Problems before Mid II

1. Is the sequence convergent or divergent? If convergent, what is the limit?

a)
$$\frac{5^n + n! + n^3}{n^2 + 2^n + n^n}$$

b)
$$\frac{3n+5}{2+\sqrt{n^2+1}}$$

a)
$$\frac{5^n + n! + n^3}{n^2 + 2^n + n^n}$$
 b) $\frac{3n+5}{2+\sqrt{n^2+1}}$ c) $\frac{(-1)^n n}{2n+\sqrt{n^2-1}}$ d) $\frac{\arctan(n^2)}{\sqrt{n}}$ e) $\frac{n}{n+1} + \frac{\cos(n)}{n}$ f) $\sqrt{9^n + 2^n} - 3^n$

d)
$$\frac{\arctan(n^2)}{\sqrt{n}}$$

e)
$$\frac{n}{n+1} + \frac{\cos(n)}{n}$$

f)
$$\sqrt{9^n + 2^n} - 3^n$$

2. Is the series convergent or divergent? (We do not want to find the value.)

$$a) \sum_{n=1}^{\infty} \frac{2n}{\sqrt{n^2 + 1}}$$

b)
$$\sum_{1}^{\infty} \frac{n^2}{3^n}$$

c)
$$\sum_{n=1}^{\infty} \frac{n!}{n^n}$$

$$d) \sum_{n=1}^{\infty} \frac{n^3 + 5^n}{3^n + \sqrt{n}}$$

d)
$$\sum_{n=1}^{\infty} \frac{n^3 + 5^n}{3^n + \sqrt{n}}$$
 e)
$$\sum_{n=1}^{\infty} \frac{\ln(n) + n}{\sqrt{n^3 + 1} + n}$$

f)
$$\sum_{n=1}^{\infty} \tan\left(\frac{1}{n^2}\right)$$

g)
$$\sum_{n=1}^{\infty} \ln\left(1 + \frac{1}{2^n}\right)$$
 h)
$$\sum_{n=1}^{\infty} \frac{|\sin(n)|}{n^2}$$

h)
$$\sum_{n=1}^{\infty} \frac{|\sin(n)|}{n^2}$$

i)
$$\sum_{n=1}^{\infty} (\cos 1)^n$$

$$j) \sum_{n=1}^{\infty} (\cos(n) - \cos(n+1))$$

j)
$$\sum_{n=1}^{\infty} (\cos(n) - \cos(n+1))$$
 k) $\sum_{n=1}^{\infty} \left(\cos\left(\frac{1}{n}\right) - \cos\left(\frac{1}{n+1}\right)\right)$ l) $\sum_{n=1}^{\infty} (\sqrt{9^n + 2^n} - 3^n)$

l)
$$\sum_{n=1}^{\infty} \left(\sqrt{9^n + 2^n} - 3^n \right)$$

3. Is the series convergent or divergent? If convergent, find its value.

a)
$$\sum_{n=4}^{\infty} \frac{1}{n^2 - 4n + 3}$$

b)
$$\sum_{n=2}^{\infty} \left(\frac{1}{e^n} + \frac{1}{n(n-1)} \right)$$

c)
$$\sum_{n=1}^{\infty} \frac{3^{n-1}}{2^{2n}}$$

d)
$$\sum_{n=1}^{\infty} \frac{2^{n-1} + 3^{n+1}}{5^n}$$

4. For which values of x is the following series convergent? For a given such x, what is the value of the series (as a function of x)?

a)
$$\sum_{n=1}^{\infty} \frac{(x+3)^n}{2^{2n}}$$

b)
$$\sum_{n=0}^{\infty} 2^n \cos^n x$$

a)
$$\sum_{n=1}^{\infty} \frac{(x+3)^n}{2^{2n}}$$
 b) $\sum_{n=1}^{\infty} 2^n \cos^n x$ c) $\sum_{n=1}^{\infty} (1+x)^{-n}$

5. Is the series $\sum_{n=1}^{\infty} a_n$ convergent or divergent if the sequence a_n is defined recursively as:

1

a)
$$a_1 = 1, a_{n+1} = \frac{5n+1}{4n+3}a_n$$

a)
$$a_1 = 1, a_{n+1} = \frac{5n+1}{4n+3}a_n$$
 b) $a_1 = 1, a_{n+1} = \frac{2+\cos(n)}{\sqrt{n}}a_n$

6. Is the series convergent or divergent? Is it absolutely convergent? (In general, for the majority of given series here, you will need *both* the alternating series test and the comparison / limit comparison test to answer *both* questions. Working on the problems in the given order might be helpful.)

a)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$
 b) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$ c) $\sum_{n=1}^{\infty} \frac{(-1)^n}{2n+1}$ d) $\sum_{n=1}^{\infty} \frac{(-1)^n}{(2n+1)^2}$ e) $\sum_{n=1}^{\infty} \frac{\cos(n\pi)}{n}$ f) $\sum_{n=1}^{\infty} \frac{\cos(n\pi)}{n^2}$ g) $\sum_{n=1}^{\infty} \frac{\cos\left(\frac{n\pi}{2}\right)}{n}$ h) $\sum_{n=1}^{\infty} \frac{\cos\left(\frac{n\pi}{2}\right)}{n^2}$ i) $\sum_{n=1}^{\infty} \frac{(-1)^n \cos(n\pi)}{n}$ j) $\sum_{n=1}^{\infty} \frac{(-1)^n \cos(n\pi)}{n^2}$ k) $\sum_{n=1}^{\infty} \frac{(-1)^n \cos\left(\frac{n\pi}{2}\right)}{n}$ l) $\sum_{n=1}^{\infty} \frac{(-1)^n \cos\left(\frac{n\pi}{2}\right)}{n^2}$ m) $\sum_{n=1}^{\infty} (-1)^n \sin\left(\frac{1}{n}\right)$ n) $\sum_{n=1}^{\infty} (-1)^n \sin\left(\frac{1}{n^2}\right)$ o) $\sum_{n=1}^{\infty} (-1)^n \sin^2\left(\frac{1}{n}\right)$ p) $\sum_{n=1}^{\infty} (-1)^n \cos\left(\frac{1}{n}\right)$ q) $\sum_{n=1}^{\infty} \sin\left(\frac{(-1)^n}{n}\right)$ r) $\sum_{n=1}^{\infty} \sin\left(\frac{(-1)^n}{n^2}\right)$ s) $\sum_{n=1}^{\infty} \sin^2\left(\frac{(-1)^n}{n}\right)$ t) $\sum_{n=1}^{\infty} \tan\left(\frac{(-1)^n}{n}\right)$

7. Is the series convergent or divergent? Is it absolutely convergent?

a)*
$$\sum_{n=1}^{\infty} (-1)^n \left(1 - \cos\left(\frac{1}{n}\right) \right)$$
 b) $\sum_{n=1}^{\infty} (-1)^n \ln\left(\frac{n}{n+1}\right)$ c) $\sum_{n=1}^{\infty} (-1)^n \frac{n^4 - n^2 + 1}{n^5 - 5n + 1}$ d) $\sum_{n=1}^{\infty} \frac{(-1)^n \arctan(n^2)}{\sqrt{n}}$ e) $\sum_{n=1}^{\infty} \frac{\sqrt[3]{n} + (-1)^n}{\sqrt{n}}$ f) $\sum_{n=1}^{\infty} \frac{\sqrt{n} + \sin(n)}{n^2}$

*Hint for 2a):
$$(1 - \cos(x))(1 + \cos(x)) = 1 - \cos^{2}(x) = \sin^{2}(x)$$

$$\lim_{x \to 0} \frac{\sin^{2}(x)}{x^{2}} = 1$$

Answer Key

- 1. (a) converges to 0 (divide top and bottom by n^n , which dominates)
 - (b) converges to 3 (divide top and bottom by n)
 - (c) diverges (divide top and bottom by n; odd terms approach -1/3, even 1/3)
 - (d) converges to 0 (arctan takes values in $(-\pi/2, \pi/2)$)
 - (e) converges to 1 (divide the top and bottom in the first fraction by n)
 - (d) converges to 0 (multiply and divide by $\sqrt{9^n+2^n}+3^n$; divide top and bottom by 3^n)
- 2. (a) \sum diverges by Test for Divergence (the terms a_n approach 2)
 - (b) converges by Ratio Test $(|a_{n+1}|/|a_n|)$ approaches 1/3)
 - (c) converges by RT $(|a_{n+1}|/|a_n|$ approaches 1/e)
 - (d) diverges by RT $(|a_{n+1}|/|a_n|$ approaches 5/3)
 - (e) diverges by Limit Comparison Test with $b_n = n/\sqrt{n^3} = 1/n^{1/2}$ and p-Series Test
 - (f) converges by LCT with $b_n = 1/n^2$ and p-Series Test
 - (g) converges by LCT with $b_n = 1/2^n$ and the geometric series test or RT $(|a_{n+1}|/|a_n|$ approaches 1/2)
 - (h) converges by Comparison Test with $b_n = 1/n^2$ and p-Series Test
 - (i) converges by the geometric series test
 - (j) diverges b/c $s_n = \cos(1) \cos(n+1)$ diverges
 - (k) converges b/c $s_n = \cos(1/1) \cos(1/(n+1))$ converges
 - (l) converges by RT $(|a_{n+1}|/|a_n|)$ approaches 2/3) or LCT with $b_n = (2/3)^n$
- 3. (a) converges to 3/4 b/c partial fractions and pairwise cancellation give

$$s_n = \frac{1}{2} \left(\frac{1}{4-3} + \frac{1}{5-3} - \frac{1}{(n-1)-1} - \frac{1}{n-1} \right)$$

- (b) converges to 1/e(e-1)+1 b/c the first part is a geometric series with r=1/e and $a_0=1/e^2$, while partial fractions and pairwise cancellation give $s_n = \frac{1}{2-1} \frac{1}{n}$ for the second part
- (c) converges to 1 b/c it is a geometric series with r=3/4 and $a_0=1/4$
- (d) converges to 1/3+9/2=29/6 b/c the first part is a geometric series with r=2/5 and $a_0=1/5$, while the second part is a geometric series with r=3/5 and $a_0=9/5$
- 4. (a) this is a geometric series with r = (x+3)/4 and $a_0 = (x+3)/4$; it converges to (x+3)/(1-x) if $x \in (-7,1)$; it diverges otherwise
 - (b) this is a geometric series with $r = 2\cos x$ and $a_0 = 2\cos x$; it converges to $2\cos x/(1-2\cos x)$ if $\frac{\pi}{3} + \pi k < x < \frac{2\pi}{3} + \pi k$ for an integer k
 - (c) this is a geometric series with r = 1/(1+x) and $a_0 = 1/(1+x)$; it converges to 1/x if x < -2 or x > 0
- 5. (a) diverges by Ratio Test $(|a_{n+1}|/|a_n|)$ approaches 5/4)
 - (b) converges by Ratio Test $(|a_{n+1}|/|a_n|)$ approaches 0)

- 6. (a) converges by Alternating Series Test, but not absolutely
 - (b) converges by AST or Absolute Convergence Test (+ p-Series)
 - (c) converges by AST, but not absolutely
 - (d) converges by AST or ACT (+ Limit Comparison with $b_n = 1/n^2$ and p-series)
 - (e) converges by AST, but not absolutely
 - (f) converges by AST or ACT (+ Comparison with $b_n = 1/n^2$ and p-series)
 - (g) converges by AST after dropping $a_{2k+1} = 0$, but not absolutely
 - (h) converges by AST after dropping $a_{2k+1} = 0$ or ACT (+ Comparison with $b_n = 1/n^2$)
 - (i) diverges by p-series $(b/c (-1)^n \cos(\pi n) = 1)$
 - (j) converges by ACT (+ Comparison with $b_n = 1/n^2$ and p-series)
 - (k) converges by AST after dropping $a_{2k+1} = 0$ (b/c $(-1)^{2k} \cos(\pi(2k)/2) = (-1)^k$), but not absolutely
 - (l) converges by AST or ACT (+ Comparison with $b_n = 1/n^2$ and p-series)
 - (m) converges by AST, but not absolutely (LCT with $b_n = 1/n$)
 - (n) converges by AST or ACT (+ LCT with $b_n = 1/n^2$ and p-series)
 - (o) converges by AST or ACT (+ LCT with $b_n = 1/n^2$ and p-series)
 - (p) diverges by Test for Divergence (odd terms approach -1, even +1)
 - (q) converges by AST, but not absolutely (LCT with $b_n = 1/n$)
 - (r) converges by AST or ACT (+ LCT with $b_n = 1/n^2$ and p-series)
 - (s) converges by ACT (+ LCT with $b_n = 1/n^2$ and p-series)
 - (t) converges by AST, but not absolutely (LCT with $b_n = 1/n$)
- 7. (a) converges by AST or ACT (+ LCT with $b_n = 1/n^2$ and p-series)
 - (b) converges by AST, but not absolutely (LCT with $b_n = 1/n$)
 - (c) converges by AST, but not absolutely (LCT with $b_n = 1/n$)
 - (d) converges by AST, but not absolutely (LCT with $b_n = 1/n^{1/2}$)
 - (e) diverges b/c the first part diverges by p-series and the second converges by AST
 - (f) converges by ACT (+ LCT with $b_n = 1/n^{3/2}$ and p-series)