\alpha} = \bigcup_{f(V)=\alpha} V \subset \mathcal{U}_{\alpha}.$$

Then, $(W_{\alpha})_{\alpha \in J}$ is an open cover of X, because \mathcal{B} is. Similarly to end of Approach 1, $(W_{\alpha})_{\alpha \in J}$ is locally finite, because \mathcal{B} is.

Approach 3: Since X is regular and paracompact, there exists an indexed locally finite closed collection $(C_{\alpha})_{\alpha \in J}$ that refines $(\mathcal{U}_{\alpha})_{\alpha \in J}$, i.e. $C_{\alpha} \subset U_{\alpha}$ for all $\alpha \in J$, and covers X; see below. Since X is normal, for every $\alpha \in J$ there exists an open subset W_{α} of X such that $C_{\alpha} \subset W_{\alpha}$ and $\overline{W}_{\alpha} \subset \mathcal{U}_{\alpha}$. Since $(C_{\alpha})_{\alpha \in J}$ covers X, $(W_{\alpha})_{\alpha \in J}$ is an open cover of X. Since X is paracompact, $(W_{\alpha})_{\alpha \in J}$ has a locally finite open refinement $(V_{\alpha})_{\alpha \in J}$ that covers X; see the note above. Since $V_{\alpha} \subset W_{\alpha}$ and $\overline{W}_{\alpha} \subset \mathcal{U}_{\alpha}, \overline{V}_{\alpha} \subset \mathcal{U}_{\alpha}$ for all $\alpha \in J$, as needed.

Note: By the equivalence-of-covering-conditions Lemma 41.3 for regular spaces, the open cover

$$\mathcal{A} = \left\{ \mathcal{U}_{\alpha} \colon \alpha \in J \right\}$$

has a locally finite closed refinement \mathcal{B} that covers X. In particular, for every $C \in \mathcal{B}$ there exists $f(C) \in J$ such that $C \subset U_{f(C)}$. Let

$$C_{\alpha} = \bigcup_{f(C)=\alpha} C \subset \mathcal{U}_{\alpha}.$$

Similarly to the previous note, $(C_{\alpha})_{\alpha \in J}$ is an indexed locally finite cover of X. Since \mathcal{B} is a locally finite closed collection,

$$\bar{C}_{\alpha} = \bigcup_{f(C)=\alpha} C = \bigcup_{f(C)=\alpha} \bar{C} = \bigcup_{f(C)=\alpha} C = C_{\alpha}.$$

Thus, $(C_{\alpha})_{\alpha \in J}$ is a closed collection.

(b) By (a), there exist indexed locally finite collections $(V_{\alpha})_{\alpha \in J}$ and $(W_{\alpha})_{\alpha \in J}$ that cover X such that

$$W_{\alpha} \subset V_{\alpha}$$
 and $V_{\alpha} \subset \mathcal{U}_{\alpha}$ $\forall \alpha \in J.$

Since X is normal, by the Urysohn Lemma for every $\alpha \in J$ there exists a continuous function

$$f_{\alpha} \colon X \longrightarrow [0,1]$$
 s.t. $f_{\alpha}(\overline{W}_{\alpha}) = \{1\}$ and $f_{\alpha}(X - V_{\alpha}) = \{0\}.$

Since $(V_{\alpha})_{\alpha \in J}$ is point finite, for every x

$$\Phi(x) = \sum_{\alpha \in J} f_{\alpha}(x)$$

is well-defined, being the sum of a finite collection of nonzero numbers. Since $(V_{\alpha})_{\alpha \in J}$ is locally finite,

$$\Phi \colon X \longrightarrow \mathbb{R}$$

is continuous, since on all sufficiently small opens sets Φ is the sum of a finitely collection of nonzero functions. Since $(W_{\alpha})_{\alpha \in J}$ covers X,

$$\Phi(x) \ge 1 \qquad \forall x \in X.$$

Thus, for every $\alpha \in J$, the function

$$\varphi_{\alpha} \equiv f_{\alpha} / \Phi : X \longrightarrow [0, 1]$$

is continuous. Furthermore, for all $x \in X$

$$\sum_{\alpha \in J} \phi_{\alpha}(x) = \sum_{\alpha \in J} \left(f_{\alpha}(x) / \Phi(x) \right) = \left(\sum_{\alpha \in J} (f_{\alpha}(x)) / \Phi(x) = \Phi(x) / \Phi(x) = 1.$$