MAT 127: Calculus C, Spring 2022
Solutions to Problem Set 12 (105pts)

WebAssign Problem 1 (8pts)

Use multiplication and division to find the first three nonzero terms in the Taylor series

y:e_x2cosx at =0
Since
R L= L Y G Y GV
= n! — nl ~ — (2n)!
we obtain
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= —(2+1>x2+<++>x4+...: 1—a?+ ot |+ ...

Note: if one of the above coefficients turned out to be 0, we would have to expand each factor another
step to get three nonzero terms of the product.

WebAssign Problem 2 (18pts)

(a) Ezpand 1/v/1+ x as a power series.
(b) Use it to estimate 1/+/1.1 correct to 3 decimal place.

(a) By the binomial theorem:

1/V1+z=(1+z)"V = i (_1/4>x”, where

n=0 "
—1/4\ (-1 (-1/4—1)...-(-1/d-n+1) (-1)"g-3.....453 (_1)n1-5-...-(4n—3)
n ) n! N n! N 4np) ’
. > W15 (4n=3) , o : . :
Sol/V14x= Z(—l) o By the binomial series theorem, this holds if |z| <1.
n=0 )
(b) Since |.1| < 1, by part (a)
= 1-5-...-(4n—3) = 1-5-...-(4n—3)
I/VI1=1/Vi+.1=) (-1)" A=) (=1)" :
/ Vit 7;)( ) 4nn! nzo( ) 4nn! . 107

This infinite sum is to be estimated by the sum of the first m terms with m chosen so that

15, (4n—3)
Z(_l) Anpl . 107 -
n=0 ’ n=0
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This series is alternating, with

1-5-...-(4n—=3) - (4(n+1)-3)  4n+1 <bi
4n+l(n41)1. 107+1 ~4(n+D107" T 107

bn+1 =

Thus, by11 <b, and b, —> 0. So, by the Alternating Series Estimation Theorem on p587,

R 1-5-...-(4n—3) & 1-5-...-(4n—3) 1-5-...-(4m—3) - (4(m+1)-3)
—1)" — —1)" bma1 =
nz_;)( ) 4npl . 107 nz_%( ) 4npl . 10m < Omt1 4mH(m 1)1 10m+H

So it is enough to choose m so that

15 (4m=3) - (4m+1) _ 1
A+ (4 1)1 - 10m+ 2103

Considering the exponents of 10 above, the first m to try is m=2:

1-5-9 45 1
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So m=2 works. We could also try m=1, but

1-5 ) 1

A1) 100+ 16-2 - 102 72108

So, we must use the finite sum estimate with m=2:

n=2
1-5-...-(4n—3) 1 1-5 1 5
1/vV11l~ —1)" —1_ 1
/ 7;)( ) 4np! . 10m A1 100 T 2220102 110 T 32.10
. 1 N 1 _640—16+1 625 | 125
a 4-10  32-2-10 640 640 | 128

This is an over-estimate because the last term used is positive (this reasoning is only for alternating
series; for sums with only positive terms, a finite-sum estimate is always an under-estimate).

Remark: 1/v/1.1 ~ .9765, while 125/128 ~ .9766, so our estimate is indeed accurate to 3 decimal
places and is an over-estimate.

WebAssign Problem 24 (9pts)

Use the Alternating Series Test to estimate the range of values of x for which the approrimation

z?
Nl
cosx 5 + Y
s accurate to within .005.
0 2n
For each fixed z, the infinite series cosz = Z(—l)" is alternating,
(2n)!
n=0
x2(n+1) 72n 72 p2n

Q2n+1))!  (2n)! (2n+1)(2n+2 if 2n+1> |,

(2n)!
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and 2%"/(2n)! — 0 because the ratio of two consecutive terms approaches 0. Thus, by the Alter-
nating Series Estimation Theorem on p587,

o R n=2 22n 223 26
—(1—-=4+=)|= — —1)'—] < b3 = = — if <T.
oS ( 2 +'24>‘ cos e 25%( V| <= T T ks
So, the estimate is accurate to within .005 if 2°/720 < 1/200 or | |z| < V/3.6
Problem XII.1 (5pts)
‘ . ‘ ‘ 1 .
Use the binomial series to expand the function f(x) = (52)] as a power series centered at £ =70
x
and state the radius of convergence.
By the binomial theorem:
1 4 =4
o) =(1+4z) "= T; < . ):c”, where
-4\ (-4)(-4-1)...(-4-n+1) (-1)"4-5-...(n+3) (—1)" (n+1)(n+2)(n+3)
n/) n! N n! N 6 '
1 > (n+1)(n+2)(n+3) = n3 +6n? + 11n + 6
S — —1\" n _ —1\" n
® (ta) ;f ) 6 ! nz%( ) 6 v

The radius of convergence is by the binomial series theorem.

Problem XII.2 (10pts)

(a) Show that the function g(x) = Z <k> x" satisfies
n

n=0

J(x) = —l<z<l.

(b) Show that the function h(z) = (1 + x) *g(x) satisfies b’ (z) = 0.
(¢) Conclude that g(x) = (1 + z)*.

(a; 6pts) Since the g series converges on (—1,1), by the theorem on p600 on (—1,1)

S =3 <k>nxn_1 5" ko(h=1)-o(k=ntl) .,

n!

n=1

I
=~

2 (k=1)-...-(k—n+1) ,_ Z(k=1)-...-(k—=n) ,,
Z( )(n—l()! ), 1:kz_:0( )n!( ),

n=1



This gives

1+z) , 2 (k=1)-...-(k—n) , 2 (k=1)-...-(k—n+1) ,_
(k )9(56)22)( ) 8 (k—n) +x§( )(n_l()! ) n1

(k—=1)-...- (k—n+1) (k—n "

=1+ +1)x

e

(k—1) E—n+1)k <= (k\ ,

—1+Z = 1() ) =Z<n>x =g(z).
n=0

This proves the required identity.

(b; 3pts) By the product rule and part (a), on (—1,1)

W) = (L+2) %) g(e) + (1 +2)5/ (2) = —k(1 +2) ™ Yg(2) + (1 + )21 _ o,

(c; 1pt) By part (b), h(xz) = C for some constant C' and so g(x) = C(1 + x)* on (—1,1). Since

k
g(0) = (o) =land (1+0)*=1,C=0.
Problem XII.3 (20pts)
[ee]
(a) Suppose the power series Z anz™ converges to a function y=y(x) such that
n=0

y'—y'+y=0, y(0)=1,  ¢(0)=0.
Find o formula that expresses anio in terms of ant1 and a, and determine ag, a1, a9, as.
(b) Solve the initial-value problem in (a) exactly (find a simple formula for y=y(x)).

(c) Use your answer in (b), Taylor series, and multiplication of power series to recover the values
of ag, a1, az,as you found in (a).

(a; Tpts) If y(z Zan:p then

o oo oo oo
:Znanx"_l = Z(n+1)an+1$", Z n—1)a,z"" % = Z(n+2)(n+1)an+2x",
n=1 n=0 = n=0
oo
Y'=y'+y = (an—(n+1)ans1+(n+2)(n+1)anso)a"
n=0

From y” —y'+y = 0, we obtain a, —(n+1)ap4+1+(n+2)(n+1)a,12=0, i.e.

1 1
Ap+42 = m <Gn+1 - n—|—1an>




From y(0) = 1 and ¢/(0) = 0, we obtain Combining this with the above equation, we

obtain ’a2:—1/2, a3:—1/6‘

(b; 7pts) The differential equation in (a) is a second-order linear homogeneous ODE with constant
coefficients. Its characteristic polynomial is 72—r+1. The roots of this polynomial are r = (14i1/3) /2.
Thus, the general solution of the ODE in (a) is

y(z) =
We need to find C1, Cs so that

C1e%/% cos(V/3x/2)+ Coe®/? sin(v/3x/2).

y(0) = C1e% cos 0+Cae’sin0 = 1
/

{y (0) = %Cl (eO COSO—\/gsiHO)—F%OQ(eO sin0+\/§c080) =0

Ci=1
C1+v3Cy =0

Thus, C; =1, Co=—+/3/3, and the solution to the initial-value problem in (a) is

/2 cos(v/3x/2) — (v/3/3)e*/? sin(v/3x/2)

y(z) =

(c; 6pts) We need to determine the first 4 terms (degree 0,1,2,3) in the Taylor series expansion of
the solution y=y(z) we found in (b). Using the power series

= " x? 23
=Y S = ltet o+,
2 2 6
o0 1.271 IE et x2n+1 1'3
=N (~1)" S AN inz=Y (-1)"————— =g — ...
cos T 7;)( )(271)! 5t sin x ngo( )(271—1—1)! x 6+ ;
we obtain
y(:c):ex/Q(cos(\/gx/Q)—(\[/ )sm \[x/Q))
x x2 x3 \/§ V3z 333
1 V3 V3 11\/5\/332 1 13 V3 13 V3 3V3\ ;4
-1 Z_Vv2.¥e Z_Z. Y2 ¥2_ 2 - Y2 V2 2 2 VO OVY
+<2 3 2)+<823 2 8) +<4883 2 2373 8>x+
1 1
:1+0x—§x2—6x3+...

Thus, the first 4 Taylor coefficients of the solution y=y(z) to the initial-value problem in (a) are

a():l, a1:0, a2:—1/2, a3:—1/6‘

as obtained in (a).



Problem L (35pts)

Let f,, be the n-th Fibonacci number as on page 445,

k=n
An:Zk:1+2+...+n, Bn:ZkQ 124224+ . +n%
k=1

by definition fo = Ag = By = 0.
(a; 3pts) Give a recursive definition of the numbers fp, An, Bn with n > 0.

fo=0, fi=1, fore=far1+fu n2>0,
Ag=0, A1 =A4,+n+1 n>0, By=0, Bpi1=B,+(n+1)* n>o0.

(b; 9pts) Use mathematical induction and only part (a) to show that f,, A,, B, <5" for all n> Q.

This is true for n=0,1: (fo=Ao=By=0, fi=A; =B;=1). Suppose this is true for some n > 1.
Then,

fos1 = fot foo1 <B4 <BM 45 =52 < 5L
Api1=Ap+n+1< A, + A, + A, <3.5" <5
Buy1 =B+ (n+1)° < B, +n*+2n+1< By + By + 2B, + B, <5.5" = 5"

So, if fn, Ap, B, <5", then f,41, Any1, Bpy1 <51, Thus, this is the case for all n.

(c; 3pts) Use the Absolute Convergence and Comparison Tests and only part (b) to show that the

power series
o o0 o0
= Z fnz™, Alx) = ZAnJ:”, B(z) = Z Bpa",
n=0 n=0 n=0

converge if |x| < 1/6 (and thus determine smooth functions near x=0).

Since fy, Ap, B, >0, by the Absolute Convergence Test it is enough to show that the series
oo oo o o o o
ST1faa™ =3 falal, D [Ana™ =D Anlz, D [Bua| =Y Bulal”
n=0 n=0 n=0 n=0 n=0 n=0
converge if |x| <1/6. Since

5\" 5" 1
0 < falz]™, Aplz|™, Bplz|™ < | < = if <=
< ble Anlel Ble < (3) =20t <

oo n
)
and the geometric series E (6) converges, the claim follows from the Comparison Test.

(d; 10pts) Using only part (a), show that

fx) =2+ af(x)+22f(z), Alx)=zA(z)+ —



Since fo=A¢9=By=0,

f(x> = fiz + anxn = fiz + Z (fn71+fnf2)xn =+ -Tanflxn_l + z? anf2-rn_2

n=2 n=2 n=2

::U+$anxn+x22fnxn:m—{—xf(:l:)—{—x2f($)

n=1 n=0

n=2

ZAnJ: Z n—1+n)x —xZAn 1z 1+x2nx

n=1

—xZAnac —l—x(Z ")I:xA(x)+x<1>/:xA(x)+x !

— _7r)2
o l—z (1—x)

ZBn:): Z — 1+n —xZBn 1™ 1+xan" 1+xzz nin—1)z

n=1
/ o0 I 1 !/ 1 "
—mZBnm +x<zxn> —|—:L‘2<Zﬂc"> —B(a >+ac(1 ) +x2<1 )
n=0 n=0 - -
2
— 2B 2
x (x)—l—x(l >2+ (1—2)?
(e; 10pts) Using part (d), express fn, An, and B, explicitly in terms of n.
By part (b),
o@] T T 1 " T o 1 T o0
_ n _ ¥ _ n _ _ n—2
A(:U)_;)Anx o e <1_x> 2(;:6) 5> nin—e
nn—1) . | <= (n+1)n = (n+1)n
- Z 2 = Z 9 " = Z 9 "
n=2 n=1 n=0
o0 " n
T 222 T 1 222 1
B(x) = B,a" = 2.
(=) nz_;) R gt R g v (1—x> 6 (1—x>
(& W "o 972 &
= 2( :c”) +6<Zx"> = §Zn(n—1)x”*2+?Zn(n—1)(n—2)m"’3
n=0 n=0 n=2 n=3
(n— 1 1 2n(n—1)(n—2) ,,_4 (n+1)n 2 2(n+1)n(n—1)
Z D) i =3 o)
n=2 n=3 n=1 n=2
oo [o.¢]
2(n+1)n(n—1) 2n+1)(n+1)n
N P =
= n=0 n=0
Comparing the left and right-most power series, we obtain
1 2n+1 1
A, =142+...+n= (nJ; )n, B,=124+224+.. . +n%= (2n+ )én+ )
Also, by part (b),
T 1
/(@) 1—2z—22 7_x(x—7"_)(a:—|—r+)



—1++5

where 71 = — are the two roots of 22 + = — 1 = 0; thus, r_r, =—1 and r, —r_ =+/5. Since
1 o0
— = Zx" if |x| <1,
1—2 —
1 1 T4+
T —r_ __7“,(1—33/7:) 1 — (—ryz) _T+nz;) —r+a)”
1 1 r_ -
= - = =7r_ (—r_z)"
T —ry re(l—ax/ry) 1—(—r_x) T;)

We use these two Taylor series to get a Taylor series for f(z)=2/(1—xz—x?). This can be done using
multiplication of power series:

flz) = 2]’”3:” =z~ _1T_ = _1r+ ~ <r+ 2(_r+x)"> (7“ 2(—7“@”)

= —xr_ry Z (L (=r—z)" + (—rqa)(—r—x)" '+ .o+ (—rpz)" N —r_z) + (—rpz)" - 1)

[o¢]
=z Z (7“9r e+ .+ 7“1_17“_ +rl- r(l)(—a:)"
n=0
o n+l T‘n+1 o0 n+1 n+1 X n

=y %(_@n ==y %(_@nﬂ --3 ﬂ(_x)n
- n=0

n=0
Z ( 7’+) 2"

An easier alternative is to use partial fractions and addition of power series:

if . 1 1 1 1 1
= x = —x- . o —$- —_—
= " x—r_ T—ry (=ry)—(—ro)\z—r— x—r4

0 o ©  n+l n+1 X n n
L ) — ) = N T el N T e
—ﬁ(g%(n > >) DV I S A D ()

_Z (=ry)" 2"

In either case, we find that

etz () (55 )

This was the formula in Problem G on HW6.

Remark: In principle, there is a simpler way of obtaining the above formula for the sum of square
using mathematical induction. This approach can be used to compute sums of higher powers as
well, but recursively (to get a formula for the sum of 5th powers, you’ll first need to get formulas for
the sums of smaller power). The above approach via power series can be used to compute sums of
higher powers also, but more directly.



