MAT 530: Topology\&Geometry, I Fall 2005

Midterm Solutions

Note: These solutions are more detailed than solutions sufficient for full credit.

Problem $1(5+5 \mathrm{pts})$
Let X denote the set $\{a, b, c\}$. The collections

$$
\mathcal{T}_{1}=\{\emptyset, X,\{a\},\{a, b\}\} \quad \text { and } \quad \mathcal{T}_{2}=\{\emptyset, X,\{b, c\}\}
$$

are topologies on X.
(a) What is the largest topology on X which is smaller (coarser) than both \mathcal{T}_{1} and \mathcal{T}_{2} ?
(b) What is the smallest topology on X which is larger (finer) than both \mathcal{T}_{1} and \mathcal{T}_{2} ?
(a) $\mathcal{T}=\{\emptyset, X\}$, i.e. the trivial topology. By assumption,

$$
\mathcal{T} \subset \mathcal{T}_{1} \cap \mathcal{T}_{2}=\{\emptyset, X\}
$$

Since $\{\emptyset, X\}$ happens to be a topology on X, this is the largest topology contained in \mathcal{T}_{1} and \mathcal{T}_{2}. Note: The intersection of any collection of topologies on a set is again a topology.
(b) $\mathcal{T}=\{\emptyset, X,\{a\},\{b\},\{a, b\},\{b, c\}\}$. By assumption,

$$
\mathcal{T} \supset \mathcal{T}_{1} \cup \mathcal{T}_{2}=\{\emptyset, X,\{a\},\{a, b\},\{b, c\}\}
$$

Since \mathcal{T} is a topology and contains $\{a, b\}$ and $\{b, c\}, \mathcal{T}$ must also contain their intersection, i.e. $\{b\}$. Thus,

$$
\mathcal{T} \supset\{\emptyset, X,\{a\},\{b\},\{a, b\},\{b, c\}\} .
$$

Since the collection on the right is closed under (finite) intersections and (arbitrary) unions of its elements, it is a topology on X. Thus, this is the smallest topology containing \mathcal{T}_{1} and \mathcal{T}_{2}.

Problem 2 (20 pts)

Show that the subset

$$
A=(0,2)^{\omega} \equiv \prod_{k \in \mathbb{Z}^{+}}(0,2)
$$

of \mathbb{R}^{ω} is not open in the uniform topology on \mathbb{R}^{ω}.

Let $\bar{\rho}$ denote the uniform metric on \mathbb{R}^{ω}. Let

$$
\mathbf{x}=(1 / n)_{n \in \mathbb{Z}^{+}} \in A
$$

It is sufficient to show that no ball $B_{\bar{\rho}}(\mathbf{x}, \delta)$ centered \mathbf{x} is contained in A. Suppose $\delta>0$. Choose $n \in \mathbb{Z}^{+}$such that $1 / n<\delta$. Then,

$$
\mathbf{y} \equiv(1,1 / 2, \ldots, 1 / n, 0,0, \ldots) \in B_{\bar{\rho}}(\mathbf{x}, \delta)
$$

since

$$
\bar{\rho}(\mathbf{x}, \mathbf{y}) \equiv \sup \left\{\min \left(\left|x_{k}-y_{k}\right|, 1\right): k \in \mathbb{Z}^{+}\right\}=1 /(n+1)<\delta
$$

However, $y \notin A$, since the $(n+1)$ st coordinate of \mathbf{y} does not lie in $(0,2)$

Problem 3 (20 pts)

Suppose J is a set and X_{α} is a compact Hausdorff space for each $\alpha \in J$. Show that the space $\prod_{\alpha \in J} X_{\alpha}$ is normal in the product topology.

Since X_{α} is Hausdorff for every $\alpha \in J, \prod_{\alpha \in J} X_{\alpha}$ is also Hausdorff. Since X_{α} is compact for every $\alpha \in J, \prod_{\alpha \in J} X_{\alpha}$ is also compact (in the product topology), by the Tychonoff Theorem. Since $\prod_{\alpha \in J} X_{\alpha}$ is compact and Hausdorff, it is normal.
Note: Since X_{α} is compact Hausdorff, X_{α} is normal for every $\alpha \in J$. However, since the product of a collection of normal spaces may not be normal, it does not follow that $\prod_{\alpha \in J} X_{\alpha}$ is normal. Thus, the order of the argument matters here.

Problem 4 (20 pts)

Suppose that X is a topological space and Y is a compact topological space. Show that the projection map $\pi_{1}: X \times Y \longrightarrow X$ is closed.

Let A be a closed subset of $X \times Y$. We show that $\pi_{1}(A)$ is closed by showing that $X-\pi_{1}(A)$ is open. Suppose $x \in X-\pi_{1}(A)$. Then

$$
\{x\} \times Y=\pi_{1}^{-1}(x) \subset X \times Y-\pi_{1}^{-1}\left(\pi_{1}(A)\right) \subset X \times Y-A
$$

Since the slice $\{x\} \times Y$ is contained in the open subset $X \times Y-A$ of $X \times Y$ and Y is compact, by the Tube Lemma there exists an open subset \mathcal{U} of X such that

$$
\{x\} \times Y \subset \mathcal{U} \times Y \subset X \times Y-A \quad \Longrightarrow \quad A \subset X \times Y-\mathcal{U} \times Y=(X-U) \times Y \quad \Longrightarrow \quad \pi_{1}(A) \subset X-U
$$

Thus, \mathcal{U} is an open neighborhood of x in X which is contained in $X-\pi_{1}(A)$.

Problem 5 (15+15 pts)
Suppose X is a paracompact Hausdorff space and $\left(\mathcal{U}_{\alpha}\right)_{\alpha \in J}$ is an indexed collection of open subsets of X whose union covers X.
(a) Show that there exists a locally finite indexed collection $\left(V_{\alpha}\right)_{\alpha \in J}$ of open subsets of X whose union covers X such that $\bar{V}_{\alpha} \subset \mathcal{U}_{\alpha}$ for all $\alpha \in J$;
(b) Show that there exists a partition of unity $\left(\phi_{\alpha}\right)_{\alpha \in J}$ subordinate to $\left(\mathcal{U}_{\alpha}\right)_{\alpha \in J}$.
(a) Since X is paracompact and Hausdorff, X is normal. Three approaches to (a) are described below. They all use the Axiom of Choice (or the Well-Ordering Theorem), explicitly and implicitly.

Approach 1: Let

$$
\mathcal{A}=\left\{\mathcal{U} \subset X \text { open }: \overline{\mathcal{U}} \subset \mathcal{U}_{\alpha} \text { for some } \alpha \in J\right\}
$$

Since $\left(\mathcal{U}_{\alpha}\right)_{\alpha \in J}$ covers X and X is regular, \mathcal{A} also covers X. Thus, \mathcal{A} is an open cover of X. Since X is paracompact, \mathcal{A} has a locally finite open refinement \mathcal{B} covering X. In particular, for every $V \in \mathcal{B}$ there exists $\mathcal{U} \in \mathcal{A}$ such that $V \subset \mathcal{U}$. Since for every $\mathcal{U} \in \mathcal{A}$, there exists $\alpha \in J$ such that $\overline{\mathcal{U}} \subset \mathcal{U}_{\alpha}$, it follows that for every $V \in \mathcal{B}$ there exists $f(V) \in J$ such that $\bar{V} \subset \mathcal{U}_{f(V)}$. For every $\alpha \in J$, let

$$
V_{\alpha}=\bigcup_{f(V)=\alpha} V
$$

Since the collection $\{V \in \mathcal{B}: f(V)=\alpha\} \subset \mathcal{B}$ is locally finite and $\bar{V} \subset \mathcal{U}_{f(V)}$ for all $V \in \mathcal{B}$,

$$
\bar{V}_{\alpha} \equiv \overline{\bigcup_{f(V)=\alpha} V}=\bigcup_{f(V)=\alpha} \bar{V} \subset \mathcal{U}_{\alpha}
$$

Since the collection \mathcal{B} is an open cover of X, so is the indexed collection $\left(V_{\alpha}\right)_{\alpha \in J}$. Since \mathcal{B} is locally finite, so is $\left(V_{\alpha}\right)_{\alpha \in J}$. In fact, if W is any subset of X, then

$$
\left\{\alpha \in J: W \cap V_{\alpha} \neq \emptyset\right\}=\{f(V): V \in \mathcal{B} ; W \cap V \neq \emptyset\}
$$

Approach 2: Well-order the set J. Since X is paracompact, there exists an indexed locally finite open collection $\left(W_{\alpha}\right)_{\alpha \in J}$ that refines $\left(\mathcal{U}_{\alpha}\right)_{\alpha \in J}$, i.e. $W_{\alpha} \subset U_{\alpha}$ for all $\alpha \in J$, and covers X; see below. We will now shrink the sets W_{α}. Suppose $\alpha \in J$ and for every $\beta<\alpha$, we have constructed an open subset V_{β} of X such that $\bar{V}_{\beta} \subset W_{\beta}$ and

$$
X=\bigcup_{\beta<\alpha} V_{\beta} \cup \bigcup_{\beta \geq \alpha} W_{\beta}
$$

Thus,

$$
X-\bigcup_{\beta<\alpha} V_{\beta}-\bigcup_{\beta>\alpha} W_{\beta} \subset W_{\alpha}
$$

Since X is normal, there exists an open subset V_{α} of X such that $\bar{V}_{\alpha} \subset W_{\alpha}$ and

$$
X-\bigcup_{\beta<\alpha} V_{\beta}-\bigcup_{\beta>\alpha} W_{\beta} \subset V_{\alpha} \quad \Longrightarrow \quad X=\bigcup_{\beta \leq \alpha} V_{\beta} \cup \bigcup_{\beta>\alpha} W_{\beta}
$$

Thus, we can construct inductively an indexed collection $\left\{V_{\alpha}\right\}_{\alpha \in J}$ of open subset of X such that for all $\alpha \in J$

$$
\bar{V}_{\alpha} \subset W_{\alpha} \subset V_{\alpha} \quad \text { and } \quad X=\bigcup_{\beta \leq \alpha} V_{\beta} \cup \bigcup_{\beta>\alpha} W_{\beta}
$$

Since $\left(W_{\alpha}\right)_{\alpha \in J}$ is locally finite, so is $\left(V_{\alpha}\right)_{\alpha \in J}$. It remains to check that $\left(V_{\alpha}\right)_{\alpha \in J}$ covers X. Given $x \in X$, let

$$
J_{x}=\left\{\alpha \in J: x \in W_{\alpha}\right\}
$$

Since $\left(W_{\alpha}\right)_{\alpha \in J}$ is a locally finite cover of X, J_{x} is a finite non-empty subset of J. Let α be the largest element of J_{x}. If

$$
x \in X-\bigcup_{\beta<\alpha} V_{\beta}-\bigcup_{\beta>\alpha} W_{\beta}
$$

then $x \in V_{\alpha}$. On the other hand, if

$$
x \notin X-\bigcup_{\beta<\alpha} V_{\beta}-\bigcup_{\beta>\alpha} W_{\beta}
$$

then $x \in V_{\beta}$ for some $\beta<\alpha$, since $x \notin W_{\beta}$ for all $\beta>\alpha$.
Note: The second sentence of the previous paragraph is not what the definition of paracompactness says, but the two statements are equivalent. If X is paracompact, the open cover

$$
\mathcal{A}=\left\{\mathcal{U}_{\alpha}: \alpha \in J\right\}
$$

has a locally finite open refinement \mathcal{B} that covers X. In particular, for every $V \in \mathcal{B}$ there exists $f(V) \in J$ such that $V \subset U_{f(V)}$. Let

$$
W_{\alpha}=\bigcup_{f(V)=\alpha} V \subset \mathcal{U}_{\alpha}
$$

Then, $\left(W_{\alpha}\right)_{\alpha \in J}$ is an open cover of X, because \mathcal{B} is. Similarly to end of Approach $1,\left(W_{\alpha}\right)_{\alpha \in J}$ is locally finite, because \mathcal{B} is.

Approach 3: Since X is regular and paracompact, there exists an indexed locally finite closed collection $\left(C_{\alpha}\right)_{\alpha \in J}$ that refines $\left(\mathcal{U}_{\alpha}\right)_{\alpha \in J}$, i.e. $C_{\alpha} \subset U_{\alpha}$ for all $\alpha \in J$, and covers X; see below. Since X is normal, for every $\alpha \in J$ there exists an open subset W_{α} of X such that $C_{\alpha} \subset W_{\alpha}$ and $\bar{W}_{\alpha} \subset \mathcal{U}_{\alpha}$. Since $\left(C_{\alpha}\right)_{\alpha \in J}$ covers $X,\left(W_{\alpha}\right)_{\alpha \in J}$ is an open cover of X. Since X is paracompact, $\left(W_{\alpha}\right)_{\alpha \in J}$ has a locally finite open refinement $\left(V_{\alpha}\right)_{\alpha \in J}$ that covers X; see the note above. Since $V_{\alpha} \subset W_{\alpha}$ and $\bar{W}_{\alpha} \subset \mathcal{U}_{\alpha}, \bar{V}_{\alpha} \subset \mathcal{U}_{\alpha}$ for all $\alpha \in J$, as needed.

Note: By the equivalence-of-covering-conditions Lemma 41.3 for regular spaces, the open cover

$$
\mathcal{A}=\left\{\mathcal{U}_{\alpha}: \alpha \in J\right\}
$$

has a locally finite closed refinement \mathcal{B} that covers X. In particular, for every $C \in \mathcal{B}$ there exists $f(C) \in J$ such that $C \subset U_{f(C)}$. Let

$$
C_{\alpha}=\bigcup_{f(C)=\alpha} C \subset \mathcal{U}_{\alpha} .
$$

Similarly to the previous note, $\left(C_{\alpha}\right)_{\alpha \in J}$ is an indexed locally finite cover of X. Since \mathcal{B} is a locally finite closed collection,

$$
\bar{C}_{\alpha}=\overline{\bigcup_{f(C)=\alpha} C}=\bigcup_{f(C)=\alpha} \bar{C}=\bigcup_{f(C)=\alpha} C=C_{\alpha} .
$$

Thus, $\left(C_{\alpha}\right)_{\alpha \in J}$ is a closed collection.
(b) By (a), there exist indexed locally finite collections $\left(V_{\alpha}\right)_{\alpha \in J}$ and $\left(W_{\alpha}\right)_{\alpha \in J}$ that cover X such that

$$
\bar{W}_{\alpha} \subset V_{\alpha} \quad \text { and } \quad \bar{V}_{\alpha} \subset \mathcal{U}_{\alpha} \quad \forall \alpha \in J .
$$

Since X is normal, by the Urysohn Lemma for every $\alpha \in J$ there exists a continuous function

$$
f_{\alpha}: X \longrightarrow[0,1] \quad \text { s.t. } \quad f_{\alpha}\left(\bar{W}_{\alpha}\right)=\{1\} \quad \text { and } \quad f_{\alpha}\left(X-V_{\alpha}\right)=\{0\} .
$$

Since $\left(V_{\alpha}\right)_{\alpha \in J}$ is point finite, for every x

$$
\Phi(x)=\sum_{\alpha \in J} f_{\alpha}(x)
$$

is well-defined, being the sum of a finite collection of nonzero numbers. Since $\left(V_{\alpha}\right)_{\alpha \in J}$ is locally finite,

$$
\Phi: X \longrightarrow \mathbb{R}
$$

is continuous, since on all sufficiently small opens sets Φ is the sum of a finitely collection of nonzero functions. Since $\left(W_{\alpha}\right)_{\alpha \in J}$ covers X,

$$
\Phi(x) \geq 1 \quad \forall x \in X
$$

Thus, for every $\alpha \in J$, the function

$$
\varphi_{\alpha} \equiv f_{\alpha} / \Phi: X \longrightarrow[0,1]
$$

is continuous. Furthermore, for all $x \in X$

$$
\sum_{\alpha \in J} \phi_{\alpha}(x)=\sum_{\alpha \in J}\left(f_{\alpha}(x) / \Phi(x)\right)=\left(\sum_{\alpha \in J}\left(f_{\alpha}(x)\right) / \Phi(x)=\Phi(x) / \Phi(x)=1 .\right.
$$

