
Axiom of Choice. The Axiom of Choice states that for any collection S of sets
there exists a choice function S →

⋃
S such that σ(X) ∈ X for all X ∈ S. We will

derive the Zorn lemma directly from the axiom of choice.

Theorem 1 (Zorn). Let X be a partially ordered set. Suppose that for any linearly
ordered subset A of X there is an upper bound, i.e. an element â ∈ X such that
a ≤ â for all a ∈ A. Then X has a maximal element, i.e. an element x̂ ∈ X such
that the inequality x ≥ x̂ implies x = x̂.

Proof. The proof goes in several steps.
1) Fix any element x0 ∈ X.
2) Suppose that X has no maximal elements. Then for any linearly ordered

subset A ⊂ X, the set of all upper bounds not belonging to A, is nonempty. Choose
one upper bound σ(A) from this set. Thus we have A ≤ σ(A) (i.e., a ≤ σ(A) for
all a ∈ A) and a 6∈ A. Let us fix this choice function σ for the rest of the proof.

3) Define a chain in X to be a subset C ⊂ X satisfying the following properties:
• We have x0 ∈ C.
• The subset C is well-ordered.
• For any x ∈ C, we have σ{y ∈ C| y < x} = x

4) Chains exist, e.g. {x0} is a chain.
5) If C is a chain and x ∈ C, then Cx = {y ∈ C| y < x} is also a chain (this is

obvious). By definition of chains, we have σ(Cx) = x.
6) Suppose that C ′ ⊂ C are chains. If C ′ 6= C, then there is an element x ∈ C

such that C ′ = Cx. To prove this, we first define x to be the mininal (smallest)
element of the set C − C ′. Then it is clear that Cx ⊂ C ′. Let x′ be the minimal
element of C ′−Cx, so that we have C ′

x′ ⊂ Cx. The element x′ cannot be less than x,
otherwise it would be in Cx. Hence, x′ ≥ x. It follows that C ′

x′ ⊃ Cx. We see that
Cx = C ′

x′ as we have proved both inclusions. But now σ(Cx) = x and σ(C ′
x′) = x′,

therefore, x′ = x. But x′ belongs to C ′ whereas x does not. Contradiction.
7) For any pair of chains C and C ′, we have either C ⊂ C ′ or C ′ ⊂ C. Indeed,

consider the chain C ∩ C ′. By step 6), if it does not coincide with either C or C ′,
then it has the form Cx = C ′

x′ for some x ∈ C and x′ ∈ C ′. In particular, the
elements x and x′ do not belong to the intersection C ∩ C ′, while x belongs to C
and x′ belongs to C ′. But now x = σ(Cx) = σ(C ′

x′) = x′. Contradiction.
8) Take the union of Ĉ all chains. We claim that Ĉ is also a chain. It is clear

from steps 6) and 7) that Ĉ is linearly ordered and that σ(Ĉx) = x for all x ∈ C. It
only remains to prove that Ĉ is well-ordered. [This is an exercise from Homework
4].

9) The chain Ĉ is the largest chain. Now consider x̂ = σ(Ĉ). Clearly, Ĉ ∪ {x̂} is
a chain that is bigger than Ĉ. Contradiction, which proves the Zorn lemma. �

Theorem 2 (Zermelo). Any set admits a well-ordering.

Proof. This theorem can be proved in almost the same way as the Zorn lemma.
Namely, we need to fix a point x0 ∈ X, and a choice function σ that maps any
subset A ⊂ X to a point σ(A) 6∈ A.

Define a chain in X to be a subset C ⊂ X together with a well-ordering of C
such that x0 is the minimal element of C, and σ{y ∈ C| y < x} = x for any x ∈ C.

We can repeat steps 4)-9) to show that the union Ĉ of all chains is well-ordered.
The chain Ĉ is the largest, i.e. it contains all other chains. To get the contradiction,
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we now can define an order on Ĉ ∪{σ(Ĉ)} such that this will be a chain. It suffices
to declare σ(Ĉ) to be the largest element. Contradiction with the fact that Ĉ is
the largest chain. �


