MAT 127 LECTURE OUTLINE WEEK 11

These lecture notes are meant to complement what is found in the textbook, to explain the
same material in a slightly different way. My aim is to keep these relatively concise, while
pointing you to the textbook for more details as needed.

Goal: We now enter the final unit of the course: power series. This continues our study of
series from the previous chapter. The new idea is to consider series that contain a variable
x and therefore are functions of z.

(1)

We will begin to look at power series. Let’s first give some motivation for the topic.
Imagine that you need to program a computer to evaluate some relatively complicated
function, say the sine function or natural logarithm function. Computers are very
adept at simple operations like addition and multiplication. So the question is: can
you program a computer to evaluate sin(x) or In(z) (within some small error) just
by using addition and multiplication? The answer is yes, and power series provide a
way to do it.
A power series (centered at 0) is a series of the form

o0

chx”:co+clx+x2x2+-~- )

n=0
A power series resembles a geometric series. In fact, if you take 1 = ¢y =¢; = o =
-+« then you have the series
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which is the geometric series with ratio r = x. Recall that this series converges if
—1 < 2 < 1 and diverges otherwise.
More generally, a power series (centered at a) is a series of the form
o
co(r—a)" =co+c(r—a)+cr—a)+---
n=0
A power series usually converges for some values of x and diverges for others. Note
that all power series converge if x = a, since then it evaluates to c¢g.

This leads to a general theorem about when a power series converges.
o0

Theorem. For any power series cn(x—a)", one of the following three possibilities

n=0

holds:
(i) The series converges for z = a, and diverges for all x # a.
(ii) The series converges for all x.
(iii) There is a value R > 0 such that the series converges if |x —a| < R and diverges
if |t —a] > R. [When |z — a| = R, the series may either converge or diverge.]
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Let’s explain the idea of the theorem. Assume for simplicity that a = 0. Suppose
o0 o

that Z cpx” converges for some value = d. We claim that Z cpx" must converge

n=0 n=0
whenever |z| < |d|. We see this by writing |c,z"| as |c,d"||z/d|". If n is large, then
le,d™| < 1, since we assumed that the series converges for z = d. But then we have
|cpa™| < |x/d|", where |z/d| < 1. Now we apply the (limit) comparison test with the
oo o0

convergent geometric series Z |x/d|™ to conclude that Z cpx™ also converges. This

n=0 n
argument justifies why the set of points for which the series converges must be an
interval centered at a, as opposed to some more complicated set.

The value R in the previous theorem is called the radius of convergence. The set of

all values = for which Z cn(x —a)" converges is called the interval of converence.

n=0
If 0 < R < oo, then there are four possibilities: the closed interval [a — R,a + R,
the open interval (¢ — R,a + R), and the half-open intervals (¢ — R,a + R] and
[a — R,a+ R). (See part (iii) of the previous theorem.)
Here is a standard problem: Given a power series, find its interval and radius of
convergence. See Example 6.1 in the book for some examples, such as:

nzzom, nZ:On!x, nzzc)—(”‘i‘l)?’"'

Here’s a handy tip: you can always use the ratio test to find the radius of convergence.
You then have to test the two endpoints + = a — R and x = a + R separately for
convergence.

As mentioned in the first item above, the motivation of power series is to find a way
to represent complicated functions in terms of simple addition and multiplication.
The formula for the sum of a geometric series gives our first example of this:

1 = n 2

1_x—nzox =l4+z+2°+ .

That is, the function f(z) = 1/(1 — z) is represented by the series on the right in
(1). There is one difference to keep in mind: the function f(z) = 1/(1 —x) is defined
for all x # 1. On the other hand, the geometric series converges if and only if the
ratio has absolute value less than 1, i.e., if || < 1. In other words, the radius of
convergence of the series is 1, and the interval of convergence is —1 < x < 1. So the
power series representation of a function is usually local rather than global.

The previous example might seem like a relatively unimportant function. However,
from just the one series (1) we can obtain a large number of other series. For example,

[13eeh]

replacing “z” with “—z” in (1) gives

1 - n,.n
1+I:Z(—1)x =l—a+22—2>+.-.
n=0
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Similarly, replacing “z” with “—x?" gives
1 [e.e]
— (—1>n$2n:1—$2+$4—$6+"'
1+ a2
n=0
(8) One nice feature of power series is that they behave well under addition, multipli-
cation, differentiation and integration. In particular, it is mathematically correct to
integrate and differentiate power series term-by-term. For example, we can take the
derivative of both sides of (1) to get

—1 d = n—1 2 3

The previous series can be rewritten as

1 = n 2 3

This series can be differentiated again to give (with some algebra) power series for
1/(1 — z)" for all n. In fact, using partial fraction decomposition and some algebra,
we can come up with a representation for any rational function using this approach.
(9) In the other direction, we can integrate the power series for 1/(1 + x) to get
In(l+z)=C+ /—1 "dr=C + "t
IRV >
for some C. Since In(1 4+ 0) = 0, we see that C' = 0. After reindexing the previous
series, we finally have
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[The series, along with many others, can be found in the table on p. 585 in the book.
However, the book has a typo since it has “n = 0” in place of “n = 1”.] In a similar
way, we can integrate the series for 1/(1 + x?) to get a power series for arctan(z):

— n 2n ( 1)n on+1 x3 $5 .’L’7
arctan(x) = /1+:172 Z/ dx ZQn—l—lx —x—§+€—7+...

(10) Some final remarks: when you differentiate or integrate a power series, the radius of
convergence does not change. For example, the radius of convergence for the series
for In(1+z) and arctan(x) are both 1. However, convergence at the endpoints might
be affected. So this must be inspected separately if you need to find the interval of
convergence for such a series.

Already, we can find a power series representation for many functions. However,
we haven’t yet done functions like e* and sin(z). There is a general method to find
the power series representation of any smooth function. We will cover this in Week
12.




