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7.6 Predator-Prey Systems

We have looked at a variety of models for the growth of a single species that lives alone in
an environment. In this section we consider more realistic models that take into account the
interaction of two species in the same habitat. We will see that these models take the form
of a pair of linked differential equations.

We first consider the situation in which one species, called the prey, has an ample food
supply and the second species, called the predators, feeds on the prey. Examples of prey
and predators include rabbits and wolves in an isolated forest, food fish and sharks, aphids
and ladybugs, and bacteria and amoebas. Our model will have two dependent variables and
both are functions of time. We let  be the number of prey (using  for rabbits) and 
be the number of predators (with  for wolves) at time .

In the absence of predators, the ample food supply would support exponential growth of the
prey, that is,

In the absence of prey, we assume that the predator population would decline at a rate
proportional to itself, that is,

With both species present, however, we assume that the principal cause of death among
the prey is being eaten by a predator, and the birth and survival rates of the predators
depend on their available food supply, namely, the prey. We also assume that the two
species encounter each other at a rate that is proportional to both populations and is
therefore proportional to the product . (The more there are of either population, the
more encounters there are likely to be.) A system of two differential equations that
incorporates these assumptions is as follows:

 represents the predator.

 represents the prey.
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where , and  are positive constants. Notice that the term  decreases the
natural growth rate of the prey and the term  increases the natural growth rate of the
predators.

The equations in (1) are known as the predator-prey equations, or the Lotka-Volterra
equations. A solution of this system of equations is a pair of functions  and  that
describe the populations of prey and predator as functions of time. Because the system is
coupled  and  occur in both equations), we can’t solve one equation and then the other;
we have to solve them simultaneously. Unfortunately, it is usually impossible to find explicit
formulas for  and  as functions of . We can, however, use graphical methods to analyze
the equations.

Note

The Lotka-Volterra equations were proposed as a model to explain the variations in
the shark and food-fish populations in the Adriatic Sea by the Italian mathematician
Vito Volterra (1860–1940).

Example 1

Suppose that populations of rabbits and wolves are described by the Lotka-Volterra
equations (1) with , , , and . The time  is
measured in months.

a. Find the constant solutions (called the equilibrium solutions) and interpret
the answer.

b. Use the system of differential equations to find an expression for .

c. Draw a direction field for the resulting differential equation in the RW-plane.
Then use that direction field to sketch some solution curves.

d. Suppose that, at some point in time, there are  rabbits and  wolves.
Draw the corresponding solution curve and use it to describe the changes in
both population levels.

e. Use part (d) to make sketches of  and  as functions of .

Solution
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a. With the given values of , , , and , the Lotka-Volterra equations become

Both  and  will be constant if both derivatives are , that is,

One solution is given by  and . (This makes sense: If there are no
rabbits or wolves, the populations are certainly not going to increase.) The
other constant solution is

So the equilibrium populations consist of  wolves and  rabbits. This
means that  rabbits are just enough to support a constant wolf population
of . There are neither too many wolves (which would result in fewer rabbits)
nor too few wolves (which would result in more rabbits).

b. We use the Chain Rule to eliminate :

so

c. If we think of  as a function of , we have the differential equation

We draw the direction field for this differential equation in Figure 1 and we use
it to sketch several solution curves in Figure 2. If we move along a solution
curve, we observe how the relationship between  and  changes as time
passes. Notice that the curves appear to be closed in the sense that if we
travel along a curve, we always return to the same point. Notice also that the
point  is inside all the solution curves. That point is called an
equilibrium point because it corresponds to the equilibrium solution , 

.

Figure 1

Direction field for the predator-prey system
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Figure 2

Phase portrait of the system

When we represent solutions of a system of differential equations as in Figure
2, we refer to the -plane as the phase plane, and we call the solution
curves phase trajectories. So a phase trajectory is a path traced out by
solutions  as time goes by.

A phase portrait consists of equilibrium points and typical phase trajectories,
as shown in Figure 2.

d. Starting with  rabbits and  wolves corresponds to drawing the solution
curve through the point . Figure 3 shows this phase trajectory with
the direction field removed. Starting at the point  at time  and letting 
increase, do we move clockwise or counterclockwise around the phase
trajectory? If we put  and  in the first differential equation, we
get
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Since , we conclude that  is increasing at  and so we move
counterclockwise around the phase trajectory.

Figure 3

Phase trajectory through 

We see that at  there aren’t enough wolves to maintain a balance between
the populations, so the rabbit population increases. That results in more
wolves and eventually there are so many wolves that the rabbits have a hard
time avoiding them. So the number of rabbits begins to decline (at , where
we estimate that  reaches its maximum population of about ). This
means that at some later time the wolf population starts to fall (at , where 

 and . But this benefits the rabbits, so their population later
starts to increase (at , where  and . As a consequence, the
wolf population eventually starts to increase as well. This happens when the
populations return to their initial values of  and , and the
entire cycle begins again.

e. From the description in part (d) of how the rabbit and wolf populations rise and
fall, we can sketch the graphs of  and . Suppose the points ,
and  in Figure 3 are reached at times , , and  Then we can sketch
graphs of  and  as in Figure 4.

Figure 4

Graphs of the rabbit and wolf populations as functions of time
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To make the graphs easier to compare, we draw the graphs on the same axes
but with different scales for  and , as in Figure 5. Notice that the rabbits
reach their maximum populations about a quarter of a cycle before the
wolves.

Figure 5

Comparison of the rabbit and wolf populations

An important part of the modeling process, as we discussed in Section 1.2, is to interpret
our mathematical conclusions as real-world predictions and to test the predictions against
real data. The Hudson’s Bay Company, which started trading in animal furs in Canada in
1670, has kept records that date back to the 1840s. Figure 6 shows graphs of the number of
pelts of the snowshoe hare and its predator, the Canada lynx, traded by the company over a
90-year period. You can see that the coupled oscillations in the hare and lynx populations
predicted by the Lotka-Volterra model do actually occur and the period of these cycles is
roughly  years.

Figure 6

Relative abundance of hare and lynx from Hudson’s Bay Company records
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Jeffrey Lepore/Science Source

Although the relatively simple Lotka-Volterra model has had some success in explaining and
predicting coupled populations, more sophisticated models have also been proposed. One
way to modify the Lotka-Volterra equations is to assume that, in the absence of predators,
the prey grow according to a logistic model with carrying capacity . Then the Lotka-
Volterra equations (1) are replaced by the system of differential equations

This model is investigated in Exercises 11 and 12.

Models have also been proposed to describe and predict population levels of two or more
species that compete for the same resources or cooperate for mutual benefit. Such models
are explored in Exercises 2, 3, and 4.

Chapter 7: Differential Equations: 7.6 Predator-Prey Systems 

Book Title: Calculus: Concepts and Contexts 

Printed By: Aleksey Zinger (aleksey.zinger@stonybrook.edu) 

© 2019 Cengage Learning, Cengage Learning

© 2022 Cengage Learning Inc. All rights reserved. No part of this work may by reproduced or used in any form or by any means -
graphic, electronic, or mechanical, or in any other manner - without the written permission of the copyright holder.

javascript://
javascript://
javascript://
javascript://
javascript://
javascript://

