MAT 127: Calculus C, Spring 2022
Solutions to Problem Set 11 (110pts)

WebAssign Problems 1-3 (10+5-+4pts)

Find the Taylor series expansion for each of the following functions around the given value of x = a
and determine the radius and interval of convergence.

e —1

X

(1) f@)=1/z, a=-3, (2) f(z)=c"+2, a=0 (3) / dz, a=0.

(1) In this case, we can compute all derivatives. By induction,

This is true for n=0, since f{(z)=f(z)=1/z = (—1)°0!/20F1. If this holds for some n, then

Fr () = (f<”>(x))/ _ ((_1)%!)/ _ _(?H_l)(—l)"”! _ (=) (n+1)!

nt2 p(n+1)+1 ’

—(-1)" = (—l)m'1 and (n+1)-n! = (n+1)!

So, we have checked the above formula for f(™ for the base case n=0 and that if it holds for some n,
then it holds for n+1. Thus, it holds for all n and

Thus, by the main Taylor series formula

@)= T ooy =S ey
n=0 n=0

This is a geometric series with the ratio r = (x + 3)/3 and so converges whenever |z + 3|/3 < 1. So,
the radius of convergence is | 3| and the interval of convergence is | (—6,0)

Note: Since the power series in this case is a geometric series, we can sum it up using the geometric-
series formula:

i ~1 (z 1 3)" initial ~1/3 ~1 -1 1
xr - = = = — = —,
n:03"+1 1—-r 1—(x+3)/3 3—(z+3) -z =

This confirms that the above Taylor series expansion for f(z) = 1/x is correct.
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(2) Since e* = E x—' for all x,
n!
n=0

o

X n e n n
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n=0 n=0 n=0




for all z. So the interval of convergence is | (—oo, 00) | and the radius of convergence is

n

= > 2"
(3) Since e* = E — =1+ g — for all z,
n!
n=1

n!
n=0
n o0 —1 o0
et —1 >z " e® — 1 "
- 299
T T n! z n-n!
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Since integration does not change the radius of convergence, it is and so the interval of conver-

gence is | (—00, 00)
WebAssign Problem 4 (8pts)

Use power series to evaluate
. 1—cosz
lim ——
z—01+x —e®

Since for = near 0 (in fact, for all z)

et (_1)n 2n e n 2n et (_1)nx2n
cosa:zz n 1+Z 1—COS$:—ZW
=0 n=1
& " " & "
x—_ JR—
Z—'_l—i—x%—za, 14z —e® = Zn!,
= n=2 n=2
we obtain
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where ... on the second line are terms involving positive powers of x, which approach 0 as x — 0.
WebAssign Problems 5-9 (444454545pts)

Show that the following series are convergent and find their sums.

& 1 n 2n > 3n > (_1)n7r2n+1
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= n=1 "

(5) First, write this infinite series as some power series evaluated at some point:

o (D) N (=) (TN s (),
nz% 62n(2n)! _7;) (2n)! (6) =2 (2n)! v




_1)"
5 ;' x?" converges for all = and its sum equals cosz, the evaluation of
n)!

this power series at z=m/6, i.e. the infinite series Z -

Since the power series E

, also converges and equals

1)
mo
3

T
- = 30° =
COS — = COS 3|

Remark: You can also justify convergence using one of the convergence tests for infinite series. Since
this series involves 72" and (2n)!, try the Ratio Test first:

|1 B 7T2(n+1)/(62(n+1)(2(n+1))!) B m2nt2  g2n (2n)! B 5 1 1 o
lan| 72 /(621 (2n)!) Coqmn 622 (2p4-2)0 62 (2n+1)(2n+2) ’

Since 0< 1, the series converges by the Ratio Test. The alternating series test can also be used.

(6) First, write this infinite series as some power series evaluated at some point:

o0

3" =1 /3\" &
Sam-Xuls) ~Xw

n=0  1&=3/5

n
Since the power series Z — converges for all x and its sum equals e®, the evaluation of this power

nO

series at x=3/2, i.e. the infinite series Z also converges and equals

5nm!’
Remark: You can also justify convergence usmg one of the convergence tests for infinite series. Since
this series involves 3™ and n!, try the Ratio Test first:

ap|  3"T/(5" T (n+1)1)  3nF o 5n n! _31 1
lan| 3n/(5n!) 3 5l (n41)! U5 (n+1)

Since 0< 1, the series converges by the Ratio Test.

— 0.

(7) First, write this infinite series as some power series evaluated at some point:

= (apa & (S (1,
z:: 42n+1(2n+1)! _nz:;) (2n+1)! <4> _1;] (2n+1)!$2 "

rz=m/4

1 n
Since the power series E 2+)1)332”+1 converges for all x and its sum equals sin x, the evaluation
n
( l)n 2n+1
of this power series at x = /4, i.e. the infinite series g m , also converges and equals
n
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.
Sl — = | —= = ——
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Remark: You can also justify convergence using one of the convergence tests for infinite series. Since
this series involves 72"! and (2n+1)!, try the Ratio Test first:

‘an—f—l‘ B 7r2(n+1)+1/(42(n+1)+1(2(n+1)+1)!) B 2n+3 y2n+l (2n+1)!
lan| 721 /(42041 (2 1)) T pentl gt3 (24 3)
1 1
42 (2n+2)(2n+3)

— 0.



Since 0< 1, the series converges by the Ratio Test. The alternating series test can also be used.

(8) First, write this infinite series as some power series evaluated at some point:

s 1" (In2)* o0 —In2)" o] n
Z(%$>:Z<;>:ZZ ,
n=0 n=0 n=0 z=—1In2

n
Since the power series Z — converges for all z and its sum equals e*, the evaluation of this power

n= 0
—In2)"

' , also converges and equals
n!

series at £ =—1n2, i.e. the infinite series g
n=0

o~ N2 _ (-1)In2 _ In(27") _ o-1 _

Remark: You can also justify convergence using one of the convergence tests for infinite series. Since
this series involves (In2)"™ and n!, try the Ratio Test first:

lans1|  (In2)"*1/(n+1)!  (In2)"*+! n!

lan| (In2)n /n! T (In2)"  (n+1)! — 0.

= (In2)

1
(n+1)

Since 0< 1, the series converges by the Ratio Test. The alternating series test can also be used.
(9) First, write this infinite series as some power series evaluated at some point:

—1.

:\&3

71
Since the power series Z — converges for all z and its sum equals e”, the evaluation of this power

nO
n

series at x = 3, i.e. the infinite series g — also converges and equals e; so the original series
n!

n=0
3
converges to |e”—1

Remark: You can also justify convergence using one of the convergence tests for infinite series. Since
this series involves 3™ and n!, try the Ratio Test first:
lans1] 3"/ (n+1)! 37t gl 1

= = . :3 0.
lan] 31 /] 3 )l St

Since 0< 1, the series converges by the Ratio Test.

Problem XI.1 (5pts)

(—1)"

Find the sum of the series Z m
n

The principle with such problems is to guess a function f(x) with a simple power series representation,

o
= E cpx”
n=0



so that the given power series is obtained by replacing x with some number a. If this a lies in the
interval of convergence for the power series, then the sum of the given series is simply f(a). The
hard part is usually to guess f correctly.

In the given case, the coefficients in the power series are reciprocals of odd integers 1/(2n+1). This
is similar to the series in Example 6.10b:

o0 p2n+l
t = -1 if —1<z<1
arctan x nZ:;)( ) 1 i x <

So, we relate our series to this series:

S O ey G (S o)

2n+1 2n+1 2n+1
n=0

n=1

:L’:l/\/§

-imom(5)-5) (i)

6 —m/3

Problem XI.2 (10pts)

Use power series to estimate arctan .2 correct wzthm 1072, Leave your answer as a simple fraction
p/q and determine whether your estimate is an under— or over-estimate.

By Example 6.10b,
0 x2n+1

arctan x = Z(—l)"

n—

if —l<a<l
m+1 T=

Since —1 < .2 < 1, it follows that
> 1/5 2n+1 > —1)"
arctan.2 = Z(—l)”i( /5) = Z (=1)

21
— 2n +1 = (2n+1)5%"

We need to find m so that
i = ”i:n (="
= (2n+1)52n+1 = (2n+1)52n+1

(=D"

The series Z W is alternating (odd terms are negative, even terms are positive),
n

1 10-5 — 1
2 2-10%°

1 1 1

LS (2n+1)52n+1 0 @nt1)52ntl ~ (2(n + 1)+1)52(n+1D)+1
Thus, the Alternating Series Estimation Theorem (p587) applies and
‘ i =n* nf:n (=D"
— (2n+1)52ntt o~ (2n+1)52n+1
So we need m such that 1/((2m+3)5*"%) <1/(2-10°) or (2m+3)5*™+3>2.10°. Plugging in small
values of m, we find that m=2 already works (m=1 does not work). So our estimate is

1
(2(m+41)+1)52(m+1)+1

< |am+1| =

n=m n=2
Z (=1)" _ Z (=1)" _ (-1)° n (—1)! (—1)?
(2n4-1)52n+1 —~ (2n+1)52n 1 (2.041)520+1 © (2. 141)521+1 © (2.241)522+1
11 N 1 9375—-125+3 | 9253
5 3.5 5.5 3.15625 | 46875




Since the last term used is positive, this is an over-estimate for arctan.2.

Note: Since arctan.2 ~ .197396 and 9253/46875 ~ .197397, our estimate is indeed within .5 - 1076
and is an over-estimate.

Problem XI.3 (10pts)

(a; 4pts) By completing the square, show that

/1/2 dv. o«
o x2—xz4+1 33
Since

et = ) (e () - )

we obtain

12 qg 4 12 dz 2 0
2 =3 = — — :—arctan‘
0o —z+1 3 0 1—{—((21‘—1)/\/3)2 \/g 71/\/§1+U \/3 -1/

2
(arctanO — arctan(—l/\/g)) = %(0 + arctan(l/\/g)) -2 .

5l

where u=(22—1)//3.

(b; 6pts) By factoring 2° + 1 as a sum of cubes, rewrite the integral in (a). Then express 1/(x3+1)
as the sum of a power series and use it to show that

:3¢§i(—1)n 2 1
4 8" \3n+1 3n+2)

n=0

1 o
. _ n
Since T Z:L’ if |z] < 1,
n=0
1 1 oo [ee] o0
— — 3\n _ n(,.3\n _ n,.3n
Ty — ) = ) = Y1)
n=0 n=0 n=0
if |#3| < 1, or equivalently |z| < 1. Since 23 +13=(x+1)(z2—2+1),
1 1+a . >
—_ - (1 —1\" 3n _ 1) 3n 3n+1
22—x+1 1423 (+‘r)n§%( )'a nz%( )" (27" + 2 )

if |z| <1. Since |z| < 1 whenever 0 < z < 1/2,

1/2 da 1/2( o o ZIntl B2y [1/2
1 3n 3n+1 dx = —1)"
/0 2 +1 /0 (Z( ) e Jde = ) (=1) 31 3ni2)|,
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1/2 3n+1 1/2)3n+2 B > (_1)n 2 N 1
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Comparing this result with the statement in (a), we obtain

3v3 o= (—1)" 2 1
w23y CD L),
4 8N 3n+1 3n+ 2

n=0

Problems XI.4 (10pts)

Find the Taylor series expansion of the function f(x)=x—a> around a=—2 and determine its radius

and interval of convergence.

In this case, we can compute all derivatives:

FO2)=f(-2) = (@ = 2®) o2 =6,  fI(=2) = f'(-2) = (1 - 327)[p——n = —11,
FA(=2) = f"(-2) = —6[p——2 = 12, FE(=2) = f"(=2) = —6|y——2 = —6,
FP(—2) =0 ifn>4.

Thus, by the main Taylor series formula

) (_
f(z) = Z fTE'Z)(x —(=2)" =6 — 11(z+2) + 6(z+2)* — (z+2)®
n=0 ’

Being a finite sum, this series converges for all x (finitely many numbers can always be added
together). Thus, the interval of convergence is | (—oo, 00) | and the radius of convergence is

Problem J (5pts)

Use Taylor series to obtain Fuler’s formula:

e = cost + isint.

Use the Taylor series expansions at t=0 for the exponential, cosine, and sine and i2=—1:
o i (it)n i o0 1t 2n+1 e (i2)nt2n o0 i(i2)nt2n+1
1
e’ = -
| | |
— nl — 2n+1 — (2n)! = (2n+1)!
nt2n nt2n+1
—Z Z = cost +isint.
(2n+1)!

Note: Euler’s formula is used in solving second-order linear homogeneous differential equations with
constant coefficients when the roots of the quadratic polynomial are complex.

Problem K (20pts)
(a; 6pts) Let p(x) be any polynomial in x and n > 0 any positive integer. Show that

lim 7 "p(x)e —1/2% — .

z—0
First, check this for p(z)=1:
1 n n
lim 2" /" = lim ( /x)2 = lim — = 0;
r—0 x—0 el/x r—00 T

7



the last equality follows from I’Hospital’s rule, since z", e —s oo, as do all derivatives of e’ (each
of them is a polynomial multiplied by exz). Thus,

lim x*"p(x)efl/xz = lim p(x)- lim a e M = p(0)-0=0.

rz—0 z—0 z—0

(b; 12pts) Show that the function f = f(x) given by

eV dfa o,
J(@) = {0, ifz =0;

is smooth and its k-th derivative is a function of the form

Wy T k@)e VT if e £ 0,
[ (x) {07 Foo,

where ny, is some positive integer and pi(x) is some polynomial in x.

For k=0, f) = f is indeed of the claimed form, with n; =0 and pr(z)=1. If %) is of the claimed
form for some k>0 and z#0
FED (@) = (@ py(a)e )
= —na " p(@)e T o gl (@)e Y o Mp(a)e Y (2/a)
= 2~ (2-22)p(x) + 2 p () e,

For =0, the derivative has to be computed directly from the definition:

_ hpg(h)e” Y/ ) _ 1p2
h—0 h o h o h pr(h)e 0

the last equality holds by part (a). Thus, if f (k) is of the claimed form for some k>0, then f+1
is of the claimed form with

Ngt1 = Nk + 3, pri1(z) = (2—2)pi(2) + 2°p) (2).

This shows that f(*) is of the claimed form for all k. So f= f(x) is a smooth function and f*)(0)=0
for all k.

(c; 2pts) Conclude that the smooth function f(x) does not admit a Taylor series expansion on any
neighborhood of 0 (the Taylor series of f at x=0 does not converge to f(x) for any x#0).

By part (b), the Taylor expansion of f= f(z) at =0 would have to be

— /™0 , 0,
z_;) ] €T :z_%n!a: = 0.

Since f(x)>0 if #0, the Taylor series of f at 0 does not converge to f for any x#0.



