
MAT 127: Calculus C, Spring 2022
Solutions to Problem Set 7 (70pts)

Webassign Problem 1 (2pts)

Let an = 2n/(3n+ 1).
(a) Determine whether {an} converges.

(b) Determine whether
∑

∞

n=1 an converges.

Since an = 2/(3 + 1/n), the sequence {an} converges to 2/3. Since it does not converge to 0, the

corresponding series diverges by the Test for Divergence of Series.

WebAssign Problem 2 (2pts)

Determine if the series

∞
∑

k=1

k(k + 1)

(k + 3)2
converges and find its sum if converges.

The series diverges because

lim
k−→∞

k(k + 1)

(k + 3)2
= lim

k−→∞

1 + 1/k

(k + 3)2/k2
= lim

k−→∞

1 + 1/k

(1 + 3/k)2
= 1 .

Since the terms in the series do not converge to 0, the series diverges by the Test for Divergence.

WebAssign Problem 3 (5pts)

Determine if the series

∞
∑

n=1

2

n2 + 4n+ 3
converges and find its sum by expressing sn as a telescoping

sum if converges.

1

n2 + 4n+ 3
=

1

(n+ 1)(n+ 3)
=

1

+3 − ( +1 )

(

1

n +1

−
1

n +3

)

=
1

2

(

1

n+ 1
−

1

n+ 3

)

Thus, for n ≥ 2

sn =
k=n
∑

k=1

(

1

k+1
−

1

k+3

)

=

(

1

2
− 1

4

)

+

(

1

3
− 1

5

)

+

(

1
4 −

1

6

)

+

(

1
5 −

1

7

)

+ . . .+

(

1

n+1
−

1

n+3

)

=
1

2
+

1

3
−

1

n+ 2
−

1

n+ 3
.

The second term in each pair with k ≤ n−2 gets canceled by the first term in the pair k+2;
this leaves the first terms in the first two pairs and the second terms in the last two pairs. Since
1/n −→ 0 as n−→∞, the sequence sn converges. Thus, the series also converges and

∞
∑

n=1

2

n2 + 4n+ 3
= lim

n−→∞

sn =
1

2
+

1

3
=

5

6



WebAssign Problems 4 and 5 (5+3pts)

Express the numbers 0.73 = 0.737373 . . . and 6.254 = 6.2545454 . . . as a ratios of integers.

.73 = .73 +
.73

100
+

.73

1002
+ . . . =

73/100

1− 1
100

=
73

99

6.254 = 6.2 + .054 +
.054

100
+

.054

1002
+ . . . =

62

10
+

54/1000

1− 1
100

=
31

5
+

27

5 · 99
=

31

5
+

3

5 · 11
=

31 · 11 + 3

55
=

344

55

WebAssign Problem 6 (4pts)

Find the values of x for which the series

∞
∑

n=0

(x+ 3)n

2n
converges. Find the sum for those values of x.

This is a geometric series with r = (x+ 3)/2. Thus, it converges if
∣

∣

∣

∣

x+ 3

2

∣

∣

∣

∣

< 1 ⇐⇒ |x+ 3| < 2 ⇐⇒ −2 < x+ 3 < 2 ⇐⇒ −5 < x < −1

For these values of x,

∞
∑

n=0

(x+ 3)n

2n
=

1

1− x+3
2

=
2

2− (x+3)
=

2

−x− 1
= −

2

1 + x

WebAssign Problem 7 (5pts)

If the n-th partial of a series

∞
∑

n=1

an is sn =
n− 1

n+ 1
, find an and

∞
∑

n=1

an.

Since sn =
∑k=n

k=1 ak,

a1 = s1 = 0, an = sn − sn−1 =
n− 1

n+ 1
−

n− 2

n
=

2

n(n+ 1)
if n ≥ 2.

By definition,
∞
∑

n=1

an = lim
n−→∞

sn = lim
n−→∞

1− 1/n

1 + 1/n
= 1.

WebAssign Problem 8 (4pts)

Use the Integral Test to determine whether the series

∞
∑

n=1

1

n5
converges or diverges.

Since f(x) = 1/x5 is a positive, decreasing, continuous function for x ≥ 1, the answer is the same
as for

∫

∞

1

1

x5
dx =

∫

∞

1
x−5dx =

1

−4
x−4

∣

∣

∣

∞

x=1
= −

1

4

(

0− 1
)

=
1

4
.

So the integral converges, and thus the sum converges
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Problem VII.1 (5pts)

Determine if the series

∞
∑

n=1

ln(n/(n+1)) converges and find its sum by expressing sn as a telescop-

ing sum if converges.

We have to see if the sequence of partial sum

sn =
k=n
∑

k=1

ln(k/(k + 1)) =
k=n
∑

k=1

(

ln k − ln(k+1)
)

= (ln 1− ln 2) + (ln 2− ln 3) + . . .+
(

lnn− ln(n+1)
)

= ln 1− ln(n+1) = − ln(n+1)

converges. Since ln(n+1) −→ ∞ as n −→ ∞, the sequence {sn} diverges. Thus, the series
∞
∑

n=1

ln(n/(n+ 1)) also diverges

Note: carelessly using telescoping cancellation in this case would give that the sum of the series is
ln 1 = 0. This cannot possibly be the case because all terms in the series are negative (lnx is an
increasing function for x > 0).

Problem VII.2 (10pts)

The Fibonacci numbers are defined in Section 5.1 by f0=0, f1=1, fn=fn−1+fn−2 if n≥2. Show

that

(a)
1

fn−1fn+1
=

1

fn−1fn
−

1

fnfn+1
, (b)

∞
∑

n=2

1

fn−1fn+1
= 1 , (c)

∞
∑

n=2

fn
fn−1fn+1

= 2.

(a; 2pts) Since fn+1 = fn + fn−1,

1

fn−1fn
−

1

fnfn+1
=

fn+1 − fn−1

fn−1fnfn+1
=

fn
fn−1fnfn+1

=
1

fn−1fn+1
.

(b; 4pts) By (a),

∞
∑

n=2

1

fn−1fn+1
=

∞
∑

n=2

(

1

fn−1fn
−

1

fnfn+1

)

=

(

1

f1f2
−

1

f2f3

)

+

(

1

f2f3
−

1

f3f4

)

+

(

1

f3f4
−

1

f4f5

)

+ . . . =
1

f1f2
= 1

since the second term in each pair gets canceled by the first term in the following pair and
1/fnfn+1 −→ 0 (thus leaving only the first term in the first pair).
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(c; 4pts) By (a),

∞
∑

n=2

fn
fn−1fn+1

=
∞
∑

n=2

(

1

fn−1
−

1

fn+1

)

=

(

1

f1
−

1

f3

)

+

(

1

f2
−

1

f4

)

+

(

1

f3
−

1

f5

)

+ . . . =
1

f1
+

1

f2
= 2

since the second term in each pair gets canceled by the first term two pairs later and 1/fn −→ 0
(thus leaving only the first terms in the first two pairs).

Problem VII.3 (5pts)

Find the sum of the series

∞
∑

n=2

ln

(

1−
1

n2

)

This is the same as

∞
∑

n=2

ln

(

n2 − 1

n2

)

=
∞
∑

n=2

(

ln(n−1) + ln(n+1)− 2 lnn
)

=
(

ln 1 + ln 3− 2 ln 2
)

+
(

ln 2 + ln 4− 2 ln 3
)

+
(

ln 3 + ln 5− 2 ln 4
)

+ . . .

So a lot of terms cancel, and the partial sums are given by

s2 = ln 1 + ln 3− 2 ln 2 = ln 3− 2 ln 2

n ≥ 3 : sn = ln 1− ln 2 + ln(n+ 1)− lnn = − ln 2 + ln

(

n+ 1

n

)

= − ln 2 + ln

(

1 +
1

n

)

,

since − ln k for k = 3, . . . , n cancels with the middle term in the preceding summand and − ln k
for k = 2, . . . , n−1 cancels with the first term in the following summand. This leaves only the
first term in the first summand, the middle term in the last summand, and − ln k with k = 2, n
(the second line in the above displayed expression actually gives the correct expression for n=2 as
well). By definition, the infinite sum is the limit of the partial sums:

∞
∑

n=2

ln

(

1−
1

n2

)

= lim
n−→∞

sn = − ln 2 + ln

(

1 +
1

∞

)

= − ln 2 + ln 1 = − ln 2

Note: the number of negative and positive terms in sn is necessarily the same.
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Problem VII.4 (5pts)

Let f be a continuous positive decreasing function for x≥1 and an=f(n). By drawing a picture,

rank

∫ 6

1
f(x)dx,

i=5
∑

i=1

ai,
i=6
∑

i=2

ai in increasing order.

f

x1 2 3 4 5 6

a2
a3 a4 a5 a6

f

x1 2 3 4 5 6

a1

a2
a3 a4 a5

The 5 rectangles in the first diagram under-estimate the area under the graph of f between x=1
and x=6; this gives the first inequality in the box below. The 5 rectangles in the second diagram
over-estimate the area under the graph of f between x=1 and x=6; this gives the second inequality
in the box below. Both inequalities are equalities if and only if f is constant on the interval [1,6].

i=6
∑

i=2

ai ≤

∫ 6

1
f(x)dx ≤

i=5
∑

i=1

ai

Problem VII.5 (5pts)

For what values of p does the series

∞
∑

n=2

1

n(lnn)p
converge?

If p≤ 0, 1/(n(lnn)p) ≥ 1/n whenever lnn ≥ 1 (so for n≥ 3). Since
∞
∑

n=2

1

n
diverges by the p-series

test and 0 ≤ 1/(n(lnn)p),
∞
∑

n=2

1

n(lnn)p
diverges by the Comparison Test whenever p≤0.

Suppose p > 0. The function f(x) = 1/(x(lnx)p) is then positive, decreasing, and continuous for
x≥2. Thus, the sum converges if and only if

∫

∞

2

1

x(lnx)p
dx =

∫

∞

ln 2

1

up
du

does. For p=1, we get
∫

∞

ln 2

1

u
du = lnu

∣

∣

∣

∞

ln 2
= ln∞− ln ln 2 = ∞;

so the sum diverges. If p<1,

∫

∞

ln 2

1

up
du =

1

1− p
u1−p

∣

∣

∣

∞

ln 2
=

1

1− p

(

∞1−p − (ln 2)1−p
)

= ∞ ,
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since 1−p>0; so the sum diverges. Finally, if p>1,
∫

∞

ln 2

1

up
du =

1

−p+ 1
u−p+1

∣

∣

∣

∞

ln 2
= −

1

p− 1

(

∞−(p−1) − (ln 2)−(p−1)
)

= −
1

p− 1

(

0− (ln 2)−(p−1)
)

=
1

p− 1
(ln 2)−(p−1) ,

since p−1>0; so the sum converges. Thus,

∞
∑

n=2

1

n(lnn)p
converges if and only if p > 1 This is the

same answer as in the p-series test.

Problem VII.6 (10pts)

Suppose you have a large supply of bricks, all of the same size, and you stack them at the edge of a

table, with each brick extending farther beyond the edge of the table than the one beneath it. Show

that it is possible to do this so that the top brick extends entirely beyond the table. In fact, show

that the top brick can extend any distance at all beyond the edge of the table if sufficiently many

bricks are used.

We need to stack the bricks so that the center of mass of the top k−1 bricks is precisely above
the edge of the next brick down or of the table (for the lowest brick); this will keep the stack from
collapsing. In this case, the center of mass of the top k brick lies above a point on the lowest of
these bricks which is ak =1/2k of a brick from the edge of this brick (this center of mass divides
the line segment between the center of mass of the lowest of these bricks and the center of mass of
the top k−1 bricks in the ratio of (k−1) : 1; see figure below, which depicts the lowest of these bricks).

1 k−1(k−1)ak ak

Thus, the k-th brick from the top extends by ak =1/2k beyond the edge of the next brick down.
So, if the stack consists of n bricks, the top one will extend by

sn =
1

2
+

1

4
+ . . .+

1

2n

beyond the edge of the table. Since the series

∞
∑

n=1

1

2n
=

1

2

∞
∑

n=1

1

n

consists of positive terms and diverges by the p-series test (with p=1), its sequence of partial sums
{sn}, given by the above expression, is increasing to infinity. In particular, for any number M we
can find n so that sn>M . This says that the far edge of the top brick in a stack of n bricks extends
at least distance M beyond the edge of the table (if M>1, then the top brick lies entirely beyond
the table).

Remark: If you have enough bricks, you can actually stack them so that they extend any distanceM
beyond the edge of the table and you can walk on top of them without having them collapse. Do

you see why? The argument is very similar...
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