
MAT 127 LECTURE OUTLINE WEEK 10

These lecture notes are meant to complement what is found in the textbook, to explain the
same material in a slightly different way. My aim is to keep these relatively concise, while
pointing you to the textbook for more details as needed.

Goal: We have our final topic in the chapter: alternating series. This is a series whose
terms alternate between being positive and negative. Fortunately, the convergence of alter-
nating series is usually simple, since the positive and negative terms mostly cancel and thus
make it easier for the series to converge.

(1) This is a good moment to recall a fact about sequences that we glossed over before:
the monotone convergence theorem. First, let’s state the terminology. A sequence
{an} is increasing if an ≤ an+1 for all n. A sequence {an} is decreasing if an ≥ an+1

for all n. A sequence is monotone if it is either increasing or decreasing. Finally, a
sequence is bounded if it there is a value M > 0 such that |an| ≤ M for all n.

Monotone convergence theorem. Any bounded, monotone sequence converges.

Let’s discuss the idea of the theorem. Assume for simplicity that {an} is increasing.
Since the sequence is increasing, the terms an will either continue to grow by a definite
amount (i.e., an goes to infinity), or the an will flatten out (i.e., approach a finite
limit). However, since {an} is bounded, the first of these possibilities is ruled out.
So the sequence must converge to a limit.

(2) As mentioned above, an alternating series in one whose terms alternate between being
positive and negative. An alternating series has the form

∞∑
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(−1)n+1bn or
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(−1)nbn,

where each bn ≥ 0. An example is
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(3) Here is the main fact about alternating series:

Alternating series test.

The alternating series
∞∑
n=1

(−1)n+1bn or
∞∑
n=1

(−1)nbn converges if

(i) 0 ≤ bn+1 ≤ bn for all n
(ii) limn→∞ bn = 0.

Moreover, in this case we have the remainder estimate |RN | ≤ bN+1.
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Take a moment to look at Figures 5.17 and 5.18 in the book, which should help
illustrate the idea of the theorem. Namely, the sequence Sk of partial sums of an
alternating series bounce up and down with n. But since bn+1 ≤ bn, these bounces
get smaller and smaller. What we have is that the sequence {S2k} of even partial
sums is monotone (either increasing or decreasing), as is the sequence {S2k+1} of odd
partial sums (in the opposite direction as {S2k}). So both {S2k} and {S2k+1} are
bounded, monotone sequences. By the Monotone Convergence Theorem, they both
converge. Using property (ii) that limn→∞ bn = 0, they both must converge to the
same limit.

(4) There is one example that best illustrates the alternating series test. This is the
alternating harmonic series
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Check that the alternating series test applies. Therefore, the alternating harmonic
series converges. This is in contrast to the usually harmonic series, which diverges.

(5) The previous example motivates one final piece of terminology. A series
∞∑
n=1

an con-

verges absolutely if
∞∑
n−1

|an| converges. A series
∞∑
n=1

an converges conditionally

if if converges but
∞∑
n−1

|an| diverges. So the alternating harmonic series converges

conditionally.
Absolute convergence is a stronger type of convergence. We’ll state the relevant

theorem:

Absolute convergence implies conditional convergence.

If
∞∑
n=1

|an| converges, then
∞∑
n=1

an also converges.

There is a nice proof for this theorem. The idea is to let bn = |an| − an, which

satisfies 0 ≤ bn ≤ 2|an|. If
∞∑
n=1

|an| converges, then we can use the comparison test

to conclude that
∞∑
n=1

bn also converges. We then use some algebra to conclude that∑∞
n=1 an also converges. See p. 501 in the book for more details.


