
MAT 127: Calculus C, Spring 2022
Solutions to Problem Set 8 (85pts)

WebAssign Problem 1 (8pts)

Approximate the sum of the series

∞
∑

n=1

1

n5
correct to three decimal places.

We estimate this infinite sum by the finite sum
∑n=m

n=1 n−5 with the smallest possible m such that

∞
∑

n=1

n−5 −
n=m
∑

n=1

n−5 =
∞
∑

n=m+1

n−5 ≤ 1

2
· 1

1000
.

Since f(x) = x−5 is a positive, decreasing, and continuous function for x ≥ 1, by the Remainder

Estimate for the Integral Test Theorem

∫

∞

m+1
x−5dx <

∞
∑

n=m+1

n−5 <

∫

∞

m
x−5dx .

Since
∫

∞

m
x−5dx =

1

−4
x−4

∣

∣

∣

∞

m
= −1

4

(

∞−4 −m−4
)

=
1

4
m−4,

it follows that
1

4
(m+1)−4 <

∞
∑

n=m+1

n−5 <
1

4
m−4 .

So we need to find the smallest integer m so that

1

4m4
≤ 1

2000
⇐⇒ m4 ≥ 500;

the smallest integer that does this is m=5 (since 44 = 256, while 54 = 625). The estimate is then

m=5
∑

n=1

n−5 =
1

15
+

1

25
+

1

35
+

1

45
+

1

55
=

605 + 305 + 205 + 155 + 125

605
=

806108207

777600000
≈ 1.037

WebAssign Problems 2-4 (9+4+3pts)

Determine whether each of the following series converges or diverges:

(2)
∞
∑

n=1

ne−n , (3)
∞
∑

n=1

n2−1

3n4+1
, (4)

∞
∑

n=1

sin

(

1

n

)

.

(2) The quickest way here is to use the Ratio or Root Test (because of e−n):

|an+1|
|an|

=
(n+1)e−(n+1)

ne−n
=

(

1 +
1

n

)

· e
−ne−1

e−n
=

(

1 +
1

n

)

e−1 −→
(

1 +
1

∞

)

e−1 = e−1 ,

n
√

|an| = n
√
ne−n = n

√
n · n

√
e−n = n

√
n·e−1 −→ 1·e−1 = e−1 .

Since e−1 = 1/e < 1, the series converges



Alternatively, 0 < e−n/2,
∞
∑

n=1

e−n/2 converges being geometric series with r=1/
√
e < 1, and

lim
n−→∞

ne−n

e−n/2
= lim

n−→∞

ne−n/2 = 0,

since the exponential dominates. Thus,
∞
∑

n=1

ne−n converges by the Limit Comparison Test.

The Comparison Test can be used as well. If f(x)=xe−x/2,

f ′(x) = x′e−x/2 + x
(

e−x/2
)

′

= e−x/2 + xe−x/2 · (−1/2) =
1

2
e−x/2(2−x).

So f(x) ≤ f(2) = 2e−2/2 < 1 for x≥2 and thus ne−n≤e−n/2 for all n. Since ne−n≥0 and
∞
∑

n=1

e−n/2

converges being geometric series with r=1/
√
e < 1,

∞
∑

n=1

ne−n also converges

Finally, the Integral Test can also be used. The function f(x) = xe−x is positive and continuous for
x≥1. Since

f ′(x) = x′e−x + x
(

e−x
)

′

= e−x + xe−x · (−1) = e−x(1−x),

f(x) is decreasing for x≥ 1. So the sum converges if and only if

∫

∞

1
xe−xdx does. Integration by

parts gives

∫

∞

1
xe−xdx = −

∫

∞

1
xde−x = −

(

xe−x
∣

∣

∣

∞

1
−
∫

∞

1
e−xdx

)

= − lim
x−→∞

(

xe−x − 1e−1 + e−x

)∣

∣

∣

∣

∞

1

= −
(

0− e−1 + e−∞ − e−1
)

= 2e−1 .

Since the integral is finite,
∞
∑

n=1

ne−n converges

(3) The terms in this series look like n2/n4 = 1/n2. So we limit-compare it to
∑

1/n2; this is a
p-series with p=2>1 and so converges. This limit-comparison can be made, since both series have
positive terms for n≥2 and

(n2−1)/(3n4+1)

1/n2
=

(n2−1)n2

3n4+1
=

(n2−1)n2/n4

(3n4+1)/n4
=

1− 1/n2

3 + 1/n4
−→ 1− 1/∞

3 + 1/∞ =
1

3
.

Since the p-series converges, our series converges as well.

We can also compare (as opposed to limit-compare) to the convergent series

∞
∑

n=1

1

3n2
=

1

3

∞
∑

n=1

1

n2
.

Both series have positive terms for n≥2 and

n2−1

3n4+1
≤ n2

3n4+1
≤ n2

3n4
=

1

3n2
.

2



Since our series is “smaller” than a convergent series, it also converges

(4) The terms in this series look like 1/n as n−→∞. So we limit-compare it to
∑

1/n; this is a
p-series with p=1≤ 1 and so diverges. This limit-comparison can be made, since both series have
positive terms and

lim
n−→∞

sin(1/n)

1/n
= lim

x−→0

sinx

x
= 1.

Since the p-series diverges, our series diverges as well.

We cannot compare (as opposed to limit-compare) to the divergent series
∑

1/n, as sin(1/n)<1/n
(a “larger” series being divergent says nothing about the smaller series). We could compare to the
divergent series

∑

1/2n, since sin(x)>x/2 if x>0 is very small (because sinx/x −→ 1 as x−→0).

As both series have positive terms, we could again conclude that our series diverges (being “larger”

than a divergent series).

WebAssign Problems 5,6 (3+3pts)

Determine whether the following series are absolutely convergent:

(5)
∞
∑

k=1

k

(

2

3

)k

(6)
∞
∑

n=1

(−1)n arctann

n2
.

(5) We need to see if the series
∞
∑

k=1

k

(

2

3

)k

converges. Since there is (2/3)k, try the Ratio or Root Test:

|an+1|
|an|

=
(k + 1)(2/3)k+1

k(2/3)k
=

k + 1

k
· (2/3)

k+1

(2/3)k
=

(

1 +
1

k

)

· (2/3)
k · (2/3)1

(2/3)k

=

(

1 +
1

k

)

· (2/3) −→
(

1 +
1

∞

)

· 2
3
=

2

3
,

k
√

|ak| = k

√

k

(

2

3

)k

=
k
√
k · k

√

(

2

3

)k

=
k
√
k ·

(

2

3

)

−→ 1·
(

2

3

)

=
2

3

Since 2/3 < 1, the series
∞
∑

k=1

k

(

2

3

)k

converges. Thus, the original series does converge absolutely.

(6) Since arctann > 0 for n > 0, we need to see if the series
∞
∑

n=1

arctann

n2
converges. Since

0 ≤ (arctann)/n2 ≤ (π/2)/n2 and the series

∞
∑

n=1

π/2

n2
=

π

2

∞
∑

n=1

1

n2

converges by the p-Series Test with p= 2 > 1, the “smaller” series
∞
∑

n=1

arctann

n2
also converges by

the Comparison Test. Thus, the original series does converge absolutely.
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Problem VIII.1 (5pts)

Find all positive values of b for which the series

∞
∑

n=1

blnn converges.

Since blnn = (eln b)lnn = e(ln b)(lnn) = e(lnn)(ln b) = (elnn)ln b = nln b, by the p-series test the series

∞
∑

n=1

blnn =
∞
∑

n=1

nln b =
∞
∑

n=1

1

n− ln b

converges if and only if − ln b > 1, so that b < 1/e

Problem VIII.2 (2+3pts)

Suppose
∑

an and
∑

bn are series with positive terms and
∑

bn is divergent.

(a) If an>bn for all n, what can you say about
∑

an? Why?

(b) If an<bn for all n, what can you say about
∑

an? Why?

(a)
∑

an diverges by the Comparison Test

(b) nothing If an = bn/2,
∑

an diverges; if an = min(1/2n, bn/2),
∑

an converges by the Compar-
ison Test.

Problem VIII.3 (5+5pts)

If
∑

an is a convergent series with positive terms, is it true that the series

(a)
∑

ln(1+an) , (b)
∑

sin(an)

also converges?

(a) Yes Since 0 < an,
∑

an converges, and thus an−→0 and

lim
n−→∞

ln(1 + an)

an
= lim

x−→0

ln(1 + x)

x
= lim

x−→0

(ln(1 + x))′

x′
= lim

x−→0

1/(1 + x)

1
= 1.

So
∑

ln(1+an) converges by the Limit Comparison Test.

This also follows from the Comparison Test, since 0 < ln(1+an) ≤ an whenever 0 < an, because
1+an≤ ean .

(b) Yes Since 0 < an,
∑

an converges, and thus an−→0 and

lim
n−→∞

sin an
an

= lim
x−→0

sinx

x
= 1,

∑

sin(an) converges by the Limit Comparison Test.

This also follows from the Comparison Test, since 0 < sin an ≤ an whenever 0 < an < π.
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Problem VIII.4 (5pts)

Determine whether the series

∞
∑

n=1

1√
n3+1

converges or diverges.

The terms in this series look like 1/
√
n3 = n−3/2. So we limit-compare it to

∑

n−3/2; this is a
p-series with p= 3/2> 1 and so converges. This limit-comparison can be made, since both series
have positive terms and

1/
√
n3 + 1

n−3/2
=

1√
n3 + 1/

√
n3

=
1

√

(n3 + 1)/n3
=

1
√

1 + 1/n3
−→ 1

√

1 + 1/∞
= 1 .

Since the p-series converges, our series converges as well.

We can also compare (as opposed to limit-compare) to the convergent series
∑

n−3/2. Both series
have positive terms and 1/

√
n3 + 1 < 1/

√
n3. Since our series is “smaller” than a convergent series,

it also converges

Problem VIII.5 (20pts)

For which of the following series is the Ratio Test inconclusive?

(a)
∞
∑

n=1

1

n3
, (b)

∞
∑

n=1

n

2n
, (c)

∞
∑

n=1

(−3)n−1

√
n

, (d)
∞
∑

n=1

√
n

1 + n2
.

Compute the limit of the ratio of the absolute values of two consecutive terms:

(a)
|an+1|
|an|

=
1/(n+1)3

1/n3
=

1

(n+1)3/n3
=

1

((n+1)/n)3
=

(

1

1 + 1/n

)3

−→
(

1

1 + 1/∞

)3

= 1;

(b)
|an+1|
|an|

=
(n+1)/2n+1

n/2n
=

(n+1)

n
· 2n

2n · 21 =

(

1 +
1

n

)

1

2
−→

(

1 +
1

∞

)

1

2
=

1

2
;

(c)
|an+1|
|an|

=
3(n+1)−1/

√
n+1

3n−1/
√
n

=
3n−1 · 31
3n−1

·
√
n√

n+1
= 3

1√
n+1/

√
n
=

3
√

1 + 1/n
−→ 3

√

1 + 1/∞
= 3;

(d)
|an+1|
|an|

=

√
n+1/(1+(n+1)2)√

n/(1 + n2)
=

√
n+1√
n

· 1 + n2

1+(n+1)2
=

√

n+1

n
· 1/n2 + 1

1/n2 + (n+1)2/n2

=

√

1 +
1

n
· 1/n2 + 1

1/n2 + ((n+1)/n)2

=

√

1 +
1

n
· 1/n2 + 1

1/n2 + (1+1/n)2
−→

√

1 +
1

∞ · 1/∞+ 1

1/∞+ (1+1/∞)2
= 1.

Thus, the Ratio Test is inconclusive in (a),(d)

Remark: This problem illustrates the principle that the Ratio Test is not suitable for series that
involve only powers of n, and not something with faster growth such as 2n, n!, or nn. While the
Ratio Test says nothing about the series in (a) and (d), both converge: (a) by the p-series test
and (d) because it looks like

√
n/n2=1/n3/2 (so by Limit Comparison and p-series). By the Ratio
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Test, the series in (b) converges, while the series in (c) diverges. These two examples illustrate the
principle that the limit obtained in applying the Ratio Test is not affected by factors of n and is just
the absolute value of the common ratio r for a geometric series.

Problem VIII.6 (5+5pts)

Determine whether the following series are absolutely convergent:

(a)
∞
∑

n=1

(−1)n−1

√
n

n+1
(b)

∞
∑

n=1

(−1)n−1 1 · 3 · . . . · (2n−1)

(2n−1)!
.

(a) We need to see if the series
∞
∑

n=1

√
n

n+1
converges. Since

√
n/(n+1) looks like

√
n/n=1/

√
n, try

the Limit Comparison Test with bn=1/
√
n:

an
bn

=

√
n/(n+1)

1/
√
n

=
n

n+1
=

n/n

(n+ 1)/n
=

1

1 + 1/n
−→ 1

1 + 1/∞ = 1.

Since the series

∞
∑

n=1

1

n1/2
diverges by the p-Series Test with p=1/2 ≤ 1 and both series have positive

terms, the series

∞
∑

n=1

√
n

n+1
also diverges. Thus, the original series does not converge absolutely.

(b) We need to see if the series

∞
∑

n=1

1 · 3 · . . . · (2n−1)

(2n−1)!
converges. Since there are factorials involved,

try the Ratio Test:

|an+1|
|an|

=
1 · 3 · . . . · (2n−1)(2(n+1)−1)/(2(n+1)−1)!

1 · 3 · . . . · (2n−1)/(2n−1)!

=
1 · 3 · . . . · (2n−1)(2n+1)

1 · 3 · . . . · (2n−1)
· (2n−1)!

(2n+1)!
= (2n+1)

(2n−1)!

(2n−1)!2n(2n+1)
=

2n+ 1

2n(2n+1)
=

1

2n
−→ 0 .

So the series

∞
∑

n=1

1 · 3 · . . . · (2n−1)

(2n−1)!
converges. Thus, the original series does converge absolutely.

Note: Since the numerator of the nth summand is the product of the odd integers between 1 and
2n−1 and the denominator is the product of all integers between 1 and 2n−1, the nth summand
is the reciprocal of the product of all even integers between 1 and 2n−1 (if n= 1, this product is
defined to be 1). Thus,

∞
∑

n=1

1 · 3 · . . . · (2n−1)

(2n−1)!
=

∞
∑

n=1

1

2 · 4 · . . . · (2n−2)

=
∞
∑

n=1

1

2n−1 · 1 · 2 · . . . · (n−1)
=

∞
∑

n=1

1

2n−1(n−1)!
=

∞
∑

n=0

1

2nn!
=

∞
∑

n=0

1

n!

(

1

2

)n

.

We will see later that this sum is e1/2.
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