
MAT 127: Calculus C, Spring 2022
Solutions to Problem Set 11 (110pts)

WebAssign Problems 1-3 (10+5+4pts)

Find the Taylor series expansion for each of the following functions around the given value of x = a
and determine the radius and interval of convergence.

(1) f(x) = 1/x, a = −3, (2) f(x) = ex + 2e−x, a = 0 (3)

∫

ex − 1

x
dx , a = 0.

(1) In this case, we can compute all derivatives. By induction,

f 〈n〉(x) =
(−1)nn!

xn+1
.

This is true for n=0, since f 〈0〉(x)=f(x)=1/x = (−1)00!/x0+1. If this holds for some n, then

f 〈n+1〉(x) =
(

f 〈n〉(x)
)′
=

(

(−1)nn!

xn+1

)′
= −(n+1)

(−1)nn!

xn+2
=

(−1)n+1(n+1)!

x(n+1)+1
,

since
−(−1)n = (−1)n+1 and (n+1) · n! = (n+1)!

So, we have checked the above formula for f 〈n〉 for the base case n=0 and that if it holds for some n,
then it holds for n+1. Thus, it holds for all n and

f 〈n〉(−3) =
(−1)nn!

(−3)n+1
= − n!

3n+1
.

Thus, by the main Taylor series formula

f(x) =

∞
∑

n=0

f 〈n〉(−3)

n!

(

x− (−3))n =

∞
∑

n=0

−1

3n+1
(x+ 3)n

This is a geometric series with the ratio r = (x+ 3)/3 and so converges whenever |x+ 3|/3 < 1. So,

the radius of convergence is 3 and the interval of convergence is (−6, 0)

Note: Since the power series in this case is a geometric series, we can sum it up using the geometric-
series formula:

∞
∑

n=0

−1

3n+1
(x+ 3)n =

initial

1− r
=

−1/3

1− (x+ 3)/3
=

−1

3− (x+ 3)
=

−1

−x
=

1

x
.

This confirms that the above Taylor series expansion for f(x) = 1/x is correct.

(2) Since ex =
∞
∑

n=0

xn

n!
for all x,

ex + 2e−x =
∞
∑

n=0

xn

n!
+ 2

∞
∑

n=0

(−x)n

n!
=

∞
∑

n=0

1 + 2(−1)n

n!
xn



for all x. So the interval of convergence is (−∞,∞) and the radius of convergence is ∞

(3) Since ex =

∞
∑

n=0

xn

n!
= 1 +

∞
∑

n=1

xn

n!
for all x,

ex − 1

x
=

∑∞
n=1

xn

n!

x
=

∞
∑

n=1

xn−1

n!
=⇒

∫

ex − 1

x
dx = C +

∞
∑

n=1

xn

n · n!

Since integration does not change the radius of convergence, it is ∞ and so the interval of conver-

gence is (−∞,∞)

WebAssign Problem 4 (8pts)

Use power series to evaluate

lim
x−→0

1− cosx

1 + x− ex

Since for x near 0 (in fact, for all x)

cosx =
∞
∑

n=0

(−1)nx2n

(2n)!
= 1 +

∞
∑

n=1

(−1)nx2n

(2n)!
1− cosx = −

∞
∑

n=1

(−1)nx2n

(2n)!

ex =
∞
∑

n=0

xn

n!
= 1 + x+

∞
∑

n=2

xn

n!
, 1 + x− ex = −

∞
∑

n=2

xn

n!
,

we obtain

1− cosx

1 + x− ex
=

−∑∞
n=1

(−1)nx2n

(2n)!

−∑∞
n=2

xn

n!

=

∑∞
n=1

(−1)nx2n

(2n)!
∑∞

n=2
xn

n!

=
− 1

2!x
2 + 1

4!x
4 − . . .

1
2!x

2 + 1
3!x

3 + . . .

=
− 1

2! +
1
4!x

2 − . . .
1
2! +

1
3!x+ . . .

x−→0−→ −1/2

1/2
= -1

where . . . on the second line are terms involving positive powers of x, which approach 0 as x−→0.

WebAssign Problems 5-9 (4+4+5+5+5pts)

Show that the following series are convergent and find their sums.

(5)
∞
∑

n=0

(−1)nπ2n

62n(2n)!
(6)

∞
∑

n=0

3n

5nn!
(7)

∞
∑

n=0

(−1)nπ2n+1

42n+1(2n+1)!

(8)
∞
∑

n=0

(−1)n(ln 2)n

n!
(9)

∞
∑

n=1

3n

n!

(5) First, write this infinite series as some power series evaluated at some point:

∞
∑

n=0

(−1)nπ2n

62n(2n)!
=

∞
∑

n=0

(−1)n

(2n)!

(

π

6

)2n

=
∞
∑

n=0

(−1)n

(2n)!
x2n
∣

∣

∣

∣

x=π/6

.
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Since the power series
∞
∑

n=0

(−1)n

(2n)!
x2n converges for all x and its sum equals cosx, the evaluation of

this power series at x=π/6, i.e. the infinite series
∞
∑

n=0

(−1)nπ2n

62n(2n)!
, also converges and equals

cos
π

6
= cos 30◦ =

√
3

2

Remark: You can also justify convergence using one of the convergence tests for infinite series. Since
this series involves π2n and (2n)!, try the Ratio Test first:

|an+1|
|an|

=
π2(n+1)/(62(n+1)(2(n+1))!)

π2n/(62n(2n)!)
=

π2n+2

π2n
· 62n

62n+2
· (2n)!

(2n+2)!
= π2 1

62
1

(2n+1)(2n+2)
−→ 0.

Since 0<1, the series converges by the Ratio Test. The alternating series test can also be used.

(6) First, write this infinite series as some power series evaluated at some point:

∞
∑

n=0

3n

5nn!
=

∞
∑

n=0

1

n!

(

3

5

)n

=
∞
∑

n=0

xn

n!

∣

∣

∣

∣

x=3/5

.

Since the power series

∞
∑

n=0

xn

n!
converges for all x and its sum equals ex, the evaluation of this power

series at x=3/2, i.e. the infinite series

∞
∑

n=0

3n

5nn!
, also converges and equals e3/5

Remark: You can also justify convergence using one of the convergence tests for infinite series. Since
this series involves 3n and n!, try the Ratio Test first:

|an+1|
|an|

=
3n+1/(5n+1(n+1)!)

3n/(5nn!)
=

3n+1

3n
· 5n

5n+1
· n!

(n+1)!
= 3

1

5

1

(n+1)
−→ 0.

Since 0<1, the series converges by the Ratio Test.

(7) First, write this infinite series as some power series evaluated at some point:

∞
∑

n=0

(−1)nπ2n+1

42n+1(2n+1)!
=

∞
∑

n=0

(−1)n

(2n+1)!

(

π

4

)2n+1

=
∞
∑

n=0

(−1)n

(2n+1)!
x2n+1

∣

∣

∣

∣

x=π/4

.

Since the power series

∞
∑

n=0

(−1)n

(2n+1)!
x2n+1 converges for all x and its sum equals sinx, the evaluation

of this power series at x=π/4, i.e. the infinite series

∞
∑

n=0

(−1)nπ2n+1

42n+1(2n+1)!
, also converges and equals

sin
π

4
=

1√
2
=

√
2

2

Remark: You can also justify convergence using one of the convergence tests for infinite series. Since
this series involves π2n+1 and (2n+1)!, try the Ratio Test first:

|an+1|
|an|

=
π2(n+1)+1/(42(n+1)+1(2(n+1)+1)!)

π2n+1/(42n+1(2n+1)!)
=

π2n+3

π2n+1
· 4

2n+1

42n+3
· (2n+1)!

(2n+3)!

= π2 1

42
1

(2n+2)(2n+3)
−→ 0.
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Since 0<1, the series converges by the Ratio Test. The alternating series test can also be used.

(8) First, write this infinite series as some power series evaluated at some point:

∞
∑

n=0

(−1)n(ln 2)n

n!
=

∞
∑

n=0

(− ln 2)n

n!
=

∞
∑

n=0

xn

n!

∣

∣

∣

∣

x=− ln 2

.

Since the power series
∞
∑

n=0

xn

n!
converges for all x and its sum equals ex, the evaluation of this power

series at x=− ln 2, i.e. the infinite series
∞
∑

n=0

(− ln 2)n

n!
, also converges and equals

e− ln 2 = e(−1) ln 2 = eln(2
−1) = 2−1 =

1

2

Remark: You can also justify convergence using one of the convergence tests for infinite series. Since
this series involves (ln 2)n and n!, try the Ratio Test first:

|an+1|
|an|

=
(ln 2)n+1/(n+1)!

(ln 2)n/n!
=

(ln 2)n+1

(ln 2)n
· n!

(n+1)!
= (ln 2)

1

(n+1)
−→ 0.

Since 0<1, the series converges by the Ratio Test. The alternating series test can also be used.

(9) First, write this infinite series as some power series evaluated at some point:

∞
∑

n=1

3n

n!
=

∞
∑

n=0

xn

n!

∣

∣

∣

∣

x=3

− 1 .

Since the power series
∞
∑

n=0

xn

n!
converges for all x and its sum equals ex, the evaluation of this power

series at x = 3, i.e. the infinite series
∞
∑

n=0

3n

n!
, also converges and equals e3; so the original series

converges to e3−1
Remark: You can also justify convergence using one of the convergence tests for infinite series. Since
this series involves 3n and n!, try the Ratio Test first:

|an+1|
|an|

=
3n+1/(n+1)!

3n/n!
=

3n+1

3n
· n!

(n+1)!
= 3

1

(n+1)
−→ 0.

Since 0<1, the series converges by the Ratio Test.

Problem XI.1 (5pts)

Find the sum of the series
∞
∑

n=1

(−1)n

(2n+1)3n
.

The principle with such problems is to guess a function f(x) with a simple power series representation,

f(x) =
∞
∑

n=0

cnx
n

4



so that the given power series is obtained by replacing x with some number a. If this a lies in the
interval of convergence for the power series, then the sum of the given series is simply f(a). The
hard part is usually to guess f correctly.

In the given case, the coefficients in the power series are reciprocals of odd integers 1/(2n+1). This
is similar to the series in Example 6.10b:

arctanx =
∞
∑

n=0

(−1)n
x2n+1

2n+ 1
if − 1 < x ≤ 1.

So, we relate our series to this series:

∞
∑

n=1

(−1)n
(1/

√
3)2n

2n+1
=

√
3

∞
∑

n=1

(−1)n
(1/

√
3)2n+1

2n+1
=

√
3

( ∞
∑

n=0

(−1)n
x2n+1

2n+1
− x

)

∣

∣

∣

∣

∣

x=1/
√
3

=
√
3

(

arctan

(

1√
3

)

− 1√
3

)

=
√
3

(

π

6
− 1√

3

)

= −6− π
√
3

6

Problem XI.2 (10pts)

Use power series to estimate arctan .2 correct within 1
2·10−5. Leave your answer as a simple fraction

p/q and determine whether your estimate is an under- or over-estimate.

By Example 6.10b,

arctanx =
∞
∑

n=0

(−1)n
x2n+1

2n+ 1
if − 1 < x ≤ 1.

Since −1 < .2 ≤ 1, it follows that

arctan .2 =
∞
∑

n=0

(−1)n
(1/5)2n+1

2n+ 1
=

∞
∑

n=0

(−1)n

(2n+1)52n+1
.

We need to find m so that
∣

∣

∣

∣

∞
∑

n=0

(−1)n

(2n+1)52n+1
−

n=m
∑

n=0

(−1)n

(2n+1)52n+1

∣

∣

∣

∣

<
1

2
· 10−5 =

1

2 · 105 .

The series
∞
∑

n=0

(−1)n

(2n+1)52n+1
is alternating (odd terms are negative, even terms are positive),

lim
n−→∞

1

(2n+1)52n+1
= 0,

1

(2n+1)52n+1
>

1

(2(n+ 1)+1)52(n+1)+1
.

Thus, the Alternating Series Estimation Theorem (p587) applies and
∣

∣

∣

∣

∞
∑

n=0

(−1)n

(2n+1)52n+1
−

n=m
∑

n=0

(−1)n

(2n+1)52n+1

∣

∣

∣

∣

< |am+1| =
1

(2(m+1)+1)52(m+1)+1

So we need m such that 1/
(

(2m+3)52m+3
)

≤ 1/(2 · 105) or (2m+3)52m+3≥2 · 105. Plugging in small
values of m, we find that m=2 already works (m=1 does not work). So our estimate is

n=m
∑

n=0

(−1)n

(2n+1)52n+1
=

n=2
∑

n=0

(−1)n

(2n+1)52n+1
=

(−1)0

(2 · 0+1)52·0+1
+

(−1)1

(2 · 1+1)52·1+1
+

(−1)2

(2 · 2+1)52·2+1

=
1

5
− 1

3 · 53 +
1

5 · 55 =
9375− 125 + 3

3 · 15625 =
9253

46875
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Since the last term used is positive, this is an over-estimate for arctan .2.

Note: Since arctan .2 ≈ .197396 and 9253/46875 ≈ .197397, our estimate is indeed within .5 · 10−6

and is an over-estimate.

Problem XI.3 (10pts)

(a; 4pts) By completing the square, show that

∫ 1/2

0

dx

x2 − x+ 1
=

π

3
√
3

Since

x2−x+1 =
3

4
+
(

x−1/2
)2

=
3

4

(

1+
(x− 1/2)2

(
√
3/2)2

)

=
3

4

(

1+

(

x− 1/2√
3/2

)2)

=
3

4

(

1+
(

(2x−1)/
√
3
)2
)

,

we obtain
∫ 1/2

0

dx

x2 − x+ 1
=

4

3

∫ 1/2

0

dx

1 + ((2x−1)/
√
3)2

=
2√
3

∫ 0

−1/
√
3

du

1 + u2
=

2√
3
arctan

∣

∣

∣

0

−1/
√
3

=
2√
3

(

arctan 0− arctan(−1/
√
3)
)

=
2√
3

(

0 + arctan(1/
√
3)
)

=
2√
3
· π
6
=

π

3
√
3
,

where u=(2x−1)/
√
3.

(b; 6pts) By factoring x3 + 1 as a sum of cubes, rewrite the integral in (a). Then express 1/(x3+1)
as the sum of a power series and use it to show that

π =
3
√
3

4

∞
∑

n=0

(−1)n

8n

(

2

3n+ 1
+

1

3n+ 2

)

.

Since
1

1− x
=

∞
∑

n=0

xn if |x| < 1,

1

1 + x3
=

1

1− (−x3)
=

∞
∑

n=0

(−x3)n =
∞
∑

n=0

(−1)n(x3)n =
∞
∑

n=0

(−1)nx3n

if |x3| < 1, or equivalently |x| < 1. Since x3+13=(x+1)(x2−x+1),

1

x2 − x+ 1
=

1 + x

1 + x3
= (1+x)

∞
∑

n=0

(−1)nx3n =
∞
∑

n=0

(−1)n
(

x3n + x3n+1
)

if |x|<1. Since |x| < 1 whenever 0 < x < 1/2,

∫ 1/2

0

dx

x2 − x+ 1
=

∫ 1/2

0

( ∞
∑

n=0

(−1)n
(

x3n + x3n+1
)

)

dx =
∞
∑

n=0

(−1)n
(

x3n+1

3n+1
+

x3n+2

3n+2

)∣

∣

∣

∣

1/2

0

=
∞
∑

n=0

(−1)n
(

(1/2)3n+1

3n+1
+

(1/2)3n+2

3n+2

)

=
∞
∑

n=0

(−1)n

23n22

(

2

3n+1
+

1

3n+2

)

=
1

4

∞
∑

n=0

(−1)n

8n

(

2

3n+1
+

1

3n+2

)
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Comparing this result with the statement in (a), we obtain

π =
3
√
3

4

∞
∑

n=0

(−1)n

8n

(

2

3n+ 1
+

1

3n+ 2

)

.

Problems XI.4 (10pts)

Find the Taylor series expansion of the function f(x)=x−x3 around a=−2 and determine its radius
and interval of convergence.

In this case, we can compute all derivatives:

f 〈0〉(−2) = f(−2) = (x− x3)|x=−2 = 6, f 〈1〉(−2) = f ′(−2) = (1− 3x2)|x=−2 = −11,

f 〈2〉(−2) = f ′′(−2) = −6x|x=−2 = 12, f 〈3〉(−2) = f ′′′(−2) = −6|x=−2 = −6,

f 〈n〉(−2) = 0 if n ≥ 4.

Thus, by the main Taylor series formula

f(x) =

∞
∑

n=0

f 〈n〉(−2)

n!

(

x− (−2))n = 6− 11(x+2) + 6(x+2)2 − (x+2)3

Being a finite sum, this series converges for all x (finitely many numbers can always be added

together). Thus, the interval of convergence is (−∞,∞) and the radius of convergence is ∞

Problem J (5pts)

Use Taylor series to obtain Euler’s formula:

eit = cos t+ i sin t.

Use the Taylor series expansions at t=0 for the exponential, cosine, and sine and i
2=−1:

eit =

∞
∑

n=0

(it)n

n!
=

∞
∑

n=0

(it)2n

(2n)!
+

∞
∑

n=0

(it)2n+1

(2n+1)!
=

∞
∑

n=0

(i2)nt2n

(2n)!
+

∞
∑

n=0

i(i2)nt2n+1

(2n+1)!

=
∞
∑

n=0

(−1)nt2n

(2n)!
+ i

∞
∑

n=0

(−1)nt2n+1

(2n+1)!
= cos t+ i sin t.

Note: Euler’s formula is used in solving second-order linear homogeneous differential equations with
constant coefficients when the roots of the quadratic polynomial are complex.

Problem K (20pts)

(a; 6pts) Let p(x) be any polynomial in x and n > 0 any positive integer. Show that

lim
x−→0

x−np(x)e−1/x2

= 0.

First, check this for p(x)=1:

lim
x−→0

x−ne−1/x2

= lim
x−→0

(1/x)n

e1/x2
= lim

x−→∞
xn

ex2
= 0;
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the last equality follows from l’Hospital’s rule, since xn, ex
2 −→∞, as do all derivatives of ex

2

(each
of them is a polynomial multiplied by ex

2

). Thus,

lim
x−→0

x−np(x)e−1/x2

= lim
x−→0

p(x) · lim
x−→0

x−ne−1/x2

= p(0) · 0 = 0.

(b; 12pts) Show that the function f = f(x) given by

f(x) =

{

e−1/x2

, if x 6= 0,

0, if x = 0;

is smooth and its k-th derivative is a function of the form

f 〈k〉(x) =

{

x−nkpk(x)e
−1/x2

, if x 6= 0,

0, if x = 0,

where nk is some positive integer and pk(x) is some polynomial in x.

For k=0, f 〈k〉=f is indeed of the claimed form, with nk=0 and pk(x)=1. If f 〈k〉 is of the claimed
form for some k≥0 and x 6=0

f 〈k+1〉(x) =
(

x−nkpk(x)e
−1/x2)′

= −nkx
−nk−1pk(x)e

−1/x2

+ x−nkp′k(x)e
−1/x2

+ x−nkpk(x)e
−1/x2

(2/x3)

= x−(nk+3)
(

(2−x2)pk(x) + x3p′k(x)
)

e−1/x2

.

For x=0, the derivative has to be computed directly from the definition:

f 〈k+1〉(0) = lim
h−→0

f 〈k〉(h)− f 〈k〉(0)
h

= lim
h−→0

h−nkpk(h)e
−1/h2

h
= lim

h−→0
h−(nk+1)pk(h)e

−1/h2

= 0;

the last equality holds by part (a). Thus, if f 〈k〉 is of the claimed form for some k≥ 0, then f 〈k+1〉

is of the claimed form with

nk+1 = nk + 3, pk+1(x) = (2−x2)pk(x) + x3p′k(x).

This shows that f 〈k〉 is of the claimed form for all k. So f=f(x) is a smooth function and f 〈k〉(0)=0
for all k.

(c; 2pts) Conclude that the smooth function f(x) does not admit a Taylor series expansion on any
neighborhood of 0 (the Taylor series of f at x=0 does not converge to f(x) for any x 6=0).

By part (b), the Taylor expansion of f=f(x) at x=0 would have to be

∞
∑

n=0

f 〈n〉(0)
n!

xn =
∞
∑

n=0

0

n!
xn = 0.

Since f(x)>0 if x 6=0, the Taylor series of f at 0 does not converge to f for any x 6=0.
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