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§28 Limit Point Cbmpacmcss 179

name. It still has not found a name on which everyone agrees. On historical grounds,
some call it *“Fréchet compactness™; others call it the “Bolzano-Weierstrass property.”
We have invented the term *limit point compactness.” It seems as good a term as any;
at least it describes what the property is about.

Theorem 28.1. Compactness implies limit point compactness, but not conversely.

Proof. Let X be a compact space. Given a subset A of X, we wish to prove that if A
is infinite, then A has a limit point. We prove the contrapositive—if A has no limit
point, then A must be finite.

So suppose A has no limit point. Then A contains all its limit points, so that A is
closed. Furthermore, for each a € A we can choose a neighborhood U, of a such that
U, intersects A in the point a alone. The space X is covered by the open set X — A
and the open sets U,; being compact, it can be covered by finitely many of these sets.
Since X — A does not intersect A, and each set U, contains only one point of A, the
set A must be finite. ]

EXAMPLE 1. Let Y consist of two points; give Y the topology consisting of ¥ and
the empty set. Then the space X = Z., x Y is limit point compact, for every nonempty
subset of X has a limit point. It is not compact, for the covering of X by the open sets
U, = {n} x Y has no finite subcollection covering X.

EXAMPLE 2.  Here is a less trivial example. Consider the minimal uncountable well-
ordered set Sgq, in the order topology. The space Sg, is not compact, since it has no largest
clement. However, it is limit point compact: Let A be an infinite subset of Si;. Choose a
subsct B of A that is countably infinite. Being countable, the set B has an upper bound b
in Sq; then B is a subset of the interval [ag, b] of Sq, where ag is the smallest element
of Sq. Since Sq has the Icast upper bound property, the interval [ag, b] is compact. By the
preceding theorem, B has a limit point x in [agp. b]. The point x is also a limit point of A.
Thus Sq is limit point compact.
We now show these two versions of compactness coincide for metrizable spaces;
for this purpose, we introduce yet another version of compactness called sequential
compactness. This result will be used in Chapter 7.

Definition. Let X be a topological space. If (x,) is a sequence of points of X, and if
ny<ny<---<nj<--

is an increasing sequence of positive integers, then the sequence (y;) defined by setting
yi = Xp,; is called a subsequence of the scquence (x,). The space X is said to be
sequentially compact if cvery sequence of points of X has a convergent subsequence.

*Theorem 28.2. Lect X be a metrizable space. Then the following are equivalent:
(1) X is compact.

(2) X is limit point compact.
(3) X is sequentially compact.
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Proof. We have already proved that (1) = (2). To show that (2) = (3), assume
that X is limit point compact. Given a sequence (x,) of points of X, consider the set
A = {x, | n € Z4}. If the set A is finite, then there is a point x such that x = x,, for
infinitely many values of n. In this case, the sequence (x,) has a subsequence that is
constant, and therefore converges trivially. On the other hand, if A is infinite, then A
has a limit point x. We define a subsequence of (x,) converging to x as follows: First
choose 1y so that

Xn, € B(x, 1).

Then suppose that the positive integer n;_| is given. Because the ball B(x, 1/i) inter-
sects A in infinitcly many points, we can choose an index n; > n;_; such that

Xn; € B(x, 1/1).

Then the subsequence x,, Xn,, ... converges to x.

Finally, we show that (3) = (1). This is the hardest part of the proof. ‘

First, we show that if X is sequentially compact, then the Lebesgue number lemma
holds for X. (This would follow from compactness, but compactness is what we arce
trying to prove!) Let A be an open covering of X. We assume that there isno § > 0
such that each set of diameter less than § has an element of A containing it, and derive
a contradiction.

Our assumption implies in particular that for each positive intcger n, there exists a
set of diameter less than 1/n that is not contained in any element of 4A; let C, be such a
set. Choose a point x, € Cp, for each n. By hypothesis, some subsequence (x,, ) of the
sequence (x,) converges, say to the point a. Now a belongs to some element A of the
collection #4; because A is open, we may choose an € > 0 such that B(a, ¢) C A. If i
is large enough that 1/n; < €/2, then the set Cp, lies in the € /2-neighborhood of xp,; ; if
i is also chosen large enough that d(x,,;, a) < €/2, then C, lies in the e-neighborhood
of a. But this means that C,; C A, contrary to hypothesis.

Second, we show that if X is sequentially compact, then given € > 0, there exists
a finite covering of X by open e-balls. Once again, we proceed by contradiction.
Assume that there exists an € > 0 such that X cannot be covered by finitely many
e-balls. Construct a sequence of points x, of X as follows: First, choose x; to be any
point of X. Noting that the ball B(xy, €) is not all of X (otherwise X could be covered
by a single €-ball), choose x; to be a point of X not in B(xy, €). In general, given
X1, ..., Xxn, choose Xp41 to be a point not in the union

B(Xl76)U” U B(xnve)’

using the fact that these balls do not cover X. Note that by construction d (xp+1, x;) >
e fori =1, ..., n. Therefore, the sequence (x,) can have no convergent subsequence;
in fact, any ball of radius € /2 can contain x, for at most one value of n.

Finally, we show that if X is sequentially compact, then X is compact. Let A be
an open covering of X. Because X is sequentially compact, the open covering 4 has
a Lebesgue number 6. Let € = §/3; use sequential compactness of X to find a finite



