
Problems before Mid II

1. Is the sequence convergent or divergent? If convergent, what is the limit?
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2. Is the series convergent or divergent? (We do not want to find the value.)
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3. Is the series convergent or divergent? If convergent, find its value.
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∞∑
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4. For which values of x is the following series convergent? For a given such x, what is the value
of the series (as a function of x)?
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∞∑
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5. Is the series
∑∞

n=1 an convergent or divergent if the sequence an is defined recursively as:

a) a1 = 1, an+1 =
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4n+ 3
an b) a1 = 1, an+1 =
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n

an
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6. Is the series convergent or divergent? Is it absolutely convergent? (In general, for the majority
of given series here, you will need both the alternating series test and the comparison / limit
comparison test to answer both questions. Working on the problems in the given order might be
helpful.)
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7. Is the series convergent or divergent? Is it absolutely convergent?
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∞∑
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∞∑
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*Hint for 2a):
(1− cos(x))(1 + cos(x)) = 1− cos2(x) = sin2(x)

lim
x→0

sin2(x)

x2
= 1
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Answer Key

1. (a) converges to 0 (divide top and bottom by nn, which dominates)
(b) converges to 3 (divide top and bottom by n)
(c) diverges (divide top and bottom by n; odd terms approach −1/3, even 1/3)
(d) converges to 0 (arctan takes values in (−π/2, π/2))
(e) converges to 1 (divide the top and bottom in the first fraction by n)
(d) converges to 0 (multiply and divide by

√
9n+2n+3n; divide top and bottom by 3n)

2. (a)
∑

diverges by Test for Divergence (the terms an approach 2)
(b) converges by Ratio Test (|an+1|/|an| approaches 1/3)
(c) converges by RT (|an+1|/|an| approaches 1/e)
(d) diverges by RT (|an+1|/|an| approaches 5/3)
(e) diverges by Limit Comparison Test with bn = n/

√
n3 = 1/n1/2 and p-Series Test

(f) converges by LCT with bn = 1/n2 and p-Series Test
(g) converges by LCT with bn = 1/2n and the geometric series test or RT (|an+1|/|an| ap-
proaches 1/2)
(h) converges by Comparison Test with bn = 1/n2 and p-Series Test
(i) converges by the geometric series test
(j) diverges b/c sn=cos(1)−cos(n+1) diverges
(k) converges b/c sn=cos(1/1)−cos(1/(n+1)) converges
(l) converges by RT (|an+1|/|an| approaches 2/3) or LCT with bn=(2/3)n

3. (a) converges to 3/4 b/c partial fractions and pairwise cancellation give

sn =
1

2

(
1

4−3
+

1

5−3
− 1

(n−1)−1
− 1

n−1

)
(b) converges to 1/e(e−1)+1 b/c the first part is a geometric series with r=1/e and a0=1/e2,

while partial fractions and pairwise cancellation give sn=
1

2−1
− 1

n
for the second part

(c) converges to 1 b/c it is a geometric series with r=3/4 and a0=1/4
(d) converges to 1/3+9/2=29/6 b/c the first part is a geometric series with r=2/5 and a0=1/5,
while the second part is a geometric series with r=3/5 and a0=9/5

4. (a) this is a geometric series with r=(x+3)/4 and a0 =(x+3)/4; it converges to (x+3)/(1−x)
if x∈(−7, 1); it diverges otherwise
(b) this is a geometric series with r=2 cosx and a0=2 cosx; it converges to 2 cosx/(1−2 cosx)
if π

3 +πk<x< 2π
3 +πk for an integer k

(c) this is a geometric series with r= 1/(1+x) and a0 = 1/(1+x); it converges to 1/x if x<−2
or x>0

5. (a) diverges by Ratio Test (|an+1|/|an| approaches 5/4)
(b) converges by Ratio Test (|an+1|/|an| approaches 0)
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6. (a) converges by Alternating Series Test, but not absolutely
(b) converges by AST or Absolute Convergence Test (+ p-Series)
(c) converges by AST, but not absolutely
(d) converges by AST or ACT (+ Limit Comparison with bn=1/n2 and p-series)
(e) converges by AST, but not absolutely
(f) converges by AST or ACT (+ Comparison with bn=1/n2 and p-series)
(g) converges by AST after dropping a2k+1=0, but not absolutely
(h) converges by AST after dropping a2k+1=0 or ACT (+ Comparison with bn=1/n2)
(i) diverges by p-series (b/c (−1)n cos(πn)=1)
(j) converges by ACT (+ Comparison with bn=1/n2 and p-series)
(k) converges by AST after dropping a2k+1 = 0 (b/c (−1)2k cos(π(2k)/2) = (−1)k), but not
absolutely
(l) converges by AST or ACT (+ Comparison with bn=1/n2 and p-series)
(m) converges by AST, but not absolutely (LCT with bn=1/n)
(n) converges by AST or ACT (+ LCT with bn=1/n2 and p-series)
(o) converges by AST or ACT (+ LCT with bn=1/n2 and p-series)
(p) diverges by Test for Divergence (odd terms approach −1, even +1)
(q) converges by AST, but not absolutely (LCT with bn=1/n)
(r) converges by AST or ACT (+ LCT with bn=1/n2 and p-series)
(s) converges by ACT (+ LCT with bn=1/n2 and p-series)
(t) converges by AST, but not absolutely (LCT with bn=1/n)

7. (a) converges by AST or ACT (+ LCT with bn=1/n2 and p-series)
(b) converges by AST, but not absolutely (LCT with bn=1/n)
(c) converges by AST, but not absolutely (LCT with bn=1/n)
(d) converges by AST, but not absolutely (LCT with bn=1/n1/2)
(e) diverges b/c the first part diverges by p-series and the second converges by AST
(f) converges by ACT (+ LCT with bn=1/n3/2 and p-series)
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