
Fundamental group fact sheet

Let X be a topological space. The set of homotopy classes of loops in X with
the base-point x0 ∈ X is denoted by π1(X, x0) and is called the fundamental group
of X. The fundamental group is indeed a group. The group structure is given
by the multiplication of loops (going around two loops successively) If X is path
connected, then the fundamental groups with different base points are isomorphic.
In this case, they are denoted simply by π1(X).

Example 1. The fundamental group of the circle is Z. The isomorphism
π1(S1) ∼= Z is defined as follows. To any loop, we assign the number of times
it goes around the circle.

Example 2. The fundamental group of Rn is trivial. Indeed, any loop in Rn

can be contracted to 0 homotetically.
For any continuous map f : X → Y there is the corresponding homomorphism

f∗ : π1(X) → π1(Y ). The class [γ] of a loop γ : [0, 1] → X gets mapped to the class
of the loop f ◦ γ under this homomorphism.

If f : X → Y and g : Y → Z are continuous map, then (g ◦ f)∗ = g∗ ◦ f∗ on
the level of the fundamental group. This statement has the following important
corollary:

Proposition 0.1. If topological spaces are homeomorphic, then their fundamental
groups are isomorphic.

Actually, the assumption of this proposition can be relaxed. Topological spaces
X and Y are said to be homotopy equivalent, if there exist maps f : X → Y and
g : Y → X such that f ◦ g is homotopic to the identity self-map of Y , and g ◦ f is
homotopic to the identity self-map of X.

Proposition 0.2. If topological spaces are homotopy equivalent, then they have
isomorphic fundamental groups.

Consider a continuous map p : T → X of a path connected space T to a path
connected space X. Suppose that any point in X has a neighborhood U such that
p−1(U) is homeomporphic to the direct product U×Z of U with some discrete space
Z. Suppose also that this homeomorphism composed with the standard projection
of U × Z to the first factor, gives the identity. Then p is called a covering, T is
called the covering space and X is called the base space of the covering p.

If we drop the condition of T being path connected in the definition of a covering,
then we obtain the definition of a covering in a wider sense. We will call these
coverings in a wider sense “coverings” (in quotation marks).

Proposition 0.3. Any “covering” over [0, 1] is homeomorphic to a direct product
of [0, 1] with a discrete space. This homeomorphism composed with the standard
projection of this direct product to [0, 1], gives the identity map.

Corollary 0.4. Let p : T → [0, 1] be a “covering”. Consider a path γ : [0, 1] → [0, 1]
in [0, 1]. For any point x̃0 ∈ T , there exists a unique path γ̃ in T such that p◦ γ̃ = γ
and γ̃(0) = x̃0.

Given a covering p : T → X and a continuous map f : Y → X, we can define a
covering over Y , which is called the covering on Y induced by the map f . Namely,

T ′ = {(y, z) ∈ Y × T | p(z) = f(y)}
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The covering p′ : T ′ → Y is defined by the formula p′(y, z) = y.
From the existence of induced coverings and the Corollary stated above, it follows

that

Theorem 0.5 (path lifting). Consider a “covering” p : T → X and a path γ :
[0, 1] → X. For any point x̃0 ∈ T , there exists a unique path γ̃ in T such that
p ◦ γ̃ = γ and γ̃(0) = x̃0.

Theorem 0.6 (homotopy lifting). Consider a homotopy ft of a map f0 of a topo-
logical space Y to the base space X of a “covering” p : T → X. Suppose that f0

lifts to a map F0 : Y → T so that p ◦ F0 = f0. Then there is a homotopy Ft of the
map F0 such that p ◦ Ft = ft.

The fundamental theorem stated above imply the following important corollaries:

Corollary 0.7. Consider a covering p : T → X. The induced map p∗ : π1(T ) →
π1(X) is injective.

Corollary 0.8. The set π1(X)/p∗π1(T ) is in a 1-1 correspondence with the preim-
age p−1(x) of any point x ∈ X.

Example 3. From Corollary 0.8 it follows that the fundamental group of RPn

is Z/2Z (this is the only group with 2 elements).
Example 4. We can extend Corollary 0.8 to a proof of the fact that π1(8) is the

free group with 2 generators. Here 8 is the figure eight. We can define a covering
T of 8 as the infinite graph such that its edges are marked with labels a, b, a−1

and b−1 and such that each vertex is incidend to exactly 4 edges, one of each kind.
The space T is simply connected (i.e. it is path connected, and its fundamental
group is trivial). The projection p : T → X is defined as follows. All vertices go
to the vertex of 8 (the point where the two circles touch). A path along an a-edge
corresponds to a path along the upper circle of 8 in the counterclockwise direction.
A path along an a−1-edge corresponds to a path along the upper circle of 8 in the
clockwise direction. A path along a b-edge corresponds to a path along the lower
circle of 8 in the counterclockwise direction. A path along a b−1-edge corresponds
to a path along the lower circle of 8 in the clockwise direction.

Let us state some applications of the fundamental group.
No retraction theorem. A subspace A of a topological space X is called a retract of
X if there is a continuous map f : X → A such that f restrict to the identity map
on A.

Theorem 0.9. The boudnary circle S1 of a disk D2 is not a retract of the disk.

Proof. The identity self-map of S1 induces the identity self-map of the funda-
mental group. If there were a retraction f : D2 → S1, then the identity self-map
of S1 would factor through the inclusion S1 → D2, which is nulhomotopic. A
contadiction. �

Theorem 0.9 generalizes to higher dimensions:

Theorem 0.10. The boudnary sphere Sn of a disk Dn+1 is not a retract of the
disk.

Fundamental theorem of algebra. Using the fundamental group, we can prove that
any polynomial with constant coefficients has at least one complex root, which is
the most difficult part of the fundamental theorem of algebra. Let f : C → C
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be a polynomial. Restrict it to a very big circle S around 0. We can prove that
f(z) = zn +g(z), where n is the degree of f and |g(z)| < |zn| on S. Then f restricts
to a map of S to C − 0, which is clearly homotopic to zn. This map induces a
nontrivial homomorphism of π1(S) to π1(C− 0), namely, the multiplication by n.

Therefore, f cannot map C to C − 0, otherwise its restriction to S would be
null-homotopic. It follows that f attains the value 0 somewhere.
Antipode-preserving maps. A map f : Sn → Sn is called antipode-preserving if for
any x ∈ Sn we have f(−x) = −f(x).

Theorem 0.11. No antipose-preserving map of Sn to Sn is nulhomotopic.

Indeed, any antipode-preserving map f : Sn → Sn gives rise to a self-map of
RPn. The latter induces the identity homomorphism on the level of the fundamen-
tal group.

Corollary 0.12. There is no antipode-preserving map f : Sn+1 → Sn.

Corollary 0.13 (Borsuk–Ulam theorem). For any continuous map f : Sn → Rn,
there is a point x ∈ Sn such that f(x) = f(−x).

Ham sandwich theorem. Consider a sandwitch consisting of bread, butter and meat.
It is always possible to cut this sandwich by a plane so that bread, butter and meat
are divided equally, i.e. there are equal volumes of them in both half-spaces.

This statement generalizes to the following theorem:

Theorem 0.14. Suppose that µ1, . . . , µn are n measures on Rn that are absoltely
continuous with respect to the Lebesgue measure (i.e. the µi-volume of any set of
Lebesgue measure zero is also zero for i = 1 . . . n). Then there exists a hyperplane
H in Rn dividing Rn into two half-spaces H+ and H− and such that∫

H+

dµi =
∫

H−

dµi, i = 1 . . . n.

Proof. Consider the map f of the set of all half-spaces H+ to Rn such that
H+ is mapped to the vector

(
∫

H+

dµ1, . . . ,

∫
H+

dµn) ∈ Rn.

The source space can be embedded into Sn and f extends to Sn. It remains to use
the Borsuk–Ulam theorem. �


